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The Bane of Mobile

● Multiple Kinds of Browsers
● Multiple sets of supported features (SVG, Canvas, 

XML Http Request, Long Polling, Web Sockets etc.)
● Slightly different look and feel
● Multiple kinds of input

– Touch Input is handled differently than mouse input
● Multiple Screen Sizes



  

Focus of the Talk

● The focus of this talk is interactive, graphics 
heavy UIs.

● UIs of games
● UIs of datavisualizers
● UIs of musical instruments
● Much of what is covered here will apply to 

plain-jane UIs as well (especially if you have 
drag operations).



  

Coverage

● Using JS & HTML5
– Full Screening an App
– Figuring out where people are clicking in Canvas
– Adding appropriate Touch Events to Canvas and 

SVG that allow for touch dragging
● Not covered:

– Drawing on a canvas



  

Mobile Stereotypes

● IOS – can handle SVG and Canvas. Usually 
problem free except can act funny with 
captive networks

● Android 1 and 2: No SVG, usually Canvas is 
supported. Touch often works.

● Android 4: SVG, Touch, works pretty well.
● BlackBerry: A little different but supports 

SVG and Canvas



  

Javascript on Mobile

● Given the wide variety of browser and 
versions
– Choose a good framework you are comfortable 

with that ensures portability. 
– JQuery Mobile seems to work ok.

● Some JS frameworks do not handle touch 
events by default.



  

Remember the Mouse?

● Your phone pretends to have mice.
● Mouse Down
● Mouse Up
● Mouse Move
● Mouse Click
● All irritating handlers to deal with.
● Also handlers about exiting and entering context (useful in 

dragging).
● Unfortunately the canvas doesn't rreturn a great location for 

you.



  

Get The Position of the Mouse for 
Mobile

// This code allows you to get the x,y coords of a touch from the first touch

// Or just fall back on the supposed mouse position

// Note that touches are stored as a list so in the multi-touch context you can 
address this

function getPosition(e) {

    if ( e.targetTouches && e.targetTouches.length > 0) {

        var touch = e.targetTouches[0];

        var x = touch.pageX  - canvas.offsetLeft;

        var y = touch.pageY  - canvas.offsetTop;

        return [x,y];

    } else {

        var rect = e.target.getBoundingClientRect();

        var x = e.pageX  - canvas.offsetLeft;

        var y = e.pageY  - canvas.offsetTop;

        return [x,y];

   }

}



  

Mouse Down Handler

     mousedown: function(e) {

                e.preventDefault(); // Browser no don't do it!

                var pos = getPosition(e);

                var x = pos[0];

                var y = pos[1];

                self.clicked = 1;

                // This is a bad smell (x,y) should be 

                // a position object, please excuse this.

                self.handleClicked(x,y);

     },



  

MouseUp Handler

      mouseup: function(e) {

                e.preventDefault();

                // we're not dragging no more

                self.clicked = 0; 

      },



  

MouseMove Handler
      mousemove: function(e) {

                 e.preventDefault();           

                 var pos = getPosition(e);

                 var x = pos[0];

                 var y = pos[1];

                 // If we are dragging

                 if (self.clicked != 0) {

                     self.handleClicked(x,y);

                 }                

            },



  

Touch?

● Touch Events have different event types and 
contain different information than a simple 
mouse move, mouse up, mouse down, mouse 
click event.

● Touch Events and Mouse events are not 
compatible and do not really have compatible 
listeners.

● Touch is awkward because there is no mouse 
motion.



  

Touch?

● Touch Events have different event types and contain 
different information than a simple mouse move, 
mouse up, mouse down, mouse click event.

● Touch Events and Mouse events are not compatible 
and do not really have compatible listeners.

● Touch is awkward because there is no mouse motion.
● There are often multiple touch positions



  

TouchStart and TouchEnd Handler

      touchstart: function(e) {

        return self.mousedown(e);

    },

    touchend: function(e) {

        return self.mouseup(e);

    },

● Because we used the getPosition function in 
our mouse handler, our handlers are now 
compatible, we just need to delegate to the 
right handler!

● This handler deals with the start of a touch 
event. And the End of it



  

touchMove

● Touch Move handler deals with mouse motion 
but by abstracting location in getPosition we 
can just call our mousemove handler.

●  Note we can rely on touchstart to occur first
● And we can rely on touchend to occur after

      touchmove: function(e) {

                return self.mousemove(e);

       },



  

Install The Handlers
●            canvas.addEventListener("mousedown",  self.mousedown, false);

                canvas.addEventListener("mousemove",  self.mousemove, false);

                canvas.addEventListener("mouseup",    self.mouseup, false);

                canvas.addEventListener("touchstart", self.touchstart, false);

                canvas.addEventListener("touchmove",  self.touchmove, false);

                canvas.addEventListener("touchend",   self.touchend, false);

Note: these are added to the canvas.

                

   



  

Mobile Canvas Review

● For canvas you need to subtract offsets to 
find pixel click location

● For touch events your method for 
determining location are different than 
mouse events

● You need to install handlers
● Abstraction is your friend



  

Dragging Still Sucks

● Often when you drag on a canvas it will pull 
the canvas out of context like you would drag 
an image.

● We need to disable as much automatic 
dragging stuff in the browser as possible.



  

When I Drag It still drags funny

● We want to disable default dragging 
behaviour by calling preventDefault on the 
event.
function preventDefault(e) {

e.preventDefault();
}
document.addEventListener("touchstart", preventDefault, false);
document.addEventListener("touchmove", preventDefault, false);
document.addEventListener("touchend", preventDefault, false);
document.addEventListener("click", preventDefault, false);
canvas.addEventListener("click", preventDefault, false);



  

When I drag it drags the Canvas!

● For webkitish browsers add to the style of 
your canvas: -webkit-tap-highlight-color: transparent;

● <canvas id="c" width="100%" 
height="100%" style="-webkit-
tap-highlight-color: 
transparent;"></canvas> 



  

Full Screen Browser UI

● Add meta information about the size of the 
page.
– And in your JS, assuming a canvas, grab the 

canvas and resize it to the window size minus 
some fudge factor for scrollbars and decorations.

– <meta content='width=device-width; height=device-
height; initial-scale=1.0; maximum-scale=1.0; 
user-scalable=0;' name='viewport' />
<meta name="viewport" content="width=device-width" 
/>
...
var canvas = document.getElementById("c");
var W = canvas.width  = window.innerWidth-fudgeX;
var H = canvas.height = window.innerHeight-fudgeY;



  



  

D3.js

● Excellent Framework for Data Vizualization in SVG
● Beautiful and fluid animation
● Unfortunately SVG isn't too mobile-friendly compatible as 

Android 2 usually cannot support it.
● D3.js is great if it already supports the visualization you 

want. It is somewhat painful otherwise.
● D3.js provides touch support but it doesn't make it mouse 

compatible.
● SVG tends to work on BB, iOS, Android 4, and Firefox 

browsers.



  

D3 on Mobile Needs Touch Support

// D3 is full of hairy long chains like these:

var svg = d3.select("#chart")

  .append("svg")

    .attr("width", width)

    .attr("height", height)

    .attr("class", "PiYG")

    .on("mousedown", update)

    .on("mousemove", update);



  

D3 on Mobile Needs Touch Support

// D3 is full of hairy long chains like these, but 

// You need to explicitly insert mouse and touch handlers

var svg = d3.select("#chart")

  .append("svg")

    .attr("width", width)

    .attr("height", height)

    .attr("class", "PiYG")

    .on("touchmove", touchUpdate)

    .on("touchstart", touchUpdate)

    .on("mousedown", update)

    .on("mousemove", update);



  

More D3 Handlers

function disableDragging() {

  if(d3.event.preventDefault)

    d3.event.preventDefault(); // note it has its own method of dealing with this

}
function update() {

  disableDragging();

  vertices[0] = d3.mouse(this); //mouse

  dealWithVertices();

};

function touchUpdate() {

    disableDragging();

    var touches = d3.touches(this); // touches 

    if (touches.length > 0) { // more than 0 touches

        vertices[0] = touches[0];

        dealWithVertices();

    }

};



  

Conclusions

● Touch events are not mouse events
● Both canvas and svg need touch specific 

handlers or else touch screens become really 
awkward

● Abstracting touch events to mouse events 
often simplifies your problem but you still 
need to handle the touch events.



  

Resources

● Source code to the swarmed instrument
– https://github.com/abramhindle/mongrel2-musical-relay
– http://ur1.ca/chkz5
– Web Resources of the instrument: http://ur1.ca/chkzh
– http://skruntskrunt.ca/blog/2012/06/23/swarmed/
– http://softwareprocess.es/blog/swarmed/

● D3.js http://d3js.org/
● Examples from JS1k 

– http://js1k.com/2010-first/

https://github.com/abramhindle/mongrel2-musical-relay
http://ur1.ca/chkz5
http://ur1.ca/chkzh
http://skruntskrunt.ca/blog/2012/06/23/swarmed/
http://d3js.org/
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