
Green Mining: Investigating Power Consumption Across Versions

Abram Hindle
Department of Computing Science

University of Alberta,
Edmonton, CANADA

abram.hindle@ualberta.ca

Abstract—Power consumption is increasingly becoming a
concern for not only electrical engineers, but for software en-
gineers as well, due to the increasing popularity of new power-
limited contexts such as mobile-computing, smart-phones and
cloud-computing. Software changes can alter software power
consumption behaviour and can cause power performance
regressions. By tracking software power consumption we can
build models to provide suggestions to avoid power regressions.
There is much research on software power consumption,
but little focus on the relationship between software changes
and power consumption. Most work measures the power
consumption of a single software task; instead we seek to
extend this work across the history (revisions) of a project.
We develop a set of tests for a well establish product and
then run those tests across all versions of the product while
recording the power usage of these tests. We provide and
demonstrate a methodology that enables the analysis of power
consumption performance for over 500 versions of Firefox 3.6;
we show that software change does induce changes in power
consumption. This methodology and case study are a first step
towards combining power measurement and mining software
repositories research, thus enabling developers to avoid power
regressions via power consumption awareness.

Keywords-power; power consumption; mining software
repositories; dynamic analysis; sustainable-software

I. INTRODUCTION

Until recently, the effect of software, such as desktop
applications and server software, on power consumption
has been ignored under the tacit assumption that software
engineers could use all available resources; but with the
advent of contexts such as mobile and cloud computing it is
clear that the design and implementation of software has
a significant impact on power consumption and software
engineers should be aware of it.

Within these contexts resources are limited: smart-
phones/mobile devices have slower CPUs and limited battery
life; cloud computing nodes are resource limited in terms of
CPU speed, memory size, disk I/O [1], heat, and network
bandwidth, all of which use power; software services con-
sume power by simply being available. It is estimated [2],
[3] that computer power usage alone costs many mid-sized
businesses more than $100000 per year, producing over 1000
tonnes of CO2! Thus resource conservation results in more
availability, more battery-life, and smaller power bills.

Current power consumption research tends to focus on

CPU usage and ignores the actual patterns of power con-
sumption induced by software evolution and change [4]–
[6]. Thus we propose green mining, a research agenda
that aims to help developers understand power consumption
issues related to their code, based on a corpus of software
changes associated with power consumption. Green mining
rests on two pillars, mining software repositories research, to
find actual software changes, and instrumentation combined
with dynamic analysis, in order to measure and correlate
change to power usage. Mining software repositories (MSR)
research is about the analysis of artifacts found within the
huge corpus of software-repositories, such as the version
control systems of open-source projects [7]. Instrumentation
and dynamic analysis will be used to investigate the factors
and resource utilization of changing software. We will look
at each change in a version control system and dynami-
cally measure its effect on power consumption. We plan
to compile these patterns of software changes in order to
answer questions about software power consumption. Green
mining leverages historical information extracted from
the corpus of publicly available software to help provide
software power consumption advice.

Green Mining models how software maintenance impacts
a system’s power usage. It aims to help software engineers
reduce the power consumption of their own software by
estimating the impact of software modifications on power
consumption. This is a novel extension of mining software
repositories research into the realm of software-based power
consumption as previous research does not address the effect
of software change on power consumption. Our research
questions include:

• Does Software Change relate to power consumption?
• What information needs to be gathered to estimate

power consumption? Is CPU measurement enough?

This work has a potential environmental impact: deployed
software will consume less resources and thus have a direct
reduction on the CO2 emissions [3]. This work is indus-
trially relevant because vendors interested in GreenIT [3],
such as Apple, Microsoft, Intel, and IBM, have already
begun investing in power-management documentation and
tools [8]–[12].

In this paper we will address the first steps towards green

mining: measuring the power use of multiple versions of a
software system, investigating the effects of software change
on power use, and creating a corpus/database of this power
use. This paper’s contributions include:

• Proposing Green Mining: mining software repositories
research oriented towards power consumption;

• Describing a methodology for generating datasets to be
used in Green Mining;

• A case study of power consumption and power regres-
sions within 509 versions of Firefox 3.6 that confirms
that power consumption does change over the lifetime
of a product;

• A preliminary model of power consumption confirming
that power consumption is more than just CPU use.

II. PREVIOUS WORK

Measurement: Power measurement and modelling is indus-
trially relevant and a concern of multiple vendors [8]–[11].
Consumer interest in power management is demonstrated
by the Linux-oriented Phoronix site that has benchmarked
power usage of Linux distributions [13]. GreenIT [3] is a
primarily industrial movement for more power-aware com-
putation.

In terms of benchmarking and monitoring that is relevant
to this work Gurumurthi et al. [14] and Amsel et al. [5] have
produced tools that simulate a real systems power usage,
and benchmark individual applications’ power usage. Gupta
et al. [10] describe a method of measuring and correlating
the power consumption of applications on Windows Phone
7. Tiwari et al. [4] modeled the power consumption of
individual CPU instructions.

We argue that not all power consumption is CPU-bound.
Authors investigating the power consumption of peripherals
include: Lattanzi et al. [15] have modeled the power usage of
WiFi adapters, while Greenwalt [1] measured and modeled
the power consumption of hard-drives.
Optimization: Measuring power consumption is not
enough, acting on it is necessary. Fei et al. [6] and Selby [16]
have tuned source code transformations and compiler opti-
mizations to reduce power-use. Power usage research has
not leveraged the big-data corpus-based approaches used in
MSR research.
Mining Software Repositories: MSR [7] provides us with
tools to mine the software changes that we need. Shang
et al. have investigated performance over versions of soft-
ware [17]. To date there has not been much work, other
than Gupta’s work [10], on combining MSR techniques with
power performance.
Summary: These articles demonstrate the interest in power
consumption caused by software in industry and academia.
Green mining demonstrates novelty by combining MSR
research and power consumption.

III. METHODOLOGY

The Green Mining vision is to replicate this methodology
over a large corpus of available software, version per version,
revision per revision, in order to produce a huge corpus
of software change correlated with power consumption
behaviour. This would allow us to estimate the power
consumption of software changes even without compilation
or testing.

To measure the power consumption effects of software
change on one product we must develop a test that can
be run across the range of versions of the product, then
per each version we must run the tests multiple times, each
time recording the power usage. Then once all tests for all
versions are recorded we can analyze the results.

In this study we focused on Firefox 3.6 from 2009 to
the end of 2010, this resulted in 509 different versions of
3.6 ranging from alphas, betas and stable releases. We also
added 39 different versions prior to 3.6.

A. Developing The Test
We have to run the software so we must develop a test

that observes the running software. The test should exercise
the parts of the code that are important to the stakeholders
involved.

Our Firefox tests were meant to simulate the browsing
behaviour of a mobile-user. For a set of web-pages that we
remotely hosted, we would have Firefox load the page and
then scroll through the webpage. To scroll the webpages
we used X11::GUITest, a GUI testing framework. This
allowed us to record a realistic browsing sessions consisting
of scrolling using the arrow keys, page-up and page-down
keys as well as mouse movements. This test was supposed
to simulate generic browsing and reading behaviour. We
would load 4 different web-pages, 2 Wikipedia pages that we
mirrored and 2 versions of the NYAN-Cat webpage which
featured GIF animation and client side Javascript animation.
We would run through 4 tests in about 6 minutes. During our
testing we discovered that Firefox often checks if it is the
current default browser, so we had to modify the GUI test
harness to cancel this action otherwise no scrolling would
happen.

B. Measuring Test Performance
While we could just measure the power consumption of

each test we would be wasting a chance to build models
that could estimate power consumption. So per each test we
also record other measurements such as disk transactions per
second, CPU utilization and memory utilization.

In order to measure power consumption, in this paper, we
rely on the Watts Up? Pro, a hardware device that measures
wall socket power use (watts, kWh, amps, power-factor,
volts, etc.), and reports power measures per second. We also
use SAR 1 to record system activity information (CPU, Disk,

1SAR and Sysstat http://pagesperso-orange.fr/sebastien.godard/

2
3

2
4

2
5

2
6

2
7

Wattage of Browsing Tests per version of Firefox 3.6 (and a sampling of earlier versions)

Firefox Version

M
e
a
n
 W

a
tt
s

l

l

l l

ll

ll l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

2.0.0.21pre 3.0.8pre 3.0.18pre 3.5b4pre 3.5.4pre 3.5.8pre 3.5.12pre 3.6a2pre 3.6b3pre 3.6b6pre 3.6.2pre 3.6.5pre 3.6.8pre 3.6.11pre 3.6.14pre

2
3

2
4

2
5

2
6

2
7

Mean of Mean Watts per Version

Range of Min and Max Mean Watts per Version

Line of best fit: Mean Watts Versus Version

Figure 1. This is a graph of the distributions of mean wattage (power use) of different versions of Firefox. The green-blue area is the range between the
minimum and maximum mean wattage for that version. The red line is the mean wattage and the box-plots depict the distribution of mean wattage per
test per Firefox version. Note this plot depicts over 509 builds of Firefox 3.6 from alpha to stable versions. The dotted line with a negative slope is a line
of best fit on the means; its slope indicates a decrease in power use across versions. The ranges for the earlier versions are smaller because we tested less
instances of each of the earlier versions.

Memory, Network, etc.). We combine both of these measures
and synchronize them with timestamps. The performance
logger is started before a test and terminated after a test. To
provide a baseline, idle measurements with the performance
monitor need to be taken, much like a scale that is zeroed
when a container is placed upon it.

C. Per Version Measurement

Each version of the program needs to be checked out,
built and tested using the tests we previously developed. In
this study we used Firefox nightly builds from Mozilla. Each
binary we tested was the accumulation of revisions for that
day on that branch (mozilla-1.9.2 for Firefox 3.6).

IV. CASE STUDY

The motivation behind the test-case of the case study
was to observe if changes to Firefox 3.6 induced power
regressions when a user started the browser and browsed
multiple web-pages. We feel this is a legitimate use case
scenario for a mobile user who browses web-pages using
a laptop on battery power, thus our tests used the actual
Firefox GUI.

The hardware we used in the case study included an IBM
Lenovo X31 Thinkpad laptop running Ubuntu 11.04, with
its battery removed, plugged into a Watts Up? Pro device for
power monitoring. We did not use the battery because we did
not have a method of recharging the battery automatically.

We proceeded to download all 2009 and 2010 Firefox 3.6
nightly compilations from the Mozilla FTP server. These
were compilations of Firefox 3.6 built every evening from
the HEAD of the branch (Mozilla-1.9.2). We had 509
different binaries and we ran each binary against the mobile
browsing use case scenario. As each test ran we recorded
local resource statistics from the computer as well as the
power usage measurements from the Watts Up? Pro device.

We ran each test approximately 3 times on different days
at different times (this avoids cache issues). Once these runs
were complete we analyzed the results.

Figure 1 shows the mean, minimum and maximum mean
wattage of each test run. The test runs took all about the
same time, so showing Watt-Hours is not necessary as the
relative sizes are similar. What we can see in the graph is that
different versions of Firefox 3.6 behave slightly differently
but most stay close to a mean of 24 to 25 mean watts.
This tells us that Firefox 3.6 is probably stable while prior
versions prior exhibited higher power usage.

Since the idle usage is from 19 to 20 watts during logging
we can see that Firefox’s browsing activity in this case
was costing an average of 4W to 5W. More if animation
was being used. Power peaks occurred during our tests
when Firefox was starting up as it needed to check the
disk for a default profile and if no profile existed, make
one. The animation seemed to have caused a higher overall
average consumption for the NYAN Cat tests. The variance
before 3.6 stable came out is higher, this is likely due
to development effort dedicated to HTML5 features and
improving Javascript performance. 3.6’s power performance
was relatively stable as most of the changes were for stability
and for security which was not exercised by our tests.

A. Discussion and Future Work

Finally something does not correlate with LOC! In this
study change affected power consumption but its effect is
not clear. For instance lines of code (LOC) did not correlate
with mean watts. Firefox 3.6b1 had 578 KLOC of C and
C++ code, while Firefox 3.6.14 had 28% more code, 745
KLOC (180 KLOC added, 101 KLOC removed, 79 KLOC
net increase). During Firefox 3.6, since the mean wattage
distribution did not change much we can argue that LOC and
change in LOC is not correlated with power consumption.

This invites more future investigation into what properties
of changes are power related.

Is power consumption just the CPUs fault? We created
a stateless regression model of watts based on these test
runs. We found we could make models (relevant only to this
particular test) with 3 independent variables, that were statis-
tically significant and did not suffer from multi-collinearity.
The three variables were % user-time per second (user space
CPU usage), transactions per second (disk hits), and KB
Active (memory that was recently active). This model of
the tests predicted Watts with an R2 of 0.38 (0.36 with
only CPU) and a Spearman-rho correlation of 0.648. We
achieved similar performance when faults per second could
be swapped with KB active. Regardless, these 3 measures
show that the disk, memory, and the CPU are all related
and relevant to the power use of a software system. As
future work we seek to generalize these models to support
a wider range of tests, so that we can avoid instrumenting
the hardware with power measurement devices.

Cost: our records show that the tests used approximately
2.5 Kilowatt Hours. As of writing, in Edmonton 1 kWh is
worth about 14 cents, thus we used at least 35 cents worth
of electricity in this study. Firefox cost us nearly 6 of those
cents. We estimate, in this case, that Firefox usage compared
to idle usage would reduce battery-life by a third.

Measurement Issues: we only measured each Firefox bi-
nary 3 times as we were limited by time. The Watts Up? Pro
produces a reading every second with a granularity of .1W ,
which misses smaller changes. Measurement was sensitive
to settings of the laptop, which were kept consistent.

V. CONCLUSIONS

In conclusion, we demonstrated with our case study of
over 500 versions of Firefox 3.6, tested against a realistic
web-browsing UI test, that power consumption can vary be-
tween versions, that power consumption was not correlated
with size metrics such as LOC, and that power use was not
just the CPU’s fault: disk and memory use mattered too.

These kinds of results will be useful in the future to
estimate power consumption, debug power consumption
regressions, reduce power use on phones and computers, and
reduce power consumption costs for businesses. In the future
we want to evaluate power consumption per each revision
to the source code, which we could not do in this study
due to time constraints. We plan to leverage these kinds of
measurements in order to increase developer awareness of
power consumption and provide developers with an idea of
the power consumption impact of their code. For a popular
product like Firefox, if we could help prevent a power
consumption regression of even just 1 Watt-hour, in terms
of users we could save millions of Watt-hours.

ACKNOWLEDGMENTS

I would like to thank Andrew Neitsch, Philippe Vachon,
Andrew Wong, Eleni Stroulia, Ken Wong, Jim Hoover,

Mario Nascimento, Denilson Barbosa, Daniel German,
Michael Godfrey, and Taras Glek.

REFERENCES

[1] P. Greenawalt, “Modeling power management for hard disks,”
in MASCOTS ’94., Proceedings of the Second International
Workshop on, Jan 1994, pp. 62 –66.

[2] Alliance to Save Energy, “PC Energy Report 2007:
United States,” http://www.climatesaverscomputing.org/docs/
Energy Report US.pdf, 1E, Tech. Rep., 2007.

[3] S. Murugesan, “Harnessing Green IT: Principles and Prac-
tices,” IT Professional, vol. 10, no. 1, pp. 24–33, 2008.

[4] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee, “In-
struction level power analysis and optimization of software,”
The Journal of VLSI Signal Processing, vol. 13, pp. 223–238,
1996.

[5] N. Amsel and B. Tomlinson, “Green tracker: a tool for
estimating the energy consumption of software,” in Proceed-
ings of the 28th of the International Conference of Extended
Abstracts on Human factors in Computing Systems, ser. CHI
EA ’10. New York, NY, USA: ACM, 2010, pp. 3337–3342.

[6] Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha, “Energy-
optimizing source code transformations for operating system-
driven embedded software,” ACM Trans. Embed. Comput.
Syst., vol. 7, pp. 2:1–2:26, December 2007.

[7] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and
taxonomy of approaches for mining software repositories in
the context of software evolution,” J. Softw. Maint. Evol.,
vol. 19, no. 2, pp. 77–131, 2007.

[8] C. Gray, “Performance Considerations for Windows Phone
7,” http://create.msdn.com/downloads/?id=636, 2010.

[9] Apple Inc., “iOS Application Programming Guide: Tuning for
Performance and Responsiveness,” http://ur1.ca/696vh, 2010.

[10] A. Gupta, T. Zimmermann, C. Bird, N. Naggapan, T. Bhat,
and S. Emran, “Energy Consumption in Windows Phone,”
Microsoft Research, Tech. Rep. MSR-TR-2011-106, 2011.

[11] Intel, “LessWatts.org - Saving Power on Intel systems with
Linux,” http://www.lesswatts.org, 2011.

[12] IBM, “IBM Active Energy Manager,” http://www.ibm.com/
systems/management/director/about/director52/extensions/
actengmrg.html, 2011.

[13] M. Larabel, “Ubuntu’s power consumption tested,” http:
//www.phoronix.com/scan.php?page=article&item=878, Oct
2007.

[14] S. Gurumurthi, A. Sivasubramaniam, M. Irwin, N. Vijaykrish-
nan, and M. Kandemir, “Using complete machine simulation
for software power estimation: the SoftWatt approach,” in
Proc. of 8th Int. Symp. High-Performance Computer Archi-
tecture, Feb 2002.

[15] E. Lattanzi, A. Acquaviva, and A. Bogliolo, “Run-Time Soft-
ware Monitor of the Power Consumption of Wireless Network
Interface Cards,” in Integrated Circuit and System Design.
Power and Timing Modeling, Optimization and Simulation,
ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2004, vol. 3254, pp. 352–361.

[16] J. W. A. Selby, “Unconventional applications of compiler
analysis,” Ph.D. dissertation, University of Waterloo, 2011.

[17] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.
Godfrey, M. N. Nasser, and P. Flora, “An exploratory study
of the evolution of communicated information about the
execution of large software systems,” in WCRE, 2011, pp.
335–344.

