

Addressing Mobile Users with SVG,
Canvas and JS

Abram Hindle
abram.hindle@softwareprocess.es
Department of Computing Science

University of Alberta

Presented to ExchangeJS
The Edmonton Javascript Users Group

http://www.exchangejs.com/

(C) 2013 Abram Hindle licensed under CC-BY-SA 3.0

mailto:abram.hindle@softwareprocess.es

The Bane of Mobile

● Multiple Kinds of Browsers
● Multiple sets of supported features (SVG, Canvas,

XML Http Request, Long Polling, Web Sockets etc.)
● Slightly different look and feel
● Multiple kinds of input

– Touch Input is handled differently than mouse input
● Multiple Screen Sizes

Focus of the Talk

● The focus of this talk is interactive, graphics
heavy UIs.

● UIs of games
● UIs of datavisualizers
● UIs of musical instruments
● Much of what is covered here will apply to

plain-jane UIs as well (especially if you have
drag operations).

Coverage

● Using JS & HTML5
– Full Screening an App
– Figuring out where people are clicking in Canvas
– Adding appropriate Touch Events to Canvas and

SVG that allow for touch dragging
● Not covered:

– Drawing on a canvas

Mobile Stereotypes

● IOS – can handle SVG and Canvas. Usually
problem free except can act funny with
captive networks

● Android 1 and 2: No SVG, usually Canvas is
supported. Touch often works.

● Android 4: SVG, Touch, works pretty well.
● BlackBerry: A little different but supports

SVG and Canvas

Javascript on Mobile

● Given the wide variety of browser and
versions
– Choose a good framework you are comfortable

with that ensures portability.
– JQuery Mobile seems to work ok.

● Some JS frameworks do not handle touch
events by default.

Remember the Mouse?

● Your phone pretends to have mice.
● Mouse Down
● Mouse Up
● Mouse Move
● Mouse Click
● All irritating handlers to deal with.
● Also handlers about exiting and entering context (useful in

dragging).
● Unfortunately the canvas doesn't rreturn a great location for

you.

Get The Position of the Mouse for
Mobile

// This code allows you to get the x,y coords of a touch from the first touch

// Or just fall back on the supposed mouse position

// Note that touches are stored as a list so in the multi-touch context you can
address this

function getPosition(e) {

 if (e.targetTouches && e.targetTouches.length > 0) {

 var touch = e.targetTouches[0];

 var x = touch.pageX - canvas.offsetLeft;

 var y = touch.pageY - canvas.offsetTop;

 return [x,y];

 } else {

 var rect = e.target.getBoundingClientRect();

 var x = e.pageX - canvas.offsetLeft;

 var y = e.pageY - canvas.offsetTop;

 return [x,y];

 }

}

Mouse Down Handler

 mousedown: function(e) {

 e.preventDefault(); // Browser no don't do it!

 var pos = getPosition(e);

 var x = pos[0];

 var y = pos[1];

 self.clicked = 1;

 // This is a bad smell (x,y) should be

 // a position object, please excuse this.

 self.handleClicked(x,y);

 },

MouseUp Handler

 mouseup: function(e) {

 e.preventDefault();

 // we're not dragging no more

 self.clicked = 0;

 },

MouseMove Handler
 mousemove: function(e) {

 e.preventDefault();

 var pos = getPosition(e);

 var x = pos[0];

 var y = pos[1];

 // If we are dragging

 if (self.clicked != 0) {

 self.handleClicked(x,y);

 }

 },

Touch?

● Touch Events have different event types and
contain different information than a simple
mouse move, mouse up, mouse down, mouse
click event.

● Touch Events and Mouse events are not
compatible and do not really have compatible
listeners.

● Touch is awkward because there is no mouse
motion.

Touch?

● Touch Events have different event types and contain
different information than a simple mouse move,
mouse up, mouse down, mouse click event.

● Touch Events and Mouse events are not compatible
and do not really have compatible listeners.

● Touch is awkward because there is no mouse motion.
● There are often multiple touch positions

TouchStart and TouchEnd Handler

 touchstart: function(e) {

 return self.mousedown(e);

 },

 touchend: function(e) {

 return self.mouseup(e);

 },

● Because we used the getPosition function in
our mouse handler, our handlers are now
compatible, we just need to delegate to the
right handler!

● This handler deals with the start of a touch
event. And the End of it

touchMove

● Touch Move handler deals with mouse motion
but by abstracting location in getPosition we
can just call our mousemove handler.

● Note we can rely on touchstart to occur first
● And we can rely on touchend to occur after

 touchmove: function(e) {

 return self.mousemove(e);

 },

Install The Handlers
● canvas.addEventListener("mousedown", self.mousedown, false);

 canvas.addEventListener("mousemove", self.mousemove, false);

 canvas.addEventListener("mouseup", self.mouseup, false);

 canvas.addEventListener("touchstart", self.touchstart, false);

 canvas.addEventListener("touchmove", self.touchmove, false);

 canvas.addEventListener("touchend", self.touchend, false);

Note: these are added to the canvas.

Mobile Canvas Review

● For canvas you need to subtract offsets to
find pixel click location

● For touch events your method for
determining location are different than
mouse events

● You need to install handlers
● Abstraction is your friend

Dragging Still Sucks

● Often when you drag on a canvas it will pull
the canvas out of context like you would drag
an image.

● We need to disable as much automatic
dragging stuff in the browser as possible.

When I Drag It still drags funny

● We want to disable default dragging
behaviour by calling preventDefault on the
event.
function preventDefault(e) {

e.preventDefault();
}
document.addEventListener("touchstart", preventDefault, false);
document.addEventListener("touchmove", preventDefault, false);
document.addEventListener("touchend", preventDefault, false);
document.addEventListener("click", preventDefault, false);
canvas.addEventListener("click", preventDefault, false);

When I drag it drags the Canvas!

● For webkitish browsers add to the style of
your canvas: -webkit-tap-highlight-color: transparent;

● <canvas id="c" width="100%"
height="100%" style="-webkit-
tap-highlight-color:
transparent;"></canvas>

Full Screen Browser UI

● Add meta information about the size of the
page.
– And in your JS, assuming a canvas, grab the

canvas and resize it to the window size minus
some fudge factor for scrollbars and decorations.

– <meta content='width=device-width; height=device-
height; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0;' name='viewport' />
<meta name="viewport" content="width=device-width"
/>
...
var canvas = document.getElementById("c");
var W = canvas.width = window.innerWidth-fudgeX;
var H = canvas.height = window.innerHeight-fudgeY;

D3.js

● Excellent Framework for Data Vizualization in SVG
● Beautiful and fluid animation
● Unfortunately SVG isn't too mobile-friendly compatible as

Android 2 usually cannot support it.
● D3.js is great if it already supports the visualization you

want. It is somewhat painful otherwise.
● D3.js provides touch support but it doesn't make it mouse

compatible.
● SVG tends to work on BB, iOS, Android 4, and Firefox

browsers.

D3 on Mobile Needs Touch Support

// D3 is full of hairy long chains like these:

var svg = d3.select("#chart")

 .append("svg")

 .attr("width", width)

 .attr("height", height)

 .attr("class", "PiYG")

 .on("mousedown", update)

 .on("mousemove", update);

D3 on Mobile Needs Touch Support

// D3 is full of hairy long chains like these, but

// You need to explicitly insert mouse and touch handlers

var svg = d3.select("#chart")

 .append("svg")

 .attr("width", width)

 .attr("height", height)

 .attr("class", "PiYG")

 .on("touchmove", touchUpdate)

 .on("touchstart", touchUpdate)

 .on("mousedown", update)

 .on("mousemove", update);

More D3 Handlers

function disableDragging() {

 if(d3.event.preventDefault)

 d3.event.preventDefault(); // note it has its own method of dealing with this

}
function update() {

 disableDragging();

 vertices[0] = d3.mouse(this); //mouse

 dealWithVertices();

};

function touchUpdate() {

 disableDragging();

 var touches = d3.touches(this); // touches

 if (touches.length > 0) { // more than 0 touches

 vertices[0] = touches[0];

 dealWithVertices();

 }

};

Conclusions

● Touch events are not mouse events
● Both canvas and svg need touch specific

handlers or else touch screens become really
awkward

● Abstracting touch events to mouse events
often simplifies your problem but you still
need to handle the touch events.

Resources

● Source code to the swarmed instrument
– https://github.com/abramhindle/mongrel2-musical-relay
– http://ur1.ca/chkz5
– Web Resources of the instrument: http://ur1.ca/chkzh
– http://skruntskrunt.ca/blog/2012/06/23/swarmed/
– http://softwareprocess.es/blog/swarmed/

● D3.js http://d3js.org/
● Examples from JS1k

– http://js1k.com/2010-first/

https://github.com/abramhindle/mongrel2-musical-relay
http://ur1.ca/chkz5
http://ur1.ca/chkzh
http://skruntskrunt.ca/blog/2012/06/23/swarmed/
http://d3js.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

