
What do large commits tell us?
A taxonomical study of large commits

Abram Hindle
David Cheriton School of

Computer Science
University of Waterloo

Waterloo, Ontario
Canada

ahindle@cs.uwaterloo.ca

Daniel M. German
Department of Computer

Science University of Victoria
Victoria, British Columbia

Canada
dmg@uvic.ca

Ric Holt
David Cheriton School of

Computer Science
University of Waterloo

Waterloo, Ontario
Canada

holt@cs.uwaterloo.ca

ABSTRACT
Research in the mining of software repositories has frequently
ignored commits that include a large number of files (we call
these large commits). The main goal of this paper is to un-
derstand the rationale behind large commits, and if there
is anything we can learn from them. To address this goal
we performed a case study that included the manual classi-
fication of large commits of nine open source projects. The
contributions include a taxonomy of large commits, which
are grouped according to their intention. We contrast large
commits against small commits and show that large com-
mits are more perfective while small commits are more cor-
rective. These large commits provide us with a window on
the development practices of maintenance teams.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.9 [Software Engineering]: Man-
agement—Life cycle, Software configuration management

General Terms
Legal Aspects, Measurement, Verification

Keywords
Large Commits, Source Control System, Software Evolution

1. INTRODUCTION
What do large commits tell us? Often when studying

source control repositories large commits are ignored as out-
liers, ignored in favour of looking at the more common smaller
changes. This is perhaps because small changes are likely to
be well defined tasks performed on the software system and
perhaps it is easier to understand the intentions behind these
changes, and draw conclusions from them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

Yet, large commits happen. If we ignore them in our stud-
ies, what are we missing? What information do they con-
tain that can help us understand the evolution of a software
project? There is plenty of anecdotal information about
large commits. A common cited cause for them is a massive
copyright change, or reformatting its source code [4].

In this paper we analyze nine popular open source projects.
We study two thousand of their largest commits in an at-
tempt to answer two fundamental questions: what prompts
a large commit, and what can we learn from such large com-
mits.

Before this study, when asked what are large commits,
we simply answered ancedotally, but now we can provide
publicly available examples about large commits. We plan to
provide a ranking of the frequency of the classes of commits
we found by investigating many large commits from multiple
OSS projects. This will allow future researchers and users to
rely on both their own experience and the evidence provided
in this paper rather than just their own ancedotal evidence.
We also will describe the difference in purpose behind large
commits versus small changes.

1.1 Previous Work
Swanson [10] proposed a classification of maintenance ac-

tivities as corrective, adaptive and perfective, which we em-
ploy in this paper. Others [9] have characterized small changes
and what they mean in the context Swanson’s classification
of maintenance, faults and LOC.

The work exists within the context of the Mining Software
Repositories community. Many of these studies extract in-
formation from source control systems such as CVS [3, 11].

Many studies have investigated specific projects in de-
tail and done deep in depth case studies of the evolution
of specific OSS projects [2, 6]. Others have gone about
quantifying and measuring change [8, 7, 5] in source control
systems (SCS). Many software evolution researcher such as
Capiluppi et al [1] and Mockus et al. [8] have studied multi-
ple OSS projects from the perspective of software evolution.

2. METHODOLOGY
Our two primary research questions can be summarized

as follows:

1. What are the different types of large commits that occur
in the development of a software product?

2. What do large commits tell us about the evolution of a

Software Project Description

Boost A comprehensive C++ library.
Egroupware A PHP office productivity CMS project that integrates various external PHP applications

into one coherent unit.
Enlightenment A Window Manager and a desktop environment for X11.
Evolution An email client similar to Microsoft Outlook.
Firebird Relational DBMS gifted to the OSS community by Borland.
MySQL (v5.0) A popular relational DBMS (MySQL uses a different version control repository for each

of its versions).
PostgreSQL Another popular relational DBMS
Samba Provides Windows network file-system and printer support for Unix.
Spring Framework A Java based enterprise framework much like enterprise Java beans.

Table 1: Software projects used in this study.

software product?

We used a case study as the basis for our methodology.
We selected nine open source projects (listed in table 1).
These projects were selected based upon three main con-
straints: a) that they were at least 5 years old, mature
projects, with a large user base; b) that their version con-
trol history was available; and c) that they represented a
large spectrum of software projects: different application do-
mains (command line applications, GUI-based, server), pro-
gramming languages (PHP, C++, C, Java), development
styles (company sponsored–MySQL, evolution–or commu-
nity development–PostgreSQL).

The first stage (of two stages) of our research consisted in
the creation of a classification of commits. We proceeded as
follows:

1. For each project, we retrieved their commit history. We
then selected the 1% commits that contained the largest
number of files (of any file type, not only source code)
for our manual inspection. We auditted 2000 commits.

2. We created a classification of large commits. We used
Swanson’s Maintenance Classification [10] as the starting
point. As its name implies, Swanson’s Maintenance Clas-
sification is mostly oriented towards activities that adapt
an existent system. We added two more categories to it:
Implementation (adding features), and Non-Functional.
Non-functional are changes to the software that are not
expected to alter its functionality in anyway, but need to
be performed as part of the typical software development
cycle. For example, adding comments or reformatting
source code. These are summarized in Table 2.

3. Based upon these categories of changes, and the issues
that they address we proceeded to create a candidate
list of types of commits we would expect to find. These
can be seen as “low level” descriptors of the intention of
the developer such as “add feature”, “bug fix”, “change of
license”, “reindentation”. We refined this list by manu-
ally classifing the large commits of the first two projects
we studied (MySQL and Boost). This classification helped
us improve and refine our list of types, which is detailed
in Table 3. We also discovered that a commit can be of
one or more types (frequently a commit contains several
independent changes). We then mapped these types of
commits back into the Extended Swanson Classification,
as shown in table 4.

Categories of
Change

Issues addressed.

Corrective Processing failure
Performance failure
Implementation failure

Adaptive Change in data environment
Change in processing environment

Perfective Processing inefficiency
Performance enhancement
Maintainability

Implementation New requirements
Non functional Legal

Source Control System management
Code clean-up

Table 2: Extended Swanson Categories of Changes.
They were used to identify types of commits. The
first three are based upon Swanson Maintenance
Classification.

Category of
Change

Types of Change.

Corrective bug, dbg
Adaptive plat, bld, test,doc, data, intl
Perfective cln, ind, mntn, mmod, rfact, rmod
Implementation init, add, fea, ext, int
Non functional lic, rmmod, ren, trpl, mrg
Other cross, brch

Table 4: An attempt at classifying types of changes
according to the Extended Swanson Categories of
Change. Some of the types of change do not fit only
one category; for example, a documentation change
might be adaptive or perfective. See table 3 for a
legend of types.

Type commit Abbrev. Description

Branch brch If the change is primarily to do with branching or working off the main
development trunk of the version control system.

Bug fix bug One or more bug fixes.
Build bui If the focus of the change is on the build or configuration system files

(such as Makefiles).
Clean up cln Cleaning up the source code or related files. This includes activities

such as removing non-used functions.
Legal lic A change of license, copyright or authorship.
Cross cross A cross cutting concern is addressed (like logging).
Data data A change to data files required by the software (different than a change

to documentation).
Debug dbg A commit that adds debugging code.
Documentation doc A change to the system’s documentation.
External ext Code that was submitted to the project by developers who are not part

of the core team of the project.
Feature Add fea An addition/implementation of a new feature.
Indentation ind Re-indenting or reformatting of the source code.
Initialization init A module being initialized or imported (usually one of the first commits

to the project).
Internationalization int A change related to its support for languages other-than-English.
Source Control scs A change that is the result of the way the source controls system works,

or the features provided to its users (for example, tagging a snapshot).
Maintenance mntn A commit that performs activities common during maintenance cycle

(different from bug fixes, yet, not quite as radical as new features).
Merge mrg Code merged from a branch into the main trunk of the version control

system; it might also be the result of a large number of different and
non-necessarily related changes committed simultaneously to the version
control system.

Module Add add If a module (directory) or files have been added to a project.
Module Move mmod When a module or files are moved or renamed.
Module Remove rmod Deletion of module or files.
Platform Specific plat A change needed for a specific platform (such as different hardware or

operating system).
Refactoring rfact Refactoring of portions of the source code.
Rename ren One or more files are renamed, but remain in the same module (direc-

tory).
Testing tst A change related to the files required for testing or benchmarking.
Token Replace trpl An token (such as an identifier) is renamed across many files (e.g. change

the name or a function).
Versioning ver A change in version labels of the software (such as replacing “2.0” with

“2.1”).

Table 3: Types of Commits used to annotated commits. These types attempt to capture the focus of the
commit rather than every detail about it; for instance Token Replacement that affected 1 build file and 10
source files will not be labelled Build. A commit could be labelled with one or more types. Their abbreviation
is used in the figures of this paper.

The Extended Swanson Classification appeared insuficient
to classify large commits. We noticed that many of the large
commits such as build (bld), module management (add,
rmod, mmod), were difficult to place into these categories.
In many cases the intention of the commit was none of these.
For this reason we decided to create a new taxonomy, which
we call Categories of Large Commits, which is summarized
in table 5. We used this taxonomy to organize the types of
commits, as depicted in Table 6.

Manually classifying commits is difficult. We are not con-
tributors to any of these projects, and relied on our expe-
rience as software developers to do so. The procedure we
used was the following:

• We read the commit log. Most of the commits in these
projects have log comments which provide a good ratio-
nale behind the commit. In some cases the log was too
explicit (for example, the largest log comment in Evo-
lution was 13,500 characters long), but in many cases
the commit was simple and clear in its intention (e.g.
“HEAD sync. Surprisingly painless”,“Update the licens-
ing information to require version 2 of the GPL”).

• We identified the files changed. Usually the filename
(and its extension) provides certain clues (e.g. *.jpg are
most likely documentation or data files).

• We studied the diff of the commit, and compared its
contents to the commit log. We believe that the contrast-
ing of both sources of information improved the quality
of our classification. If they appeared to contradict each
other we used the information in the diff.

The result of this classification was, for each commit, a
list of types of commits that reflected the intention of such
commit.

For the second stage of our study we proceeded as follows:

1. For each project we retrieved (with the exception of
MySQL1) the log for each commit, and the correspond-
ing diff to its files.

2. We proceeded to manually classify each of these com-
mits into one or more of the different types of large com-
mits (as shown in Table 3). Every commit was labelled
with one or more types.

3. For each project we created a summary of what we con-
sider the “theme” of the large commits. In other words,
we tried to draw a rational that explained why the project
was doing large commits, and what such commits ex-
plained about the project, its organization, development
process, or its developers (qualitative analysis).

4. We quantitatively analyzed the resulting data, both by
project, and as an average over all projects.

3. RESULTS
We present the results of our study in two parts. In the

first part we describe the themes of our qualitative results.
In the second part we present an statistical overview of the
types of large commits.
1MySQL uses Bitkeeper as version control system, and we
were not able to retrieve the diffs for each commit.

Categories of Large
Commits

Types of Commits

Implementation fea, int, plat
Maintenance bug, dbg, mntn, cross
Module Management add, mmod, rmod, split
Legal lic
Non-functional source
changes

cln, trpl, rfct, indent

SCS Management brnch, ext, merge, ver, scs
Meta-Program bui, tst, doc, data, intl

Table 6: Classification of the types of commits using
the Categories of Large Commits

3.1 Themes of the Large Commits
By reading and classifying the log-changes we were able

to draw certain conclusions of the rationale behind many
of the large commits. We refer to these conclusions as the
themes of the large commits of each project.

Boost’s documentation produced many large commits be-
cause they were auto-generated from the source code and
docbook files (manuals). Boost developers used branches
and consequently many of the large commits were merges
from branches to the trunk. A common yearly large com-
mits was an update to the year of the copyright. Boost also
changed its license partway through development. Boost
has a well-defined source code style and we observed many
cleanup commits (reformatting and rewrites to follow their
style). Refactorings and unit tests were also common large
commits.

MySQL uses one repository per version. Its source code
is a “fork”. (Version 5.0 was forked from Version 4.1). Its
use of Bitkeeper allowed a type of commit that we did not
observed in any other project: changes in file permissions.
MySQL programmers used a consistent lexicon and marked
bug fixes with the word “fix” and merges with the word
“merge”. Merges were a very common type of large com-
mit.

Firebird had many large build commits because of their
support for multiple platforms. Their use of Microsoft Vi-
sual C++ project files often created as many build files
as there were source files. These project files were also
very prone to updating. Firebird had many large com-
mits which were both module additions and cross cutting
changes. Modules which updated or provided memory man-
agement, logging or various performance improvements were
added and caused large cross cutting, far reaching changes.
Since Firebird was an inherited code project from Borland,
there were many large commits where old code was cleaned-
up to follow the new code-style. A couple of large commits
included the dropping of some legacy platform support.

Samba stores most of its documentation in the SCS and
many of the documents were auto-generated from other doc-
uments; as a consquence many of the large commits were
documentation driven. Samba had multiple branches devel-
oping in parallel, often new functionality was back-ported
from develop branches to legacy branches. Thus merging
was a common large commit for Samba. Large build and
configuration commits included support for Debian builds,
requiring a separate build module. Samba also went through
a few security audits and the addition of cross cutting fea-
tures such as secure string functions and alternative memory

Categories of Large
Commits

Description

Implementation New requirements
Maintenance Maintenance activities.
Module Management Changes related to the way the files are named and organized into modules.
Legal Any change related to the license or authorship of the system.
Non-functional source-
code changes

Changes to the source code that did not affect the functionality of the software,
such as reformatting the code, removal of white-space, token renaming, classic
refactoring, code cleanup (such as removing or adding block delimiters without
affecting the functionality)

SCS Management Changes required as a result of the manner the Source Control System is used by
the software project, such as branching, importing, tagging, etc.

Meta-Program Changes performed to files required by the software, but which are not source
code, such as data files, documentation, and Makefiles.

Table 5: Categories of Large Commits. They reflect better the types of large commits we observed than
those by Swanson.

management routines. Except for the Debian related com-
mits, we were surprised to see very few platform support
commits (Samba runs in almost any flavour of Unix).

Egroupware integrates various external PHP applica-
tions into one coherent unit. Egroupware consistently had a
large number of template changes (in many cases the tem-
plates contained code). Many large commits were due to
the importing of externally developed modules which would
then had to be stylized and integrated into Egroupware. The
integration of external modules also implied a lot of merging
of updated external modules. There was also a surprising
number of commits where only version strings were changed.

Enlightenment is known for fancy graphics and themed
window decorations. “Visual” themes (a group of images,
animations and source code defining a look) are the most
notable part of the large Enlightenment commits. Large
window manager themes are imported and updated regu-
larly. Enlightenment uses separate directories to do version-
ing and merges are often copying or moving files from one
directory to another. Enlightenment also attracted a lot
of small widgets and tools that shared Enlightenment visual
themes, like clocks and terminal emulators. Some large com-
mits consisted of imports of externally developed tools into
the repository. There were very few tests in Enlightenment.

Spring Framework had many large commits that con-
sisted of examples and documentation. An example appli-
cation, Pet Store, was added and removed multiple times.
Branching in the Spring Framework often was done at the
file level, with many large commits being moves from the
sandbox directory to the main trunk. Much Spring Frame-
work code was associated with XML files that configured
and linked spring components. Other very common large
commits were refactorings, renamings, and module and file
moves. Spring required large cross cutting changes.

PostgreSQL was peculiar for its emphasis in cleaning up
its source code. Many of its large commits were code refor-
matting and code cleanup (such as removing braces around
one statement blocks–PostgreSQL is written in C). Many
of its large commits involved a single feature (suggesting
cross-cutting concerns). Many of these commits were exter-
nal contributions (from non-core developers).

Evolution makes extensive use of branching: many of its
large commits reflect the use of branches for different ver-
sions, and to develop and test new features before they are

integrated into the main trunk of the version control system.
It also uses many data files (such as time-zone information)
that are usually updated at the same time. Evolution uses
clone-by-owning: it makes a copy of the sub-project libical
every time this project releases a new version.

3.2 Quantitative Analysis

3.2.1 Types of Changes
We first present the distribution for each of the types of

changes. Figure 1 shows their proportion by project. Each
bar corresponds to all changes for that type, and it is di-
vided per project (for example, for maintenance changes,
60% are to Spring Framework, and the rest 40% to Evolu-
tion). Figure 2 groups them together, as a percentage of
the total number of commits for all projects (maintenance
changes are slightly less than one percent of all commits).
They show a lot of variation, but the most frequent changes
were Adding Modules, Documentation, Initializing Modules,
Feature Additions, and Merges. Table 3 shows the corre-
sponding percentage of commits for each type in descending
order. When comparing both figures, it is interesting to see
that those types of changes dominated by one or two appli-
cations (such as Data, Split Module, Debug, Maintenance)
occur very rarely.

3.2.2 Extended Swanson Maintenance Categorization
Figure 3 shows, for each project, the distribution of changes

according to the Extended Swanson Maintenance Categories
(see table 2). Figure 4 shows the aggregation of all projects.
All projects show commits in each category, although in
some cases (such as Spring and Firebird) they were dom-
inated by one or two categories.

Table 8 shows what percentage of large commits that
belonged to each Extended Swanson category. We com-
pared our results (ignoring non-functional and implementa-
tion changes) to Purushothaman et al.’s[9]. Purushothaman
divided changes into: Corrective, Perfective, Adaptive, In-
spections, and Unknown. They found that 33%, 8%, 47%,
9%, 2% of small changes fell into each of these categories.
We found the following: adaptive changes were the most
frequent in both large and small changes; Small changes,
however, were more likely to be corrective than perfective.
For large commits the trend is inverted: perfective changes

 0

 0.2

 0.4

 0.6

 0.8

 1

M
od

ul
e

In
ita

liz
at

io
n

Le
ga

l
D

at
a

U
nk

no
w

n
C

le
an

up
To

ke
n

R
ep

la
ce

m
en

t
R

em
ov

e
M

od
ul

e
R

en
am

e
M

er
ge

B
ra

nc
h

S
ou

rc
e

C
on

tro
l S

ys
te

m
D

oc
um

en
ta

tio
n

C
ro

ss
 c

ut
tin

g
co

nc
er

n
M

od
ul

e
M

ov
e

B
ui

ld
In

te
rn

at
io

na
liz

at
io

n
P

la
tfo

rm
 S

pe
ci

fic
S

pl
it

M
od

ul
e

Te
st

M
ai

nt
en

an
ce

D
eb

ug
E

xt
er

na
l S

ub
m

is
si

on
Fe

at
ur

e
A

dd
iti

on
B

ug
In

de
nt

at
io

n
an

d
W

hi
te

sp
ac

e
V

er
si

on
in

g
R

ef
ac

to
r

A
dd

 M
od

ul
e

P
ro

po
rti

on
 o

f C
om

m
its

Types of Commits

Proportional Distibution of Types of Commits

Boost
EGroupware

Enlightenment

Evolution
Firebird

MySQL 5.0

PostgreSQL
Samba

Spring Framework

Figure 1: Distribution of Types of Changes by project. Each bar corresponds to 100% of commits of that
type and it is divided proportionally according to their frequency in each of the projects.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2
M

od
ul

e
In

ita
liz

at
io

n
Le

ga
l

D
at

a
U

nk
no

w
n

C
le

an
up

To
ke

n
R

ep
la

ce
m

en
t

R
em

ov
e

M
od

ul
e

R
en

am
e

M
er

ge
B

ra
nc

h
S

ou
rc

e
C

on
tro

l S
ys

te
m

D
oc

um
en

ta
tio

n
C

ro
ss

 c
ut

tin
g

co
nc

er
n

M
od

ul
e

M
ov

e
B

ui
ld

In
te

rn
at

io
na

liz
at

io
n

P
la

tfo
rm

 S
pe

ci
fic

S
pl

it
M

od
ul

e
Te

st
M

ai
nt

en
an

ce
D

eb
ug

E
xt

er
na

l S
ub

m
is

si
on

Fe
at

ur
e

A
dd

iti
on

B
ug

In
de

nt
at

io
n

an
d

W
hi

te
sp

ac
e

V
er

si
on

in
g

R
ef

ac
to

r
A

dd
 M

od
ul

e

P
ro

po
rti

on
 o

f C
om

m
its

Types of Commits

Distibution of Types of Commits of all projects

Figure 2: Distribution of Types of Change of the aggregated sum of all projects.

 0

 0.2

 0.4

 0.6

 0.8

 1

Im
pl

em
en

ta
tio

n

N
on

 F
un

ct
io

na
l

P
er

fe
ct

iv
e

A
da

pt
iv

e

C
or

re
ct

iv
e

P
ro

po
rti

on
 o

f C
om

m
its

Extended Swanson Categories

Proportional Distibution of Extended Swanson Maintenance Classes

Boost
EGroupware

Enlightenment

Evolution
Firebird

MySQL 5.0

PostgreSQL
Samba

Spring Framework

Figure 3: Distribution of changes per project, organized using Extended Swanson Maintenance Categories.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Im
pl

em
en

ta
tio

n

N
on

 F
un

ct
io

na
l

P
er

fe
ct

iv
e

A
da

pt
iv

e

C
or

re
ct

iv
e

P
ro

po
rti

on
 o

f C
om

m
its

Extended Swanson Categories

Distibution of Extended Swanson Maintenance Classes of all projects

Figure 4: Distribution of changes for all projects, organized using Extended Swanson Maintenance Categories

Type of Change Percent
Merge 19.4 %
Feature Addition 19.2 %
Documentation 17.9 %
Add Module 15.8 %
Cleanup 11.9 %
Module Initalization 11.5 %
Token Replacement 9.1 %
Bug 9.0 %
Build 8.9 %
Refactor 8.0 %
Test 6.5 %
External Submission 6.4 %
Legal 6.0 %
Module Move 5.3 %
Remove Module 4.7 %
Platform Specific 4.4 %
Versioning 4.3 %
Source Control System 3.7 %
Indentation and Whitespace 2.3 %
Rename 2.2 %
Internationalization 1.7 %
Branch 1.6 %
Data 0.7 %
Cross cutting concern 0.6 %
Maintenance 0.6 %
Split Module 0.3 %
Unknown 0.3 %
Debug 0.1 %

Table 7: Distribution of commits belonging to each
Type of Change over all projects (1 commit might
have multiple types).

Category Percent
Implementation 43.9 %
Adaptive 32.7 %
Perfective 31.6 %
Non Functional 21.7 %
Corrective 9.0 %

Table 8: Proportion of changes belonging to each
Extended Swanson Maintenance Category for all
projects (1 commit might belong to multiple ones).

are more likely to occur than corrective changes. This re-
sult seems intuitive: correcting errors is often a surgical,
small change; while perfective changes are larger in scope
and likely to touch several files.

3.2.3 Categorization of Large Commits
Figure 5 shows the distribution of changes when they were

classified according to our categories of large commits (see
table 5). Projects vary in the distribution of the different
categories. These distributions appear to support qualita-
tive findings described in section 3.1; for example, Boost
has the largest proportion of Meta-Program (mostly doc-
umentation) while Postgresql has the largest proportion of
Non-functional Code (its frequent reformatting of the code).

Figure 6 shows the accumulated distribution of all the
projects (summarized in table 9). The most common cate-
gory is Implementation, followed closely by Meta-Program

Category Percent
Implementation 40.8 %
Meta-Program 31.5 %
Module Management 29.3 %
Non-functional Code 20.7 %
SCS Management 15.9 %
Maintenance 10.0 %
Legal 6.0 %

Table 9: The percent of commits belonging to each
Large Maintenance Category over all projects (1
commit might belong to multiple categories).

and Module Management. While some of the largest com-
mits might be Legal, they represent the smallest category.

4. ANALYSIS AND DISCUSSION
Large commits occur for many different reasons, and these

reasons vary from project to project. They tend to reflect
several different aspects:

Their development practices. Branching and merging
results in large commits, but not all projects use it. Branch-
ing and merging is primarily used to provide a separate area
for development, where a contributor can work without af-
fecting others. Once the developer (and the rest of the team)
is convinced that the code in the branch is functioning prop-
erly (e.g. the feature or features are completed) the branch
is merged back to the trunk (the main development area of
the repository). If a project uses branching and merging is
because (we hypothesize) they prefer to develop and test a
feature independently of the rest, and commit to the trunk a
solid, well debugged large commit–instead of many, smaller
ones. Branches become sandboxes. Evolution is an example
of such project.

Their use (or lack) of the version control system.
Many projects extensively use the features of a version con-
trol system, and this is reflected in the large commits (main-
taining different branches for each version of the product–
such as Evolution), while others don’t (Enlightenment main-
tains different directories for different versions). Some projects
use different repositories for each version (e.g. MySQL).

The importance of code readability. Some projects
worry a lot about the way their code looks (Boost and Post-
greSQL) and they do regular commits to make sure the code
obeys their coding standards.

Externally produced features. Some projects accept
a significant number of contributions from outsiders (to the
core team) and these are usually committed in one single
large commit (e.g. PostgreSQL, Egroupware).

Automatically generated files. Many large commits
are the result of automatically generated files (Boost and
Samba). This could be a concern for researchers creating
tools that automatically analyze software repositories with-
out properly determining the provenance of a given file.

Test cases and examples tend to be added in large
commits. It is also interesting that not all projects have
test suites nor examples (where appropriate).

Clone-by-owning results in regular large commits.
Some projects keep a local copy of another product that they
depend upon, such as a library, but they do not maintain
it; such products need to be regularly updated with newer

 0

 0.2

 0.4

 0.6

 0.8

 1

S
C

S
 M

an
ag

em
en

t

Le
ga

l

Im
pl

em
en

ta
tio

n

M
ai

nt
en

an
ce

M
od

ul
e

M
an

ag
em

en
t

N
on

-fu
nc

tio
na

l C
od

e

M
et

a-
P

ro
gr

am

P
ro

po
rti

on
 o

f C
om

m
its

Categories of Large Commits

Proportional Distibution of Large Commit Classes

Boost
EGroupware

Enlightenment

Evolution
Firebird

MySQL 5.0

PostgreSQL
Samba

Spring Framework

Figure 5: Distribution of commits per project, classified according to the Categories of Large Commits.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

S
C

S
 M

an
ag

em
en

t

Le
ga

l

Im
pl

em
en

ta
tio

n

M
ai

nt
en

an
ce

M
od

ul
e

M
an

ag
em

en
t

N
on

-fu
nc

tio
na

l C
od

e

M
et

a-
P

ro
gr

am

P
ro

po
rti

on
 o

f C
om

m
its

Categories of Large Commits

Distibution of Large Commit Classes of all projects

Figure 6: Distribution of commits for all projects, classified according to the Categories of Large Commits.

versions2. These updates are performed on a regular basis,
and result in large commits. A project can look (to the
outsider) as if it is having significant activity, when in reality
is just copying code from somewhere else.

The copyright and licensing changes can be useful
in tracking the legal provenance of a product. For ex-
ample, who have been their copyright owners, or its changes
in license (e.g. Evolution has had many different copyright
owners during its lifetime, Boost changed license).

The development toolkit has an impact in large
commits. We noticed that the use of Visual Studio prompted
significantly more large commits to build files, compared to
cmake or autoconf/automake (used by many projects).

The impact of the language. Large commits for lan-
guages such as C++ and Java contained a lot of refactorings
and token replacement. This might be not a result of the fea-
ture of the language, but the manner in which programmers
of that language tend to work (refactoring is perhaps more
likely to be performed by programmers of object oriented
languages; it is also possible that C++ and Java program-
mers were more likely to use the term “refactoring” in their
commit logs, and this had an effect in the way we classified
their commits). Spring, Firebird and Boost (written in Java
and C++) contained many API changes and refactorings.

We believe that reading a commit log and its diff gives an
idea of how easy or difficult it is to maintain a system. For
example, we observed that several features in PostgreSQL
required large commits to be implemented. This is very
subjective, but reliable methods could be researched and
developed to quantify such effect.

4.1 Threats to Validity
Our study unfortunately suffers many threats to valid-

ity. Our main threats were were consistency in annotation,
subjectivity of annotation, and miscategorization. Much of
the annotation relied on our judgement, as programmers, of
what the commit probably meant. In the case of MySQL we
did not use the source code, just the filenames and change
comments. The classes were assigned by us and in many
cases could be assigned subjectively. There were also only
two people annotating the data, thus there might be bias
and disparity in the annotation step.

Another issue is our choice of projects, we only chose nine
relatively large OSS projects, do our results scale up and
down? Do our results apply to non-open source products?

5. CONCLUSIONS
Although large commits might look like outliers in the

large data-sets extracted from SCSs we have shown that in
many cases these commits are fundamentally important to
the software’s very structure. Many of the large commits
actually modify the architecture of the system.

We compared our study with another study of small changes
and found an important difference between small changes
and large commits was that large commits were more likely
to perfective than corrective, while small changes were more
often corrective rather than perfective. In a way it makes
sense, correcting errors is surgical, perfecting a system is
much more global in scope.

2Clone-by-owning is usually done to avoid unexpected
changes to the original software; it can also be used to sim-
plify the building process.

We have shown that the large commits provide insight
into the manner in which projects are developed and reflect
upon the software development practices of its authors.

Future work will exploit this data-set further. We plan to
apply a lexical analysis of the diffs and change comments,
in an attempt to automatically classify large commits. We
would also like to analyze more projects to see if these results
actually generalize more than what we have seen.

6. REFERENCES
[1] A. Capiluppi, P. Lago, and M. Morisio. Characteristics

of Open Source Projects. In CSMR ’03: Proceedings of
the Seventh European Conference on Software
Maintenance and Reengineering, page 317,
Washington, DC, USA, 2003. IEEE Computer Society.

[2] D. M. German. Decentralized Open Source Global
Software Development, the GNOME experience.
Journal of Software Process: Improvement and
Practice, 8(4):201–215, 2004.

[3] D. M. German. Mining CVS repositories, the
softChange experience. In 1st International Workshop
on Mining Software Repositories (MSR 2004), pages
17–21, May 2004.

[4] D. M. German. A study of the contributors of
PostgreSQL. In 3rd International Workshop on
Mining Software Repositories–MSR Challenge Reports
(MSR 2006), May 2006. Received Best Challenge
Report Award.

[5] D. M. German and A. Hindle. Measuring fine-grained
change in software: towards modification-aware
change metrics. In Proceedings of 11th International
Software Metrics Symposium (Metrics 2005), 2005.

[6] M. W. Godfrey and Q. Tu. Evolution in Open Source
Software: A Case Study. In Proceedings of
International Conference on Software Maintenance,
pages 131–142, 2000.

[7] T. Mens and S. Demeyer. Evolution Metrics. In
IWPSE ’01: Proceedings of the 4th International
Workshop on Principles of Software Evolution, New
York, NY, USA, 2001. ACM Press.

[8] A. Mockus, R. T. Fielding, and J. Herbsleb. Two Case
Studies of Open Source Software Development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):1–38, July 2002.

[9] R. Purushothaman. Toward understanding the
rhetoric of small source code changes. IEEE Trans.
Softw. Eng., 31(6):511–526, 2005. Member-Dewayne
E. Perry.

[10] E. B. Swanson. The Dimensions of Maintenance. In
ICSE ’76: Proceedings of the 2nd international
conference on Software engineering, pages 492–497,
Los Alamitos, CA, USA, 1976. IEEE Computer
Society Press.

[11] T. Zimmermann and P. Weisgerber. Preprocessing
CVS data for fine-grained analysis. In 1st
International Workshop on Mining Software
Repositories, May 2004.

