
A Contextual Approach towards More Accurate
Duplicate Bug Report Detection

Anahita Alipour
Department of Computing Science

University of Alberta
Edmonton, Canada

alipour1@ualberta.ca

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Canada

hindle1@ualberta.ca

Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, Canada

stroulia@ualberta.ca

Abstract—Bug-tracking and issue-tracking systems tend to be
populated with bugs, issues, or tickets written by a wide variety
of bug reporters, with different levels of training and knowledge
about the system being discussed. Many bug reporters lack the
skills, vocabulary, knowledge, or time to efficiently search the
issue tracker for similar issues. As a result, issue trackers are
often full of duplicate issues and bugs, and bug triaging is time
consuming and error prone.

Many researchers have approached the bug-deduplication
problem using off-the-shelf information-retrieval tools, such as
BM25F used by Sun et al. In our work, we extend the state of
the art by investigating how contextual information, relying on
our prior knowledge of software quality, software architecture,
and system-development (LDA) topics, can be exploited to im-
prove bug-deduplication. We demonstrate the effectiveness of our
contextual bug-deduplication method on the bug repository of the
Android ecosystem. Based on this experience, we conclude that
researchers should not ignore the context of software engineering
when using IR tools for deduplication.

Index Terms—duplicate bug reports; triaging; textual simi-
larity; contextual information; machine learning; information
retrieval; deduplication

I. INTRODUCTION

As new software systems are getting larger and more
complex every day, software bugs are inevitable phenomenon.
Bugs occur for a variety of reasons, ranging from ill-defined
specifications, to carelessness, to a programmers misunder-
standing of the problem, technical issues, non-functional qual-
ities, corner cases, etc. [1], [2]. Recognizing bugs as a “fact
of life”, many software projects provide methods for users
to report bugs, and to store these bug/issue reports in a
bug-tracker (or issue-tracking) system. Addressing these bugs
frequently accounts for the majority of effort spent in the
maintenance phase of a software project’s life-cycle. This is
why, researchers have been trying to enhance the bug-tracking
systems to facilitate the bug-fixing process [3], [4].

For several reasons, such as lack of motivation of users and
defects in the search engine of the bug-tracking systems [4],
the users of software systems may report some bugs that
already exist in the bug-tracking system. These bug reports
are called “duplicates”. The word duplicate may also represent
the bug reports referring to different bugs in the system that
are caused by the same software defect.

Recently, researchers have paid notable attention to detec-
tion of duplicate bug reports. Without finding and marking
duplicate bug reports, the triager1 may triage/assign duplicate
bug reports to different developers. In addition, when a bug
report gets fixed, addressing the duplicates as independent
defects is just a waste of time. Finally, identifying duplicate
bug reports can also be helpful in fixing the bugs, since some
of the bug reports may provide more useful descriptions than
their duplicate [4]. Currently, detecting duplicate bug reports
is usually done manually by the triager. When the number
of daily reported bugs for a popular software is taken into
consideration, manually triaging takes a considerable amount
of time and the results are unlikely to be complete. In Eclipse,
for example, two person-hours are daily being spent on bug
triaging [5].

A number of studies have attempted to address this issue
by automating bug-report deduplication. To that end, various
bug-report similarity measurements have been proposed, con-
centrating primarily on the textual features of the bug reports,
and utilizing natural-language processing (NLP) techniques to
do textual comparison [6], [7]. Some of these studies also use
categorical features extracted from the fields of bug reports
(i.e. component, version, priority, etc.) [8], [9].

In this work, we introduce a new approach for improving
the accuracy of detecting duplicate bug reports of a software
system. Our approach exploits domain knowledge, about the
software-engineering process in general and the system specif-
ically, to improve bug-report deduplication. Essentially, rather
than naively and exclusively applying information-retrieval
(IR) tools, we propose to take advantage of our knowledge of
the software process and product. Intuitively, we hypothesize
that bug reports are likely to refer to software qualities,
i.e., non-functional requirements (possibly being desired but
not met), or software functionalities (linked to architectural
components responsible for implementing them). Thus, we
utilize a few software dictionaries and word lists, exploited
by prior research, to extract the context implicit in each bug
report. To that end, we compare the contextual word lists
to the bug reports and we record the comparison results as

1The person who is in charge of processing the newly reported bugs and
passing them to appropriate developers to get fixed.



new features for the bug reports, in addition to the primitive
textual and categorical features of the bug reports, such as
description, component, type, priority, etc. proposed in Sun et
al.’s work [8]. Then, we utilize this extended set of bug-report
features to compare bug reports and detect duplicates. Through
our experiments, we demonstrate that the use of contextual
features improves bug-deduplication performance. Also, we
investigate the effect of the number of added features on bug-
deduplication.

We evaluate our approach on a large bug-report data-set
from the Android project, which is a Linux-based operating
system with several sub-projects2. We examine 37236 Android
bug reports. In this research, we are taking advantage of five
different contextual word lists to study the effect of various
software engineering contexts on the accuracy of duplicate
bug-report detection. These word lists include: Android archi-
tectural words [10], software Non-Functional Requirements
words [11], Android topic words extracted applying Latent
Dirichlet Allocation (LDA) method [12], Android topic words
extracted applying Labeled-LDA method [12], and random
English dictionary words (as a control). To retrieve the
duplicate bug reports, several well-known machine-learning
algorithms are applied (using Weka [13]). To validate the
retrieval approach we employed 10-fold cross validation. We
indicate that our method results in 16.07% relative improve-
ment in accuracy and an 87.59% relative improvement in
Kappa measure (over the baseline).

This work makes the following contributions.
• We propose the use of domain knowledge about the soft-

ware process and products to improve bug-deduplication
performance.

• We demonstrate that our method improves the accuracy of
duplicate bug-report detection by 16.07% and the Kappa
measure by 87.59% (over the baseline).

• We systematically investigate the effect of considering
different contextual features on the accuracy of bug-report
deduplication.

• Finally, we posit a new evaluation methodology for bug-
report deduplication, that improves the methodology of
Sun et al.’s [8] by considering true-negative duplicate
cases as well.

The paper is organized as follows. Section II presents some
existing studies done on software bug reports as well as
utilizing IR techniques in software engineering. In Section III,
we discuss the software contextual data-sets used in our
experiments. Section IV describes our duplicate bug-report
detection methodology. In Section V, our case study of 37236
Android bug reports is explained to show the effectiveness of
our approach on a large real data-set. At the end, Section VI
presents the conclusion of this research.

II. RELATED WORK

Information Retrieval (IR) is a popular topic in software
engineering research due to the prevalence of natural language

2Android Operating System Project http://source.android.com/

artifacts. In this section we cover relevant IR works and bug-
deduplication studies.

A. IR in Software Engineering

Binkley et al. [14] applied a variety of IR techniques,
including latent semantic indexing (LSI) — a generative
probabilistic model for sets of discrete data proposed by
Dumais et al. [15] — and Formal Concept Analysis (FCA) —
a mathematical theory of data analysis using formal contexts
and concept lattices explained by Ganter, B. et al. [16] — on
different software repositories. They have addressed software
problems like fault prediction, developer identification for a
task, assisting engineers in understanding unfamiliar code,
estimating the effort required to change a software system,
and refactoring.

Marcus et al. have used LSI to map the concepts expressed
by the programmers (in queries) to the relevant parts in the
source code [17]. Their method is built upon finding semantic
similarities between the queries and modules of the software.

Blei et al. [18] have described Latent Dirichlet Allocation
(LDA), a generative model for documents in which each
document is related to a group of topics. They have presented a
convexity-based variational approach for inference and demon-
strated that it is a fast algorithm with reasonable performance.

Hindle et al. have proposed and implemented a labeled topic
extraction method based on labeling the extracted topics (from
commit log repositories) using non-functional requirement
concepts [19]. Their method is based on LDA topic extraction
technique. They have selected the non-functional requirements
concept as they believe these concepts apply across many
software systems.

Poshyvanyk et al. have applied the FCA, LSI and LDA
techniques in order to locate the concepts in the source
code [20]. They have also used LDA to investigate conceptual
coupling [21].

B. Bug Report Deduplication

Just et al. [3] believe that the current bug tracking systems
have defects causing IR processes be less precise. By survey-
ing 872 developers the authors conclude that issue trackers
should improve their interfaces to augment the information
they already provide developers.

In [7], Runeson et al. have developed a prototype tool to
study the effect of NLP on detecting duplicate bug reports
using the defect reports of Sony Ericson Mobile Commu-
nications. Their evaluations shows that about 66% of the
duplicates can possibly be found using the NLP techniques.
Also, they have studied different variants of NLP techniques
like changing number of stop words to check for, and spell-
checking and synonym replacement. But, these techniques
could only make minor differences in results.

In [22], Nagwani et al. provide two different definitions
for similar and duplicate bugs. Two bugs are similar when
the same implementation behaviour is required for resolving
these two bugs. Two bugs are duplicate when the same bug is
reported by using different sentences in description. Then, the



bugs are compared utilizing some well-known string similarity
algorithms and semantic similarity methods. Based on some
specified thresholds, if all the similarity measures meet the
thresholds, bug reports are duplicates; if some meet, the bug
reports are similar.

Bettenburg et al. [4] propose an approach in which triaging
is done by machine learners. Titles and descriptions (textual
features of bug reports) are converted to word vectors. In
this study, SVM and naive Bayes algorithms are utilized for
automatic triaging. SVM demonstrates a better accuracy and
the highest accuracy for SVM is 65%. Besides, they discuss
the idea that duplicate bug reports can be useful as they provide
more information about a software defect. So, the authors
prefer to merge duplicate bug reports rather than removing
them.

Jalbert et al. [9] have introduced a classifier for incom-
ing bug reports which combines the categorical features of
the reports, textual similarity metrics, and graph clustering
algorithms to identify duplicates. In this method, bug reports
are filtered based on an automatic approach. Their method is
evaluated on a data-set of 29000 bugs from Mozilla Firefox.
As a result, development cost was reduced by filtering out 8%
of duplicate bug reports.

Wang et al. [23] used natural language information ac-
companied by execution information to detect duplicate bugs,
evaluated on the Firefox and Eclipse bug repositories. Reports
are divided into three groups: run-time errors, feature requests,
and patch errors. They achieve better performance than relying
solely on natural language information. This approach shows
some promise behind using contextual information

Lotufo et al. [24] studied how a triager reads and navigates
through a bug and made a bug summarizer using this research.
They successfully evaluated the quality of their summarizer on
a wide survey of developers.

Finally, Sun et al. [8] have proposed a new text-similarity-
based duplicate bug-report retrieval model based on BM25F
[6], a document similarity measurement method built upon
tf − idf . In addition to textual features of bug reports,
other categorical information from the bug reports, including
product, priority, and type are utilized to retrieve duplicate
bug reports. They evaluate their method by producing a list of
candidate duplicate bug reports for every bug report marked
as “duplicate” by the triager, to see if the correct duplicate
is a candidate or not. The authors applied their technique
on three software bug repositories from Mozilla, Eclipse,
and OpenOffice and achieved duplicate bug-report detection
improvement with 10-27% in recall rate@k (1 ≤ k ≤ 20) and
10-23% on average.

III. DATA

The data-set used in this study involves Android bugs sub-
mitted from November 2007 to September 2012. After filtering
unusable bug reports (the bug reports without necessary feature
values such as Bug ID), the total number of bug reports
is 37236 and 1063 of them are marked as duplicate. To
study the effect of software-development contexts on detecting

duplicate bug reports, we have taken advantage of several lists
of contextual words as follows.

• Android architecture words: Guana et al. [10] produced
a set of Android architecture words to categorize the
Android bug reports based on architecture. Their word
list is adopted from Android architecture documents and
is organized in five word lists (one word list per Android
architectural layer3) with the following labels: Applica-
tions, Framework, Libraries, Runtime, and Kernel.

• Non-Functional Requirement (NFR) words: Hindle
and Ernst et al. [11] have proposed a method to automate
labeled-topic extraction, built upon LDA, from commit-
log comments in source control systems. They have
labeled the topics from a generalizable cross-project tax-
onomy consisting of non-functional requirements such as
portability, maintainability, efficiency, etc. They have cre-
ated a list of software NFR words organized in six word
lists with the following labels: Efficiency, Functionality,
Maintainability, Portability, Reliability, and Usability.

• Android topic words: Han et al. [12] have applied
both LDA and Labeled-LDA [25] topic analysis models
to Android bug reports. We are using their Android
HTC LDA topics, organized in 35 word-lists of An-
droid topic words labeled as Topici where i ranges
from 0 to 34. We also use their Android HTC top-
ics extracted by Labeled-LDA organized in 72 lists of
words labeled as follows: 3G, alarm, android market,
app, audio, battery, Bluetooth, browser, calculator, cal-
endar, calling, camera, car, compass, contact, CPU,
date, dialing, display, download, email, facebook,
flash, font, google earth, google latitude, google map,
google navigation, google translate, google voice, GPS,
gtalk, image, input, IPV6, keyboard, language, lo-
cation, lock, memory, message, network, notifica-
tion, picassa, proxy, radio, region, ringtone, rSAP,
screen shot, SD card, search, setting, signal, SIM card,
synchronize, system, time, touchscreen, twitter, UI, up-
grade, USB, video, voicedialing, voicemail, voice call,
voice recognition, VPN, wifi, and youtube.

• Random English words: To investigate the influence
of contextual word lists on the accuracy of detecting
duplicate bug reports, we have have created a collection
of randomly selected English dictionary words. In other
words, we have created this “artificial context” to study
if adding noise data to the features of bug reports can
improve deduplication even though the added data does
not represent a valid context. This collection is organized
in 26 word lists, labeled a through z. In each of these
word lists there are 100 random English words starting
with the same English letter as the label of the word list.

IV. METHODOLOGY

In the Android bug-tracking system4, each bug report in-
cludes a Bug ID, description, title, status, component, priority,

3Android architecture words: http://source.android.com/tech/security/
4Android Issue Tracker: http://code.google.com/p/android/issues/list



type, version, open date, close date, and Merge ID. The status
feature can have different values including “Duplicate” which
means the bug report is recognized as a duplicate report by the
triager [26]. To explain the functionality of Merge ID we bring
the following example. Assume the bug report A is recognized
as a duplicate of bug report B by the triager, the Merge ID
feature of A refers to B’s Bug ID. We call B the “immediate
master” of A. Table I depicts some examples of duplicate bug
reports with their immediate master reports in the Android
bug-tracking system.

TABLE I: Examples of duplicate bug reports from Android
bug-tracking system.

Pair ID Component Priority Type Version Status Merge ID
1 13321 GfxMedia Medium Defect New

13323 GfxMedia Medium Defect Duplicate 13321
2 2282 Applications Medium Defect 1.5 Released

3462 Applications Medium Defect Duplicate 2282
3 14516 Tools Critical Defect 4 Released

14518 Tools Critical Defect 4 Duplicate 14516

Table I shows examples of pairs of duplicate bug reports
in Android and their categorical features. According to this
table, these duplicate bug reports have similar categorical
features. This motivates the use of categorical features in bug-
deduplication.

In the rest of this section, we explain our methodology.
Figure 1 displays the workflow of our method.

A. Preprocessing

After extracting the Android bug reports, we applied a
preprocessing method consisting of the following steps:

1) First, we removed the bug reports without Bug IDs as
well as the duplicate bug reports with immediate master
reports not existing in the bug-tracking system.

2) Next, we removed the stop words from the textual
features (description and title) of bug reports using a
comprehensive list of English stop words5.

3) We organized the bug reports in a list of buckets. A
bucket is a data structure, introduced by Sun et al. [8],
including one bug report as master and a list of bug
reports as duplicates. All the bug reports are inserted in
the same bucket with their immediate master bug report
while the bug report with the earliest open time is the
master report of the bucket.
Then, we converted the bug reports into a collection of
bug-report objects with the following properties: Bug
ID, description, title, status, component, priority, type,
version, open date, close date, and optional master id,
which is the ID of the bug report which is the master
report of the bucket including the current bug report.

B. Textual and Categorical Comparison

After preprocessing, we measure the pairwise similarity
between every two bug reports based on their primitive fea-
tures (description, title, component, type, priority, and version).

5Stop Words: http://www.link-assistant.com/seo-stop-words.html

Since the title and description of bug reports are textual
features, a textual similarity measurement method is used to
compare them between two bug reports. This measurement
method is a customized version of BM25F for long queries
proposed by Sun et al. [8]. Figure 2 describes the textual
and categorical measurement formulas applied in our method.
These formulas are adapted from Sun et al.’s paper [8].

comparison1(d1, d2) = BM25F (d1, d2)//ofunigrams

comparison2(d1, d2) = BM25F (d1, d2)//ofbigrams

comparison3(d1, d2) =

{
1 if d1.prod = d2.prod
0 otherwise

comparison4(d1, d2) =

{
1 if d1.comp = d2.comp
0 otherwise

comparison5(d1, d2) =

{
1 if d1.type = d2.type
0 otherwise

comparison6(d1, d2) =
1

1 + |d1.prio− d2.prio|

comparison7(d1, d2) =
1

1 + |d1.vers− d2.vers|

Fig. 2: Categorical and textual measurements for comparison
of a pair of bug reports [8].

The first comparison defined in Figure 2 is the textual
similarity between two bug reports over the features title and
description, computed by BM25F . The second comparison
is similar to the first one, except that the features title and
description are represented in bigrams (a bigram consists
of two consecutive words). For more information about the
implementation of BM25F please see the Sun et al.’s paper [8].
The remaining five comparisons are categorical comparisons.

Since the comparison3 is comparing the product of bug
reports, it is not applicable for our Android bug repository as
the product feature of each Android bug report is not specified.
So, we set the value of this feature to 0 for all the bug reports.

Comparison4 compares the component features of the
bug reports. The component of a bug report may specify
an architecture layer or a more specific module within an
architectural layer. The value of this measurement is 1 if
the two bug reports belong to the same component and 0
otherwise.

Comparison5 compares the type of two bug reports, i.e.,
whether they are both “defects” or “enhancements”. This
comparison has the value of 1 if the two bug reports being
compared have the same type and 0 otherwise.

Comparison6 and comparison7 compare the priority and
version of the bug reports. These measurements could have
values between 0 and 1 (including 1).

The result of this step is a table including all the pairs of
bug reports with the seven comparisons shown in Figure 2 and
a column called class which reports if the two bug reports are
in the same bucket or not. Table II shows a snapshot of this



Preprocess Preprocessed

 bug reports

Measure the textual and

 categorical similarity

Measure contextual similarity

Table of categorical 

and textual measures

Tables of contextual measures

Join tables
Table of categorical,

 textual, and contextual

 measures

Apply machine

 learning algorithms

Software

contextual 

word collections

 Bug reports of

 bug tracking system

Fig. 1: Workflow of our methodology. The typical rectangles represent data and the rounded corner rectangles represent activities.

table with some examples of pairs of the Android bug reports.
This table includes the measurements shown in Figure 2. The
value of class column is “dup” if the bug reports are in the
same bucket and “non” otherwise.

Regarding the number of bug reports in the Android bug-
tracking system (37236), a huge number of pairs of bug reports
are generated in this step (37236× 37236). Consequently, we
need to sample the records of the table before running the
experiments. Since, there are only about 20000 of pairs of
bug reports marked as “dup”, and we want to create a set of
bug report pairs including 20% “dup”s and 80% “non”s, we
have selected 4000 “dup” and 16000 “non” pairs of reports
randomly. So, we have 20000 sampled pairs of bug reports.
The list of 20000 sampled bug-report pairs (with categorical
and textual comparison measurements) is loaded into a SQL
table called “textual categorical”. The schema of this table is
shown in Table II.

C. Contextual Measurement

As mentioned in Section II, most of the previous research
on detecting duplicate bug reports has focused on textual
similarity measurements and IR techniques. Some approaches
consider the categorical features of bug reports, in addition to
the text. Here, we intend to describe our new approach which
involves measuring the contextual similarity among the bug
reports. We believe this new similarity measurement can help
finding the duplicate bug reports more accurately by making
the context of a bug report a feature during comparison.

In our method, we take advantage of the software contextual
word collections described in Section III. We explain the
contribution of context in detail, using the NFR context as
an example. As mentioned in Section III, this contextual
word collection includes six word lists (labeled as efficiency,
functionality, maintainability, portability, reliability, and us-
ability). We consider each of these word lists as a text, and
calculate the similarity between each text and every bug report
textually (using BM25F). For the case of NFR context, there
are six BM25F comparisons for each bug report, which result
in six new features for the bug reports. Table III shows
the contextual features resulting from the application of the

contextual measurements, using NFR context, for some of
the Android bug reports. Each column shows the contextual
similarity between the bug report and each of the NFR word
lists. For example, the bug with the id 29374 seems to be more
related to usability, reliability, and efficiency rather than the
other NFR contexts.

The same measurement is done for the other contextual
word collections as well. At the end, there will be five different
contextual tables as we have five contextual word collections
(Labeled-LDA, LDA, NFR, Android architecture, and English
random words). These tables are inserted into five SQL tables
called “Labeled LDA table”, “LDA table”, “NFR table”,
“architecture table”, “random words table”. These are the
tables called “tables of contextual measures” in Figure 1.

D. Calculating the Comparisons

In this phase of the process, we have the “tex-
tual categorical” table for pairs of bug reports (as shown in
Table II) and five tables reporting “contextual features” for
individual bug reports, as described in Section IV-C. The next
step involves a comparison of these contextual features for the
pairs of bug reports.

As our research objective is to understand the impact that
contextual analysis may have on bug-deduplication, in this
phase, we aim to produce five different tables, each one
including pairwise bug-report comparisons across (a) textual
features, (b) categorical features and (c) one set of contextual
features. One of these tables, the one corresponding to the
“NFR” contextual feature is shown in Table V. As demon-
strated in this view, the first seven columns are the same as
the ones in Table II; they report the similarity measurements
between the two bug reports according to textual and cate-
gorical features. Next are two families of six columns each,
reporting the NFR contextual features for each of the two bug
reports (with Bug ID1 and Bug ID2 respectively). The second
to last column of the Table V reports the contextual similarity
of the two bug reports based on these two column families.
We consider the contextual features of the two bug reports
as value vectors and measure the distance between these two



TABLE II: Some examples of pairs of bug reports with categorical and textual comparison values (“textual categorical” table).

Bug ID1 Bug ID2 BM25Funi BM25Fbi Product comp Component comp Type comp Priority comp Version comp Class
3462 2282 1.5193 0 0 1 1 1 0.2857 dup
14518 14516 1.4841 0 0 1 1 1 1 dup
29374 3462 0.6282 0.1203 0 0 1 1 1 non
27904 14518 0.1190 0 0 0 1 0.3333 .1667 non

TABLE III: Examples of NFR contextual feature values for some Android bug reports

Bug ID Efficiency Functionality Maintainability Portability Reliability Usability
3462 3.4474 4.5729 1.3499 0.5653 1.5315 1.4094
2282 2.8829 2.5083 1.0662 3.3723 4.5321 4.9141
29374 3.8856 2.5235 0.1280 0.9888 3.2025 5.0744
27904 2.9330 1.0252 0.4990 0.0000 3.3571 4.5536

vectors using a cosine similarity measurement. The formula
for calculating this similarity is shown below.

cosine sim =

∑n
i=1 C1i × C2i√∑n

i=1(C1i)2 ×
√∑n

i=1(C2i)2

In this formula, n is the number of word lists of the
contextual data which is equal to the number of contextual
features added to each bug report (in the case of NFR, n=6).
C1i and C2i are the ith contextual features added to first
and second bug reports in the pair respectively. The cosine
similarity feature is demonstrated in Table V. This table shows
an example where bug reports with IDs 3462 and 2282, and
bug reports with IDs 29374 and 3462 are compared in terms
of NFR context. One of the records demonstrates the features
for two bug reports belonging to the same bucket (with class
value of “dup”). And, the other one shows a pair of bug reports
existing in different buckets (with the class value of “non”).
The Table V which includes textual, categorical, and the NFR
contextual similarity measurements, is called the “NFR all-
features table”. Note that there are five different such “all-
features” tables, each one corresponding to a different context.

E. Machine Learning Evaluation

In this section, we discuss our use of machine learners on
different parts of our data for deciding if a pair of bugs are
duplicates or not. To retrieve the duplicate bug reports we are
taking advantage of well-known machine learning classifica-
tion algorithms. In each experiment, a table including pairs of
bug reports with a particular combination of similarity metrics
(i.e. textual, categorical, and contextual features) is passed to
the machine learners. Each “all-features” table includes all the
inputs necessary for our machine learners. The machine learner
should decide about the class column’s value for each pair of
bug reports. In other words, given any pair of bug reports, the
machine learner should decide if the pair is a “dup” (the bug
reports in the pair are in the same bucket) or a “non” (the bug
reports in the pair are not in the same bucket) based on some
combination of the similarity columns of the table.

The classifiers we use are implemented by Weka [13]. The
0-R algorithm is utilized to establish the baseline. The other
applied algorithms are C4.5, K-NN (K Nearest Neighbours),
Logistic Regression, and Naive Bayes. K-NN tends to perform

well with many features, but as well if K-NN works it implies
that the input data has a fundamentally simple structure that
is exploitable by distance metrics. We use the 10-fold cross
validation technique to avoid over-fitting during training and
evaluation.

The evaluation of the retrieval performance is measured by
the following metrics: accuracy, kappa, and Area Under the
Curve (AUC). Accuracy is the proportion of true results (truly
classified “dup”s and “non”s) among all pairs being classified.
The formula for accuracy is indicated bellow.

acc =
|true dup|+ |true non|

|true dup|+ |false dup|+ |true non|+ |false non|
True and false “dup” are the pair bugs truly and wrongly

recognized as “dup” respectively by machine learners. True
and false “non” have the same definition but for the “non”
class value.

Kappa measures the agreement between the machine learn-
ing classifier and the existing classes in the bug-tracking
system. In other words, it is the agreement between the
classifier and the triager of the Android bug-tracking system.
The equation for kappa is:

kappa =
Pr(a)− Pr(e)

1− Pr(e)

Pr(a) is the relative observed agreement between the
machine learning classifier and the triager. The Pr(e) is
the hypothetical probability of chance agreement, using the
observed data, to calculate the probabilities of each observer
(machine learner or triager) randomly saying each category. If
the classifiers are in complete agreement, then kappa = 1. If
there is no agreement among the classifiers other than what
would be expected by chance , then kappa = 0.

AUC is the area under the Receiver Operation Characteristic
(ROC) curve. ROC curve is created by plotting he fraction
of truly recognized “dup”s out of all recognized “dup”s
(True Positive Rate) versus the fraction of wrongly recognized
“dup”s out of all recognized “non”s (False Positive Rate) by
the machine learners. AUC is the probability that a classifier
will rank a randomly chosen “dup” instance higher than a
randomly chosen “non” one (assuming that “dup” class has a
higher rank than “non” class).



TABLE IV: Examples of predictions made by K-NN algorithm for the data-set including textual, categorical, and Labeled-LDA
context’s data

Pair ID Title Component Priority Type Version Actual Prediction

1 3063 Bluetooth does not work with Voice Dialer Device Medium Defect dup dup8152 Need the ability to use voice dial over bluetooth. Medium Defect

2 3029 support for Indian Regional Languages..... Framework Medium Enhancement dup non4153 Indic fonts render without correctly reordering glyphs GfxMedia Medium Defect

3 8846 Bluetooth Phonebook Access Profile PBAP Character Problem Medium Defect 2.2 non non4153 [ICS] Question of Google Maps’ location pointer Medium Defect

4 719 enhanced low-level Bluetooth support Device Medium Enhancement non dup1416 Bluetooth DUN/PAN Tethering support Device Medium Enhancement

TABLE V: Examples of the records in the table containing categorical, textual, and contextual features for pairs of bug reports.

Bug ID1 Bug ID2 comp1 ... comp7 Efficiency1 ... Usability1 Efficiency2 ... Usability2 Cosine sim class
3462 2282 1.5193 ... 0.2857 3.4474 ... 1.4094 2.8829 ... 4.9141 0.7279 dup

29374 3462 0.6282 ... 1 3.8856 ... 5.0744 3.4474 ... 1.4094 0.7876 non

V. CASE STUDIES

We applied our method on the Android bug-tracking system.
To study the effect of contextual data on the accuracy of
duplicate bug-report detection, we applied the classification
algorithms on three different data-sets:

1) the data-set including all of the similarity measurements
are shown in the “all-features” tables (such as Table V,
the NFR all-features table);

2) the data-set including only the textual and categorical
similarity measurements of the table; and

3) the data-set including only the contextual similarity
measurement features.

As mentioned before, the table includes 20000 pairs of ran-
domly selected bug reports with 20% “dup”s and 80% “non”s.
All the experiments were carried out by Weka [13] application.
The tables VI, VII, VIII, IX, X, and XI report the results of
experiments.

A. The Effectiveness of Context

In this section we analyze the effect of context on detecting
duplicate bug reports based on the results reported in the
tables. The Table VI shows the statistical evaluation measure-
ment values without considering the context of bug reports.
This table demonstrates the resulting evaluation measures of
the machine learners with the input data created by Sun et
al.’s method [8]. Considering that the 0-R algorithm reports
the baseline measurement values, their similarity measurement
method could improve the accuracy by 4.52%, the kappa by
0.46, and the AUC by 0.28 (over the baseline).The maximum
values are shown in bold in Table VI. This table demonstrates
that Sun et al.’s method is definitely finding duplicates.

The tables VI, VII, VIII, IX, X, and XI report the
statistical measurement results, using the contextual data-sets
in bug-report similarity measurements. The highest value in
each column is shown in bold. As reported in these tables,
when the contextual data is used with textual and categorical
measurements, the accuracy, kappa, and AUC are improved
by 12.11%, 0.76, and 0.41 respectively (in comparison to the
baseline). When considering the context only, the accuracy,
kappa, and AUC are improved by 16.07%, 0.88, and 0.45

respectively over the baseline.The highest improvements are
achieved utilizing the LDA and Labeled-LDA contextual data.
This result is promising because LDA is an automatic method
and not that expensive to run and if its topics can help boost
deduplication performance then we have an automatic method
of improving duplicate detection.

Table IV illustrates some examples of predictions made by
K-NN machine learning algorithm for the data-set including
textual, categorical, and Labeled-LDA context’s data. The first
pair of bug reports is correctly recognized as duplicates by
the machine learner given that both of the reports are about
“Bluetooth” which is an Android Labeled-LDA topic. For the
same reason the pair 4 is recognized as a duplicate by the
machine learner while the reports in this pair are not duplicates
of each other. In pair 2, the bug reports are categorically
different and also textually not similar in terms of Android
Labeled-LDA topics, but they are wrongly classified as non-
duplicates by the machine learner. In the pair 3, the reports are
categorically similar and they are correctly recognized as non-
duplicates as they are about two different Android Labeled-
LDA topics.

Figure 3 shows the ROC curves for results of applying
K-NN algorithm on the various “all-features” tables. It also
displays the ROC curve for the “textual categorical” table.
The figure shows that the Labeled-LDA context outweighs the
other ones. The “No context” curve shows the performance
of K-NN algorithm using the data generated by Sun et al.’s
measurements (only textual and categorical measurements)
which show poor performance in comparison to the other
curves. Thus the addition of extra features with or without
Sun et al.’s features improves bug-deduplication performance.

Figure 4 presents the ROC curves for results of applying
C4.5 algorithm on the “all-features” tables. It also indicates
the performance of C4.5 on the “textual categorical” table.
This diagram shows a tangible gap between the performance of
C4.5 using different contextual data-sets and its performance
without using any context.

Taking into account the reported measurements, the contex-
tual comparison results definitely outperform the results when
using only the similarity measurements provided by Sun C. et



al. [8]. This implies that the context of bug reports includes
useful information for bug-report deduplication. Furthermore
this information is not evident in the textual measures. Also,
we have evidence now that duplicate bug reports are contex-
tually close to each other.

Duplicate bug reports have similar context. 
Context provides different information than textual similarity. 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

No context
Architecture
NFR
Random English words
LDA
Labeled−LDA
Base line

Fig. 3: ROC curve for K-NN algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

No context
Architecture
NFR
Random English words
LDA
Labeled−LDA
Base line

Fig. 4: ROC curve for C4.5 algorithm.

TABLE VI: Metrics for the experiments on the data-set
including only textual and categorical comparisons, features

used by Sun et al. [8]

Algorithm Accuracy % Kappa AUC
0-R 80.0000% 0.0000 0.500

Logistic Regression 82.8300% 0.3216 0.814
Naive Bayes 78.6250% -0.0081 0.778

C4.5 84.5250% 0.4324 0.716
K-NN 82.3800% 0.4616 0.737

B. Effectiveness of Number of Features

As mentioned before, each contextual data-set adds some
new contextual features to each bug report. Number of these
contextual features is equal to the number of word lists
included in the contextual data-set. In this section, we analyze

the influence of the number of added features (to the bug
reports) on the bug-deduplication process.

Figure 5 shows the relationship between the kappa measure
and the number of added features. Each box-plot in this figure
represents the distribution of kappa values for each context
reported by the machine learning classifiers (0-R, Naive Bayes,
Logistic Regression, K-NN, and C4.5). In this diagram, there
is a little difference between the performance of 26 Random
English Word features and 6 NFR features, but NFR use 20
fewer features. Context is more important than feature count.

Moreover, we display the correlation between the number
of added features and the AUC in Figure 6 by fitting a linear
regression function (the slope of this line is 0.0012). The AUC
measure for Naive Bayes, Logistic Regression, K-NN, and
C4.5 is demonstrated in this figure. The measured correlation
value for this figure is 0.46 which does not represent a high
positive correlation.

Taking into account the above mentioned points, it is
evident that adding more features can improve performance
but contextually relevant features perform considerably better.

00 05 06 26 35 72

0.
0

0.
2

0.
4

0.
6

Number of added features

K
ap
pa

Fig. 5: Kappa versus number of added features. The x axis
shows the number of the features each context adds to each

bug report (which is equal to the number of word lists of the
contextual data). The contexts from left to right are no context,
architecture, NFR, Random words, LDA, and Labeled-LDA.

C. Context Matters

This paper describes one scenario where context matters.
And, we also showed how software-development context mat-
ters in prior work [11]. This paper provides more evidence that
we can gain in performance by including contextual features
into our software engineering related IR tasks, whether it is
bug duplication or LDA topic labelling and tagging. We hope
this work serves as a call to arms for researchers to start
building corpora of software concepts in order to improve
automated and semi-automated software engineering tasks.

D. Threats to Validity

Construct validity is threatened by our word-lists in the
sense of how they are constructed and if the word-lists actually



TABLE VII: Metrics for the experiments on the data-set including textual, categorical, and Android architectural context’s data

Algorithm Textual, Categorical, and Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic Regression 83.060% 0.3562 0.829 79.965% 0.0005 0.618
Naive Bayes 77.950% 0.2185 0.732 75.255% 0.0825 0.603
C4.5 87.990% 0.5947 0.880 91.690% 0.7083 0.916
K-NN 85.580% 0.5632 0.794 86.330% 0.5553 0.843

TABLE VIII: Metrics for the experiments on the data-set including textual, categorical, and NFR context’s data

Algorithm Textual, Categorical, and Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic Regression 83.325% 0.3615 0.833 79.995% 0.0014 0.617
Naive Bayes 78.735% 0.1106 0.758 77.880% 0.0509 0.619
C4.5 89.450% 0.6661 0.856 96.145% 0.8792 0.952
K-NN 85.295% 0.5766 0.813 83.165% 0.5222 0.788

TABLE IX: Metrics for the experiments on the data-set including textual, categorical, and random English words’ data

Algorithm Textual, Categorical, and Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic Regression 83.730% 0.3854 0.844 80.200% 0.0543 0.661
Naive Bayes 51.845% 0.1341 0.665 39.260% 0.0515 0.606
C4.5 89.995% 0.6673 0.901 91.590% 0.7101 0.917
K-NN 87.955% 0.6384 0.834 87.620% 0.6119 0.863

TABLE X: Metrics for the experiments on the data-set including textual, categorical, and LDA context’s data

Algorithm Textual, Categorical, and Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic Regression 86.780% 0.5382 0.886 80.590% 0.1447 0.732
Naive Bayes 77.290% 0.3179 0.767 73.565% 0.2523 0.712
C4.5 91.245% 0.7284 0.866 96.070% 0.8759 0.946
K-NN 88.615% 0.6854 0.887 89.345% 0.7034 0.894

0 10 20 30 40 50 60 70

0.
70

0.
75

0.
80

0.
85

0.
90

Number of added contextual features

A
U
C

Fig. 6: AUC versus number of added features. The x axis
shows the number of the features each context adds to each
bug report. The contexts from left to right are no context,

architecture, NFR, Random words, LDA, and Labeled-LDA.

represent context or just important tokens. Our measurements
rely on the status of bug reports in the Android bug-tracking

system that has a huge number of bug reports not processed by
the triager (have the status value of “New”). And, there may
be many duplicate bug reports among them. Also, the Android
bug-tracking system includes only 1063 bug reports labeled as
“duplicate” out of 37236 bug reports. There are likely many
unlabeled duplicate bug reports.

We address internal validity by replicating past work (Sun
et al.) but also by evaluating both on true negatives (non-
duplicates) and true positives (duplicates), where as Sun
et al.’s methodology only tested for recommendations on
true positives. Furthermore internal validity is bolstered by
searching for rival explanations of increased performance by
investigating the effect of extra features.

External validity is limited by the sole use of the Android
bug tracker, but this is a very large project (an OS and appli-
cations) so the breadth of the Android sub-projects provides
some form of generality.

VI. CONCLUSION

In this paper, we have exploited the domain knowledge and
context of software development to find duplicate bug reports.
By improving bug deduplication performance companies can



TABLE XI: Metrics for the experiments on the data-set including textual, categorical, and Labeled-LDA context’s data

Algorithm Textual, Categorical, and Contextual Contextual only
Accuracy % Kappa AUC Accuracy % Kappa AUC

0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
LogisticRegression 88.125% 0.5967 0.904 82.605% 0.3151 0.798
Naive Bayes 79.655% 0.3508 0.788 77.560% 0.3082 0.747
C4.5 92.105% 0.7553 0.888 95.430% 0.8574 0.939
K-NN 91.500% 0.7561 0.911 92.405% 0.7801 0.921

save money and effort spent on bug triage and duplicate
bug finding. We use contextual word lists to address the
ambiguity of synonymous software-related words within bug
reports written by users, who have different vocabularies. We
replicated Sun et al.’s [6] method of textual and categorical
comparison and extended it by adding our contextual simi-
larity measurement approach. We have utilized the contexts
of Android architecture, non-functional requirements (NFRs),
and the Android LDA-extracted topics (extracted by LDA
and Labeled-LDA). By including the overlap of context as
features we found that our contextual approach improves the
accuracy of bug-report deduplication by 11.55% over Sun et
al.’s [8] method. This implies that by addressing the context
of software engineering and relying on prior knowledge of
software development we can boost bug de-duplication per-
formance. We conclude that to improve duplicate bug-report
detection performance one should consider, and not ignore,
the domain and context of software engineering and software
development.

ACKNOWLEDGEMENTS

This work is partially supported by Natural Sciences and
Engineering Research Council (NSERC), Alberta Innovates
Technology Futures (AITF), and International Business Ma-
chines (IBM) corporation.

REFERENCES

[1] T. Nakashima, M. Oyama, H. Hisada, and N. Ishii, “Analysis of software
bug causes and its prevention,” Information and Software Technology,
vol. 41, no. 15, pp. 1059–1068, 1999.

[2] S. Hangal and M. Lam, “Tracking down software bugs using automatic
anomaly detection,” in Proceedings of the 24th international conference
on Software engineering. ACM, 2002, pp. 291–301.

[3] S. Just, R. Premraj, and T. Zimmermann, “Towards the next generation
of bug tracking systems,” in Visual Languages and Human-Centric
Computing, 2008. VL/HCC 2008. IEEE Symposium on. IEEE, 2008,
pp. 82–85.

[4] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful really?” in Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on. IEEE, 2008, pp. 337–
345.

[5] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 361–370.

[6] C. Sun, D. Lo, X. Wang, J. Jiang, and S. Khoo, “A discriminative model
approach for accurate duplicate bug report retrieval,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, 2010, pp. 45–54.

[7] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Software Engineer-
ing, 2007. ICSE 2007. 29th International Conference on. IEEE, 2007,
pp. 499–510.

[8] C. Sun, D. Lo, S. Khoo, and J. Jiang, “Towards more accurate retrieval
of duplicate bug reports,” in Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2011, pp. 253–262.

[9] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on. IEEE,
2008, pp. 52–61.

[10] V. Guana, F. Rocha, A. Hindle, and E. Stroulia, “Do the stars align?
multidimensional analysis of android’s layered architecture,” in Mining
Software Repositories (MSR), 2012 9th IEEE Working Conference on.
IEEE, 2012, pp. 124–127.

[11] A. Hindle, N. Ernst, M. Godfrey, and J. Mylopoulos, “Automated
topic naming to support cross-project analysis of software maintenance
activities,” in Proceedings of the 8th Working Conference on Mining
Software Repositories. ACM, 2011, pp. 163–172.

[12] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs.”

[13] G. Holmes, A. Donkin, and I. Witten, “Weka: A machine learning
workbench,” in Intelligent Information Systems, 1994. Proceedings of
the 1994 Second Australian and New Zealand Conference on. IEEE,
1994, pp. 357–361.

[14] D. Binkley and D. Lawrie, “Information retrieval applications in soft-
ware maintenance and evolution,” Encyclopedia of Software Engineer-
ing, 2009.

[15] S. Dumais, G. Furnas, T. Landauer, S. Deerwester, S. Deerwester
et al., “Latent semantic indexing,” in Proceedings of the Text Retrieval
Conference, 1995.

[16] B. Ganter, R. Wille, and R. Wille, Formal concept analysis. Springer
Berlin, 1999.

[17] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Reverse
Engineering, 2004. Proceedings. 11th Working Conference on. IEEE,
2004, pp. 214–223.

[18] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” the Journal
of machine Learning research, vol. 3, pp. 993–1022, 2003.

[19] A. Hindle, N. Ernst, M. W. Godfrey, R. C. Holt, and J. Mylopoulos,
“Whats in a name? on the automated topic naming of software main-
tenance activities,” submissio n: http://softwareprocess. es/whats-in-a-
name, vol. 125, pp. 150–155, 2010.

[20] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in
Program Comprehension, 2007. ICPC’07. 15th IEEE International
Conference on. IEEE, 2007, pp. 37–48.

[21] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using infor-
mation retrieval based coupling measures for impact analysis,” Empirical
Software Engineering, vol. 14, no. 1, pp. 5–32, 2009.

[22] N. Nagwani and P. Singh, “Weight similarity measurement model based,
object oriented approach for bug databases mining to detect similar
and duplicate bugs,” in Proceedings of the International Conference on
Advances in Computing, Communication and Control. ACM, 2009, pp.
202–207.

[23] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 461–470.

[24] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the hurriedbug report
reading process to summarize bug reports.”

[25] D. Ramage, D. Hall, R. Nallapati, and C. Manning, “Labeled lda: A
supervised topic model for credit attribution in multi-labeled corpora,”
in Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 1-Volume 1. Association for
Computational Linguistics, 2009, pp. 248–256.

[26] (2013) Life of a bug. [Online]. Available: http://source.android.com/
source/life-of-a-bug.html


