
Roshan Shariff Edmonton Functional Programming User Group 1 / 30

Programming with Monads

Roshan Shariff

January 8, 2013



Introduction

Introduction

• What are Monads?

• Really, What are

Monads?

• Monadic Values

• Monadic Functions

• The Bind Combinator

• So What are Monads?

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 2 / 30



What are Monads?

Introduction

• What are Monads?

• Really, What are

Monads?

• Monadic Values

• Monadic Functions

• The Bind Combinator

• So What are Monads?

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 3 / 30

A monad is ...

• ... like a spacesuit

• ... like a burrito

• ... a monster that devours values

• ... a monoid in the category of endofunctors. What’s the problem?1

1
A Brief, Incomplete, and Mostly Wrong History of Programming Languages by James Iry.

http://james-iry.blogspot.ca/2009/05/brief-incomplete-and-mostly-wrong.html


Really, What are Monads?

Introduction

• What are Monads?

• Really, What are

Monads?

• Monadic Values

• Monadic Functions

• The Bind Combinator

• So What are Monads?

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 4 / 30

Monads are

• a pattern for designing software libraries having

◦ a family of types

◦ functions that operate on those types

• a way to define the semantics of programs ...

... by defining them using primitive computations combined together

Monads are not

• a built-in language feature of Haskell

• a way to sneak side effects into a pure language

• just a way to perform input/output in a pure functional language

• a one-size-fits-all solution to designing combinator libraries;

comonads, arrows, (applicative) functors, etc. might be better



Monadic Values

Introduction

• What are Monads?

• Really, What are

Monads?

• Monadic Values

• Monadic Functions

• The Bind Combinator

• So What are Monads?

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 5 / 30

Suppose M is a monad (a software library with a monadic interface).

The monadic types are:

• M Integer

• M String

• M ()
. . .

• M t for any type t

M is a type constructor

Any x :: M t is called a monadic value of type t

(think of it as a computation that produces a t value)

To construct monadic values, there must be a function

unit :: a → M a (aka return, pure)



Monadic Functions

Introduction

• What are Monads?

• Really, What are

Monads?

• Monadic Values

• Monadic Functions

• The Bind Combinator

• So What are Monads?

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 6 / 30

Any f :: a → M b is called a monadic function from a to b

unit :: a → M a is a monadic function from a to a.

Any function f :: a → b can be turned into a monadic function by

composing it with unit.

fM :: a → M b

fM = unit ◦ f equivalently fM x = unit (f x)

because unit x is a ‘trivial’ computation: it does nothing but produce x

(we will see what this means later)



The Bind Combinator

Introduction

• What are Monads?

• Really, What are

Monads?

• Monadic Values

• Monadic Functions

• The Bind Combinator

• So What are Monads?

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 7 / 30

How do we ‘apply’ a monadic function to a monadic value?

x :: M a (a monadic value)

f :: a → M b (a monadic function)

Since f x does not work, the monadic library must provide another

operation,

bind :: M a → (a → M b) → M b

Often bind x f is written infix-style as x 8bind8 f or symbolically as

x ≫= f (that’s >>= in ASCII)

Note that this definition of bind does not allow pure values to ‘escape’

from monadic values (you can’t get an a from an M a)



So What are Monads?

Introduction

• What are Monads?

• Really, What are

Monads?

• Monadic Values

• Monadic Functions

• The Bind Combinator

• So What are Monads?

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 8 / 30

A monad is a type constructor M along with at least two functions

unit :: a → M a

bind :: M a → (a → M b) → M b

whose implementations define the computational ‘meaning’ of the

monad.

• unit creates ‘trivial’ primitive computations that just return a value

• Any non-trivial monad has other primitive computations that do

something meaningful

• bind combines computations together, using the value of the first to

influence what the second does



The Identity Monad

Introduction

The Identity Monad

• Motivation

• Definition

• An Example

• Some Questions

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 9 / 30



Motivation

Introduction

The Identity Monad

• Motivation

• Definition

• An Example

• Some Questions

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 10 / 30

The Identity Monad is the ‘trivial’ monad

Monadic values are just normal values. unit is essentially the identity

function.

Monadic functions are just normal functions. bind is essentially function

application.

There are no other primitive computations. There is no computational

meaning beyond pure functions being applied to values.

A simple example to start understanding monads



Definition

Introduction

The Identity Monad

• Motivation

• Definition

• An Example

• Some Questions

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 11 / 30

data Identity t = Just t

unit :: a → Identity a

bind :: Identity a → (a → Identity b) → Identity b

unit x = Just x

bind (Just x) f = f x



An Example

Roshan Shariff Edmonton Functional Programming User Group 12 / 30

Suppose we want to implement f(x, y) =
√
x+

√
y. The pure version would be

f :: Double → Double → Double

f x y = (sqrt x) + (sqrt y)

If we want to use the monadic square root function instead

sqrtM :: Double → M Double

sqrtM = unit ◦ sqrt

we can write a monadic version of f as

fM :: Double → Double → M Double

fM x y = sqrtM x ≫= λsqrtX →
sqrtM y ≫= λsqrtY →
unit (sqrtX+ sqrtY)



Some Questions

Introduction

The Identity Monad

• Motivation

• Definition

• An Example

• Some Questions

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 13 / 30

Are there any restrictions on what unit and bind are allowed to do?

Why is it okay to compose any pure function with unit without

unexpected results?



Interlude: Monad Laws

Introduction

The Identity Monad

Interlude: Monad Laws

• Composing Monadic

Functions

• The Monad Laws

• Consequences

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 14 / 30



Composing Monadic Functions

Introduction

The Identity Monad

Interlude: Monad Laws

• Composing Monadic

Functions

• The Monad Laws

• Consequences

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 15 / 30

We can ‘apply’ a monadic function to a monadic value with

bind :: M a → (a → M b) → M b

We can also use it to define the composition of two monadic functions:

>=> :: (a → M b) → (b → M c) → (a → M c)

f >=> g = λx → f x ≫= g

Compare this with the pure function composition operator

≫ :: (a → b) → (b → c) → (a → c)

f ≫ g = λx → g (f x)



The Monad Laws

Introduction

The Identity Monad

Interlude: Monad Laws

• Composing Monadic

Functions

• The Monad Laws

• Consequences

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 16 / 30

The monad laws formalize the expectation that >=> behaves like regular

function composition and unit behaves like an identity function

Let f :: a → M b, g :: b → M c, and h :: c → M d be monadic

functions. Then

• unit must be an identity of >=>, i.e.

unit >=> f ≡ f

f >=> unit ≡ f

• >=> must be associative, i.e.

(f >=> g) >=> h ≡ f >=> (g >=> h)

If these laws aren’t satisfied, M is not a monad.



Consequences

Introduction

The Identity Monad

Interlude: Monad Laws

• Composing Monadic

Functions

• The Monad Laws

• Consequences

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 17 / 30

For any x :: a and monadic function f :: a → M b

unit x ≫= f ≡ f x

In particular, for any x :: a and pure function f :: a → b

unit x ≫= unit ◦ f ≡ unit (f x)

Any sequence of computations composed together

f >=> g >=> h

is well-defined even even without parentheses to indicate order of

operations.



The Maybe Monad

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

• Motivation

• Definition

• An Example

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 18 / 30



Motivation

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

• Motivation

• Definition

• An Example

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 19 / 30

Captures the notion of computations that may fail to return a value

Monadic values are either normal values, or a special value indicating

failure

A failed computation bound to any other computation causes the entire

computation to fail

The interface consists of

• the Maybe type constructor

• the usual unit and bind

• mzero, a monadic value that represents a failed computation of any

type2

2
The name mzero is used to represent failure in any monad that supports it



Definition

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

• Motivation

• Definition

• An Example

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 20 / 30

data Maybe t = Just t | Nothing
unit :: a → Maybe a

bind :: Maybe a → (a → Maybe b) → Maybe b

unit x = Just x

bind (Just x) f = f x

bind Nothing f = Nothing

mzero :: Maybe a

mzero = Nothing



An Example

Roshan Shariff Edmonton Functional Programming User Group 21 / 30

Consider the example f(x, y) =
√
x+

√
y from before. Suppose we want the

sqrtM function to succeed only for non-negative arguments. We can define it as

sqrtM :: Double → Maybe Double

sqrtM x = if x ≥ 0 then unit (sqrt x) else mzero

With this change to sqrtM, we can use exactly the same definition of fM as before

fM :: Double → Double → Maybe Double

fM x y = sqrtM x ≫= λsqrtX →
sqrtM y ≫= λsqrtY →
unit (sqrtX+ sqrtY)

fM x y evaluates to Just (
√
x+

√
y) if both x and y are non-negative, and

Nothing otherwise.



The State Monad

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

• Motivation

• Is State a Monad?

• Definition

• Definition (2)

• An Example

• An Example (Contd.)

• A Special Kind of State

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 22 / 30



Motivation

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

• Motivation

• Is State a Monad?

• Definition

• Definition (2)

• An Example

• An Example (Contd.)

• A Special Kind of State

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 23 / 30

Suppose we have a function whose value depends on some state of type

s (that it modifies). The signature

f :: a → b

does not fully represent the behaviour of the function, because the output

of type b doesn’t just depend on the input of type a.

The usual representation in a functional language is to explicitly indicate

the extra s input, and return the modified state

f :: a → s → (b, s)

Explicitly managing state is difficult and error-prone, but if we write

State s t for s → (t, s) then f becomes a monadic function!

f :: a → State s b



Is State a Monad?

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

• Motivation

• Is State a Monad?

• Definition

• Definition (2)

• An Example

• An Example (Contd.)

• A Special Kind of State

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 24 / 30

No.

State itself is not a monad, but State s is a monad for any fixed s.

State is an entire family of monads: State Int, State String, etc.

A monadic value x :: State s t is called a state transformer; it takes an

initial state of type s and produces a value of type t and a new state.

We can think of it as having the type

x :: s → (a, s)



Definition

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

• Motivation

• Is State a Monad?

• Definition

• Definition (2)

• An Example

• An Example (Contd.)

• A Special Kind of State

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 25 / 30

type State s t = s → (t, s)
unit :: a → State s a

bind :: State s a → (a → State s b) → State s b

unit x = λs → (x, s)
bind st f = λs0 → let (x, s1) = st s0 in f x s1

We need a monadic value that represents the current state:

getState :: State s s

getState = λs → (s, s)

We need a monadic function that sets a new state:

setState :: s → State s ()

setState s1 = λs0 → ((), s1)



Definition (2)

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

• Motivation

• Is State a Monad?

• Definition

• Definition (2)

• An Example

• An Example (Contd.)

• A Special Kind of State

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 26 / 30

Most monads don’t let you extract a pure value of type t from a monadic

value of type M t.

The state monad does allow this, but only if you provide an initial state

runState :: State s t → s → t

runState st s0 = let (x, s1) = st s0 in x

runs the provided initial state s0 through the monadic value (i.e. state

transformer) st and returns the result, discarding the final state.



An Example

Roshan Shariff Edmonton Functional Programming User Group 27 / 30

We have a tree data type: data Tree t = Empty | Node (Tree t) t (Tree t)

We want to traverse the tree in depth-first order and sequentially number each node.

If only we could use a single Int global variable as a counter...

nextLabel :: State Int Int

nextLabel = getState ≫= λcounter →
setState (counter + 1) ≫= λ_ →
unit counter

is a monadic value that increments the counter value and returns a unique label

each time it is evaluated.



An Example (Contd.)

Roshan Shariff Edmonton Functional Programming User Group 28 / 30

Then the relabeling function can be written as

relabel′ :: Tree a → State Int (Tree Int)

relabel′ Empty = unit Empty

relabel′ (Node l _ r) = relabel′ l ≫= λl →
nextLabel ≫= λx →
relabel′ r ≫= λr →
unit (Node l x r)

and our final function is

relabel :: Tree a → Tree Int

relabel tree = runState (relabel′ tree) 0



A Special Kind of State

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

• Motivation

• Is State a Monad?

• Definition

• Definition (2)

• An Example

• An Example (Contd.)

• A Special Kind of State

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 29 / 30

How do we change state that really matters? How do we change the

state of the world?

If we had a data type RealWorld, then we could use the

State RealWorld monad (aka the IO monad). If only...

getChar :: IO Char

putChar :: Char → IO ()

This actually works! By hiding away the getState and putState

computations, we disallow direct access to RealWorld (which can be

just a token type).

The only actions in the IO monad are those that affect the outside world

in some way.

We can’t actually run IO monadic values, but we can construct them, and

pass them to the runtime system as main :: IO ().



Further Reading

Introduction

The Identity Monad

Interlude: Monad Laws

The Maybe Monad

The State Monad

Further Reading

Roshan Shariff Edmonton Functional Programming User Group 30 / 30

“Monads for functional programming”, Philip Wadler (1992)

“All About Monads” (Haskell wiki)

“Monads as containers” and “Monads as computation”, Cale Gibbard

(Haskell wiki)

“Notions of computation and monads”, Eugenio Moggi (1991)

http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
http://www.haskell.org/haskellwiki/All_About_Monads
http://www.haskell.org/haskellwiki/Monads_as_containers
http://www.haskell.org/haskellwiki/Monads_as_computation
http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf

	Introduction
	What are Monads?
	Really, What are Monads?
	Monadic Values
	Monadic Functions
	The Bind Combinator
	So What are Monads?

	The Identity Monad
	Motivation
	Definition
	An Example
	Some Questions

	Interlude: Monad Laws
	Composing Monadic Functions
	The Monad Laws
	Consequences

	The Maybe Monad
	Motivation
	Definition
	An Example

	The State Monad
	Motivation
	Is State a Monad?
	Definition
	Definition (2)
	An Example
	An Example (Contd.)
	A Special Kind of State

	 Further Reading
	 Further Reading


