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Abstract

Maintainers face the daunting task of wading through

a collection of both new and old revisions, trying to fer-

ret out revisions which warrant personal inspection. One

can rank revisions by size/lines of code (LOC), but often,

due to the distribution of the size of changes, revisions will

be of similar size. If we can’t rank revisions by LOC per-

haps we can rank by Halstead’s and McCabe’s complexity

metrics? However, these metrics are problematic when ap-

plied to code fragments (revisions) written in multiple lan-

guages: special parsers are required which may not sup-

port the language or dialect used; analysis tools may not

understand code fragments. We propose using the statisti-

cal moments of indentation as a lightweight, language inde-

pendent, revision/diff friendly metric which actually proxies

classical complexity metrics. We have extensively evaluated

our approach against the entire CVS histories of the 278

of the most popular and most active SourceForge projects.

We found that our results are linearly correlated and rank-

correlated with traditional measures of complexity, suggest-

ing that measuring indentation is a cheap and accurate

proxy for code complexity of revisions. Thus ranking revi-

sions by the standard deviation and summation of indenta-

tion will be very similar to ranking revisions by complexity.

1 Introduction

Assessing the complexity and maintainability of changes

to large evolving software projects presents many tech-

nical challenges. Such systems are often heterogeneous:

they contain many sub-components written in multiple lan-

guages, and are stored using a variety of repository mecha-

nisms. However, maintainability metrics are commonly lan-

guage dependent, and computing them requires tools that

typically assume access to the full definitions of the soft-

ware entities, access which we might not have if we’re eval-

uating newly submitted patches.

This paper focuses on characterizing the complexity of

revisions (and thereby their maintainability) by measuring

the indentation of the change itself. The patches and revi-

sions are code fragments that represent the difference be-

tween old and new versions of software entities. Conse-

quently, measuring indentation is relatively language neu-

tral and does not require complete compilable sources.

We have taken this approach because revisions are the

currency of ongoing development. Developers and man-

agers typically want to understand what has happened to the

code base since the last revision. They want assurances that

new code will implement the desired enhancement or bug

fix, and will not break the existing system. Existing analy-

sis techniques and tools commonly assume access to com-

pilable source-code. By contrast we seek ways of reliably

and efficiently analyzing arbitrary code fragments — not

necessarily compilable — representing revisions to source

code. If we can measure or estimate the complexity of

source code changes we can better rank the complexity and

maintainability of these changed code fragments, such as

revisions in a source control repository. In turn, we could

help maintainers identify complex and error prone patches;

this is often valuable when analyzing and merging branches.

Proxies for complexity (McCabe’s Cyclomatic Com-

plexity [12] (MCC) and Halstead’s Complexity metrics [9])

are valuable because these metrics are combined with lines

of code LOC to produce maintainability metrics, such as

the maintainability index [15]. This means that by estimat-

ing complexity we are potentially estimating maintainabil-

ity. These complexity metrics are hard to apply to revisions

because the revisions are partial chunks of non-compilable

source code often written in a multitude of different lan-

guages. LOC is not enough because most revisions are quite

small so ranking by LOC doesn’t help us rank revisions of

the same size. The statistical moments of indentation are

relatively language agnostic, and easy to calculate as they

do not require grammar-level semantic knowledge of the

languages of the source code being analyzed.
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Variance and standard deviation of indentation and the

summation of indentation should be good indicators of the

complexity of source code. Varying indentation of code can

indicate there are changes at multiple levels of scope. We

assume that properly indented programs reveal their struc-

ture simply by indentation. For imperative and procedural

code indentation indicates functions and control structures

such as conditionals and loops. For OO languages such as

C++ and Java, indentation can indicate encapsulation and

depth of encapsulation via classes, subclasses, and methods.

Whereas for more functional languages such as OCaml,

Scheme and Lisp, indentation indicates new scope, new clo-

sures, new functions, and new expressions.

Multiple branches in source code will often imply a

larger variance or standard deviation of indentation, thus

statistical moments of indentation (the set of summary

statistics about the indentation) serves as a proxy to Mc-

Cabe’s Cyclomatic Complexity (MCC) as MCC counts

branching paths in code. The summation of indentation

proxies LOC and complexity as it grows with both line

count and indentation depth. Most code is shallow (0 to

2 levels of indentation (LIL) deep), thus deep code is rare

(in section 3.2 we show this fact).

To evaluate indentation metrics we must first see if it is

indeed regular. In section 3.2, we show that indentation is

very regular across all the languages we evaluated. This is

because programmers use indentation to aid the readability

of source code. Some programming languages like Python,

require indentation to indicate and maintain scope. The best

practices for the majority of languages used today — C,

C++, Java, Perl, Python, Ruby, PHP, etc. — dictate that

software should be properly indented so that it can be made

more readable [5, 14].

What we propose, and show, is that to rank revisions by

complexity we can rank them by their statistical moments

of indentation (average (AVG), median (MED), variance

(VAR), standard deviation (STD), sum of indented lines

(SUM)), since these measurements are correlated with com-

plexity metrics like McCabe Cyclomatic Complexity and

Halstead Complexity. As well, we show these statistical

moments of indentation can be combined in a linear manner

which correlates with the associated complexity measures.

Our contributions in this paper include:

• Evidence that ranking revisions by statistical moments

of indentation proxies ranking revisions by complexity

or maintainability.

• New metrics for measuring changes to source code.

• An empirical survey of indentation of popular OSS

projects found on Source-Forge.

• Measuring indentation is computationally cheaper

than applying complexity or maintainability metrics.

1.1 Previous Work

Indentation is often promoted for helping program read-

ability [14] and defining structure [16] in code. It can be

used to trace a program’s flow [11] and has been shown to

be generally helpful for program comprehension [13].

Indentation can be used for software visualization, in or-

der to provide an overview of a program’s structure [6].

Gorla et al. [8] uses inappropriate indentation as a code

quality metric. Some have compared indentation char-

acters to the non-indentation characters [2] and others have

measured the horizontal spacing (indented/non-indented) of

source code [4] . Other uses of indentation include plagia-

rism detection [3].

There are many complexity metrics, two popular met-

rics are McCabe’s Cyclomatic Complexity (MCC) [12] and

Halstead’s complexity metrics [9]. We are interested in

these two complexity metrics because many studies like that

of Oman et al. [15] use these metrics in calculations of

maintainability metrics.

McCabe Cyclomatic Complexity (MCC) counts branch-

ing and control flow in a program, this means counting

control flow structures and tokens. The accepted styles

of many programming languages dictate that code within

block structures such as if blocks, branches, loops and ex-

ceptions should be indented; this suggests that indentation

indicates branching, which suggests there is a potential cor-

relation with MCC. Other complexity metrics, such as Hal-

stead’s complexity metric, measure the number of unique

operators and operands. Although each metric measures

something different they all seem to be correlated with LOC

[10]. We applied MCC and Halstead complexity to source

code revisions, which relates to modification-aware change

metrics as discussed by German et al. [7].

1.2 Motivation

We need effective metrics for ranking revisions. We want

to be able to immediately and quickly ascertain, from a set

of changes, what are the valuable changes. We need met-

rics which operate on patches, diffs and revisions to source

code because that is often all we have. Sometimes we don’t

even have the original source code to combine with the revi-

sion. We can provide the diff, but the prerequisites of many

metrics require more than that. If we want to measure the

number of classes of a system, we need the source code,

and we must be able to parse it. In our case, source con-

trol repositories and revisions, most of the source code we

are parsing will not compile because we’re looking at small

chunks of source code.

Statistical moments of indentation require low semantic

awareness. Level of semantic awareness is how much in-

formation a metric needs about the system it is measuring,

LOC does not need to know what language it is measur-



ing where as Number of Comment Lines needs to know

what kind of language it is measuring. Semantic aware-

ness requires more than just knowing what language is be-

ing parsed, it needs to understand and know about compo-

nents of the language such as tokens, conditionals, com-

ments, statements and expressions.

Metrics can vary by their difficulty of implementation

and their computational performance, for example LOC can

be implemented with a simple character search. Indentation

measurements can be implemented using a simple scanner,

where as token based metrics such as Halstead’s complex-

ity metrics require a tokenizer for each particular language

studied. Using our tool we found that tokenizing took about

2 to 4 times more time than just counting indentation.

The rest of this paper has the following structure: we

introduce our methodology in section 2, we provide an

overview of the indentation we encountered (section 3), we

show how the indentation of diffs relate to complexity met-

rics of the revisions, we discuss our results, then suggest

threats to validity and conclude.

2 Methodology

Our methodology can be summarized as:

• Choose projects to study and download them. We

downloaded the CVS repositories of the top 250 Most

Active Source Forge projects and top 250 Most Pop-

ular (downloaded) Source Forge projects (as provided

by Source Forge on their website). This resulted in

278 projects since the two groups overlap and not all

projects had CVS repositories available at the time.

• Process the revisions. For each file, we extract each

individual revision and we analyze the indentation of

the new code.

• Run complexity metrics. We calculate the complexity

metrics for each revision.

• Correlate the indentation measurements and the com-

plexity metrics. We then analyze the results and ex-

tract correlations between complexity and the indent-

ation metrics.

2.1 Extraction and Measurement

For each revision to C, C++, Java, Perl, PHP, and Python

files, we analyzed the new and revised code. If one revi-

sion wasn’t contiguous we just evaluated the changed code

blocks (which we call diff-chunks, see figure 1 for an exam-

ple diff-chunk). We extracted about 13 million diff-chunks,

evaluating only the changed-to code (the new code). We did

not measure the initial commits because they would skew

the results as these are often full files that are imported, and

there were no previous revisions to revise. We measured

raw indentation and then calculated the logical indentation

as described in section 3.1.

We consider raw indentation to be the actual preceding

white space on each line. Logical indentation is the depth

of indentation that the programmers meant to portray. In

most cases 4 spaces, 8 spaces, or a tab could all be equiva-

lent to one unit of logical indentation. Logical indentation

is the unit in which the depth of indentation is measured,

where as raw indentation composes logical indentation. For

example, if a line consisted of “ def sqr”, where was

a leading space, we’d say it has 2 units of raw indentation

but it probably had 1 unit of logical indentation because it

was indented 1 level of indentation.

We measured each chunk by its LOC, and then we mea-

sured the statistics of raw and logical indentation of the

diff-chunk: average (IAVG and LAVG), median (IAVG and

LMED), standard deviation (ISTD and LSTD), variance

(IVAR and LVAR), and summation of indentation per line

(ISUM and LSUM). Also, we counted the frequency of in-

dentation depth to produce histograms. Figure 1 provides

an example of our measurement of a diff-chunk.

We also calculated MCC and Halstead Complexity met-

rics per each diff-chunk. Each metric used a tokenizing

strategy so running the metrics on broken code was straight-

forward. We used the full population of each data-set of

diff-chunks from each repository, minus values that were

removed because they contained or caused metrics to pro-

duce values such as Infinity or NaN (not a number). Figure

1 shows the application of MCC and Halstead Complexity

to a diff-chunk.

Since we were using multiple languages and partial

chunks of source code we had to make our own Halstead

and McCabe metrics for C, C++, Java, Perl, Python and

PHP. This helped us to maintain consistency across the

measurements between languages, as well allowed us to act

on the diff-chunks. We had 51GB of CVS repositories and

it took about 3 days of runtime to measure each revision of

every repository on an Intel Pentium IV; this resulted in 13

million diff chunks.

2.2 Analysis

To analyze the results we extracted, we used various

statistical tools for comparing distributions of indentation

depth and calculating correlations. Our data distributions

were usually discrete and positive. The matching distrib-

utions [1] often included the Pareto distribution, the Poisson

distribution, the Binomial distribution and the Exponential

distribution. We also use summary statistics on the count

data [1].

To show a similarity between indentation styles (the kind

of indentation used) we compare the distributions of indent-

ation of sets of revisions (indentation per revision per lang-



1 > vo id s q u a r e ( i n t ∗ a r r , i n t n ) {
2 > i n t i = 0 ;

3 > f o r ( i = 0 ; i < n ; i ++ ) {
4 > a r r [ i ] ∗= a r r [ i ] ;

5 > }
6 > }

Metric Raw Logical

LOC 6 6

AVG 3.33 0.833

MED 4 1

STD 2.75 0.687

VAR 9.07 0.567

SUM 20 5

MCC 2 2

HVOL 142 142

HDIFF 15 15

HEFFORT 2127 2127

Figure 1. An example diff-chunk with corresponding indentation and complexity metrics. This exam-

ple depicts a function being added, the first 6 metrics are calculated from measuring indentation of

the code example (see section 1). MCC is McCabe’s Cyclomatic complexity of the code example (1

loop, 1 function). HVOL, HDIFF, HEFFORT are Halstead Complexity metrics.

uage). We expect that similar indentation distributions sug-

gest similar styles of indentation, coding, indicating scope

and similar semantics. For instance C and C++ should be

similar since C++ and its syntax was derived from C.

If one measurement is similar or related to another

measurement, if it can replace the other, we need to show

there is a relationship between them. The easiest way to

show a relationship between two variables is to see how

well they correlate. We use correlation in this paper to show

a relationship between indentation metrics and code com-

plexity metrics, thereby showing that one could potentially

replace the other.

To determine correlations between variables we use two

kinds of correlations: linear correlation and rank-based cor-

relation. The difference is great: a linear correlation at-

tempts to show the strength of a linear relationship between

two or more variables. A rank-based correlation does not

rely on a linear relationship, it orders the variables, ranking

them from smallest to largest and then correlates those ranks

with the rank of the other variable. Thus if the high ranked

values for the first variable occur often with low ranked val-

ues of the second variable, the rank-based correlation will

be negative; if a high rank of one variable frequently cor-

responds to a high rank of the second variable the correla-

tion will be positive. Our linear correlation is the Pearson

Correlation Coefficient , our rank based correlations are the

Spearman-Rho Correlation Coefficient and the Kendall-Tau

Correlation Coefficient [1]. All three of these correlations

produce values between -1 and 1 where 0.1 to 0.25 indicates

a weak positive correlation (0 indicates no correlation), 0.25

to 0.75 indicates a medium positive correlation and 0.75 to

1.0 indicates a strong positive correlation (and vice versa

for negative correlations).

If there is truly a linear relationship, as suggested by a

linear correlation, we should be able to build a linear model

of complexity using indentation. The linear model of inden-

tation should be able to do better then a model composed

of only LOC. Thus to further support assertions of linear

correlation, we use Least Squares Linear Regression to pro-

duce a best fit of coefficients of our statistical moments of

indentation to both MCC and Halstead complexity metrics.

This method uses an R2 measure, which indicates the per-

cent of the variation between the model and the data that

is accounted for by the model. Larger values of R2 (0.6 or

greater) indicate a good linear fit.

To calculate these correlations we developed our own

software in OCaml which parallelized the correlation cal-

culations for Kendall-tau because Kendall-tau correlation

has a algorithmic complexity of O(N2), while Spearman

correlation has a complexity of O(Nlog(N)). This was a

problem because we had 13 million diff-chunks to correlate.

Our largest correlation, run on the C language, was on about

4 million diff-chunks. Our correlations took 8 CPU years to

calculate (which was collapsed down to a few actual weeks

on a cluster).

3 Indentation of Revisions

In this section we give an overview of the data we are

analyzing. We have the source code repositories of 278

Projects, of which, we evaluate 6 languages (C, C++, Java,

PHP, Perl, Python). We characterized the indentation depth

distributions of the languages and projects; we related the

languages with each other via their distributions.

3.1 Distributions of Indentation Depth

In general for all projects and languages we found that

the actual indentation follows a base 4 rule (raw indenta-

tion depth is usually divisible by 4, a single logical unit of



indentation was 4 spaces). A logical unit of indentation is

the depth of nesting a programmer wanted to convey; for

instance, inside of an if block a programmer probably often

means to indent the conditional code 1 more unit of logical

indentation, regardless if they use tabs or spaces to achieve

that. If tabs are used, they act as a single unit of logical in-

dentation. Tabs are often used to represent an even number

of spaces of indentation. One must note, this is not the in-

dentation of a released product, this is the indentation per

diff in the CVS repository.

In figure 3 we can see spikes appearing at line numbers

which are divisible by 4. Tabs were considered to be 8 char-

acters in depth. The spikes in the plots seem to indicate that

the data is composed of 2 distributions, the distribution of

the peaks and the distribution between the peaks. In figure

4 we can see a more smooth slope reminiscent of a Power

Law or an Exponential distribution [1]. What is important

here is that we can see that base 4 and base 8 levels of raw

indentation are very common, more common than base 2, it

also shows that this indentation is very regular.

3.2 Language Analysis

Java was notable because it seemed to have more noise

between the base 4 indentation levels. Some Java projects

used an initial indentation of one space. Since all methods

must be within a class, some Java programmers apparently

try to save screen space by indenting in only one space for

the initial classes’ scope. Java’s logical indentation distri-

bution was most similar to a Binomial distribution [1] with

a p value of 0.017, this is because of the tall peak at Logical

Indentation Level (LIL) 2.

Header files (.h files) for C and C++ were predictably

indented very little. LIL 0 was the most popular followed

by LIL 1. LIL 1 was composed of 4 spaces or 1 tab. There

were many lines (4th most frequent raw indentation depth)

indented by 1 or 2 spaces but there were more lines of LIL

1. According to figure 2, header files have the least similar

logical indentation distribution.

Perl’s indentation distribution is the closest to C and

PHP, although it shares some relation with Python. This

might be because classes in Perl do not require further in-

dentation since they are denoted by a package keyword.

Often, Perl code uses 4 spaces and tabs, although sometimes

2 spaces are used. All of the Perl indentation distributions

follow an exponential distribution.

Python’s logical indentation distribution is the most sim-

ilar to Java’s. Python is a unique language that uses inden-

tation to indicate scope, that is, indentation has semantics.

Python’s logical units of indentation were very consistent,

either 4 spaces or 1 tab. More lines were indented at LIL

1 or LIL 2 times than at LIL 0. Notably, Python’s logical

indentation distribution matched closest with a Poisson dis-

tribution.
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Similarity between Languages (1.0 indicates

they are very similar) (the asymmetry is due

to scaling each distribution per comparison)

PHP’s indentation was the most similar to C and Perl.

PHP stood out because it had some common deep inden-

tations with logical units of 1 tab and 4 spaces. It appears

that due to the mixing of HTML and PHP code that the log-

ical indentation units of PHP ends up being mixed between

spaces and tabs.

C++ files (.cpp files) were the most similar with .c files

and were somewhat similar with Perl files. Perl and C++

define methods similarly so this might have been the case.

C++ files had a definite pronounced non-base-4 heights, 2

spaces was quite common although most files followed a

4 spaces or tabbed indentation. 0 to 2 LILs were common

with C++.

C files (.c files) were very similar to C++ files in distri-

bution and style. 2 spaces were common units, although 4

spaces and tabs dominated. C’s indentation was more simi-

lar to C++’s than with the indentation of Perl or PHP.

4 Indentation and Complexity

In this section we correlate complexity metrics like Hal-

stead complexity and McCabe’s Cyclomatic complexity

with moments of indentation.

For McCabe’s Cyclomatic Complexity we measure the

MCC and the number of return statements. The Halstead

metric is a set of measurements of tokens: length (HLEN),

vocabulary (HVOCAB), volume (HVOL), difficulty (HD-

IFF) and effort (HEFFORT). We correlated these metrics

against the indentation metrics for raw indentation and log-

ical indentation. Our metrics were the statistical mom-
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ents (without skew or kurtosis) of raw and logical indent-

ation: LOC, IAVG and LAVG, IMED and LMED, ISTD

and LSTD, IVAR and LVAR, ISUM and LSUM.

4.1 Measures and Correlation

Our observation was that the AVG and MED did not cor-

relate well with any of the complexity metrics for both lin-

ear correlation (Pearson) and rank-based correlation (Spear-

man and Kendall).

LOC, SUM, STD, and VAR had medium strength (0.4
to 0.6) rank based correlations and small linear correlations

(0.2 to 0.4) with the complexity measures such as Halstead

Difficulty (HDIFF) and MCC. For MCC, LOC had a lin-

ear correlation of 0.75 and a rank-based correlation of 0.41
to 0.45. For HDIFF, LOC had rank and linear based cor-

relation of 0.49 to 0.55.

Halstead has count-based metrics such as Halstead

length, Halstead vocabulary and Halstead volume (these lin-

early correlated well with LOC and SUM). Halstead diffi-

culty and Halstead Effort try to estimate complexity based

on the number of unique operands and operators versus the

total number of operands and operators. Halstead Effort is

supposed to model the time it took to write the source code,

which correlates best with LOC in most cases.

4.2 Complexity and Language

In general, rank based correlations showed that SUM

and STD correlated better with complexity than LOC did.

For linear correlations LOC usually faired better than SUM.

Figures 5 and 6 depict the correlation coefficients of SUM

and STD. The Halstead length metrics all correlated best

with LOC, both with linear and rank-based correlations.

The C files had low scores for linear Pearson correlation,

with MCC correlating better with SUM than LOC. Rank

based correlations confirmed that LOC was correlated with

complexity measures but also that STD and VAR were im-

portant. Kendall correlation coefficients were lower than

Spearman coefficients. Both Spearman and Kendall corre-

lation of STD (Spearman 0.48, Kendall 0.44) were more

correlated with MCC than LOC (Spearman 0.43, Kendall

0.39).

For C++, SUM correlated linearly with MCC (0.79)

more than LOC (0.73). Although with rank based corre-

lation STD and VAR of indentation were equally correlated

with MCC ( 0.45)

For .h files, LOC, SUM, then STD, in descending order,

correlated well with HDIFF and MCC. Surprisingly SUM

correlated well with the number of returns and complexity

of functions and methods in .h files.
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For Java, LSUM linearly correlated with complexity bet-

ter than LOC (0.77 versus 0.76). For rank based measures

STD and VAR had medium correlations with MCC and HD-

IFF (0.43 − 0.45).

For PHP, rank based correlations of MCC with STD and

SUM were better correlated than LOC. For linear correla-

tion both SUM and LOC were correlated to complexity.

Python files were interesting as their linear correlation

between LOC and complexity was relatively low (0.64 and

0.49). STD had a medium linear correlation with HDIFF

(0.39).

For Perl, STD was more correlated linearly with HDIFF

than with LOC (0.47 versus 0.42), although LOC strongly

linearly correlated with MCC (0.75). For rank based cor-

relations STD is correlated best for MCC (Spearman 0.52,

and Kendall 0.47) and SUM correlated best with HDIFF

(Spearman 0.47 and Kendall 0.44).

Thus for all the languages we have shown strong and

medium linear correlations between MCC and HDIFF with

LOC and SUM. We have also shown for all languages stud-

ied, there were medium strength linear and rank-based cor-

relations between complexity, HDIFF and STD and VAR.

4.3 Complexity Correlation per Project

For most projects, LSUM and ISUM had a greater lin-

ear correlation for MCC than LOC, although LOC was just

above SUM for HDIFF. For rank based correlation STD and

SUM were better correlated than LOC for complexity, but

LOC was better correlated for HDIFF.

Some projects had relatively strong linear (0.55 to 0.67)

correlations between complexity and STD, such projects in-

cluded: Sodipodi, Bittorrent, Dynapi, Aureal, PHPnuke.

Some projects which did not linearly correlate (0.01 to

0.07): CrystalSpace, sed, jedit, BOOST. For rank based

correlations, Bastille-Linux, Unikey, Sodipodi and OpenCV

were above 0.67 (Bittorrent, Dynapi, Aureal, and PHPNuke

were all above 0.5).

4.4 Linear Combinations

To further show the linear relationship between inden-

tation metrics and complexity metrics we tried to linearly

model each of MCC and Halstead difficulty with our mom-

ents of indentation. Our model is:

c = α1β1 + α2β2...αn−1βn−1 + αnβn

where c is MCC or HDIFF and α1 through αn are the co-

efficients of the indentation metrics that enumerated as β1

through βn where n is the number of indentation metrics.

In the model shown in table 1, we do not use LOC as we

want to see if the linear relationship still holds without LOC.

Without SUM and withoutLOC most of the R2 values are

very low. For MCC, LOC does not improve the R2 much,

it increases from 0.385 to 0.388; this implies that our in-

dentation metrics provide most of the information that LOC

provides.

Halstead difficulty had worse results than McCabe’s

Cyclomatic complexity (R2 of 0.20−0.22) and Halstead Ef-

fort had an R2 below 0.041. Halstead Volume and Length

had the highest R2 values of 0.6 and 0.5. This suggests



Coefficient Value

-0.03 IAVG

0.05 IMED

-0.05 ISTD

4.81e-05 IVAR

3.93e-05 ISUM

0.16 LMED

0.28 LSTD

-0.10 LVAR

0.08 LSUM

Table 1. Coefficients for the linear model of

complexity. This model had a R2 of 0.385

that the important Halstead metrics such as difficulty were

harder to model linearly than MCC.

We can see there is some linear relationship between

statistical moments of indentation and complexity, although

there is a lot of variation unaccounted for in these models.

LOC on its own does not fare well against most of mea-

sures: Halstead volume (R2 of 0.59) , Halstead length (R2

of 0.51), number of returns (R2 of 0.38) and MCC (R2 of

0.29). We can see that by including indentation metrics in

our model we do gain information and accuracy from our

linear models. We have shown that there is value in measur-

ing indentation as well as LOC as we can model complexity

more accurately with indentation and LOC combined.

5 Discussion

We can see from the results there is some correlation be-

tween our indentation measures and traditional complexity

measures (McCabe’s and Halstead’s). There is some linear

correlation and there is some better rank based correlation

but it is not overly strong. This suggests that our statistical

moments of indentation can be used as proxies for ranking

revisions by complexity; the larger our measurements the

more complex the code, particularly the larger the standard

deviation and summation of indentation the more complex

the code.

Standard deviation of indentation seems to be a good

proxy for complexity because one could argue that the

greater the change in indentation depth, the more complex

the statements are in that code block. A large standard

deviation in indentation could indicate multiple if blocks or

expressions within a diff-chunk, which would correlate well

with Halstead’s complexity metrics.

We noticed there was little difference between logical

and non-logical indentation in the correlations. This sug-

gests two things: that the relationship between logical and

non-logical indentation is for the most part linear (for exam-

ples 4 spaces are often 1 logical unit) and that indentation

is regular enough that logical indentation does not matter.

What it also suggests is that the out-lier indentations, non-

base 4 indentations, do not affect the results much otherwise

there would be significant differences between raw indenta-

tion and logical indentation.

Indentation can provide information that a tokenizer

could not, indentation can show the scope of expressions

whereas a tokenizer provides a flattened representation. To

get the information that indentation supplies one would

have to parse the source code into a tree. Although Indenta-

tion can proxy complexity metrics, it is potentially its own

complexity metric. Halstead’s metrics do not count scope

where as MCC often does, but indentation will capture more

scoping semantics than MCC because not every new scope

is a new branch in the code.

6 Validity Threats

Our work potentially suffers from a few threats to va-

lidity. The five main categories of these threats are: met-

ric application issues, sampling issues, data cleaning issues,

language issues, and development tool issues.

Our measurement of MCC and Halstead Complexity was

done on revisions, not on methods, functions, modules, or

files. Often these measurements are taken at a semantic

level of structural granularity (functions, modules) but we

only applied them to diff-chunks.

We sampled popular SourceForge projects which had ac-

cessible CVS repositories. This might not be representative

of many classes of software.

Our choice of languages were the 6 most popular lan-

guages in the repository other than XML, Makefiles and

shell scripts. These languages are related to each other

through a common heritage of C and thus are syntactically

similar. The results per each of these languages could be

very similar due to shared syntax. Thus our results might

not be truly generalizable.

7 Conclusions

We have shown with sufficient confidence that to rank

revisions by statistical moments of indentation is analogous

to ranking revisions by complexity or maintainability. We

have also provided some evidence that measuring statistical

moments of indentation is more computationally efficient

than applying the complexity metrics.

We tested and confirmed our assertion that indentation

was a meaningful proxy for code complexity. It has been

suggested by others [10] that LOC correlated with com-

plexity metrics well enough such that complexity metrics

weren’t needed. We have shown through correlations and

linear models that cheap metrics such as the statistical mo-

ments of indentation, when combined with LOC or alone,



can be used to better model and simulate complexity mea-

sures than just LOC alone. We showed that for revisions

to source code, there were medium to strong linear and

rank based correlations between complexity metrics and the

summation and standard deviation of indentation. In many

cases summation of indentation and standard deviation of

indentation did better than LOC, especially with rank based

correlations. We found little difference between raw and

logical indentation metrics with respect to complexity.

We have provided an overview of indentation with re-

spect to a large body of successful, popular Open Source

software, as ranked by Source Forge. We have shown that

indentation is actually quite regular across multiple lan-

guages, at least for the projects we sampled.We expected

common logical units of indentation of 2 spaces to be fre-

quent, but across all of the languages, 4 spaces of indenta-

tion or 1 tab of indentation were the most common logical

units. We compared the distributions of indentation per lan-

guage to each other and found that the indentation of one

language was often similar to another. For instance Python

and Java had similar indentation styles, while Perl, C and

PHP were similar to each other, C and C++ were very sim-

ilar to each other.

We have shown that indentation is regular and consis-

tent enough to be worth measuring. We demonstrated the

value of measuring indentation along side LOC, it can be

used as a proxy for complexity, and it is almost as cheap as

LOC to calculate. Thus with the knowledge that indenta-

tion metrics are generally language agnostic, language un-

aware and cheap to calculate, we can use them as cheap

proxies for complexity and maintainability of source code

revisions. These measurements help to quickly and effi-

ciently rank patches to source code by their complexity and

maintainability.

7.1 Future Work

Future work should include the investigation of if our

results hold for other languages as well, particularly those

which do not have a shared history with C. Languages such

as Smalltalk, LISP, Scheme, Dylan, and Ruby are more for-

eign to C than Java, C++, Perl, PHP and Python.

We want to investigate if the shape of the indentation

matters. This would including testing if code changes that

have bubble shaped indentation are more complex than code

with flat indentation.

We measured the indentation of revisions in this paper,

perhaps we should measure code characters per line or to-

kens per line. Alternatively we could also compare com-

plete versions of a system before and after a revision rather

than just measuring the source code deltas.
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