
Mining Recurrent Activities: Fourier Analysis of Change Events

Abram Hindle

University of Waterloo

Waterloo, Ontario

Canada

ahindle@cs.uwaterloo.ca

Michael W. Godfrey

University of Waterloo

Waterloo, Ontario

Canada

migod@cs.uwaterloo.ca

Richard C. Holt

University of Waterloo

Waterloo, Ontario

Canada

holt@cs.uwaterloo.ca

Abstract

Within the field of software repository mining, it is com-

mon practice to extract change-events from source control

systems and then abstract these events to allow for differ-

ent analyses. One approach is to apply time-series anal-

ysis by aggregating these events into signals. Time-series

analysis requires that researchers specify a period of study;

usually “natural” periods such as days, months, and years

are chosen. As yet there has been no research to validate

that these assumptions are reasonable. We address this by

applying Fourier analysis to discover the “natural” period-

icities of software development. Fourier analysis can detect

and determine the periodicity of repeating events. Fourier

transforms represent signals as linear combinations of sine-

waves that suggest how much activity occurs at certain fre-

quencies. If behaviors of different frequencies are mixed

into one signal, they can be separated. Thus Fourier trans-

forms can help us identify significant development process

sub-signals within software projects.

1 Introduction

Significant aspects of human behavior can be character-

ized by repeating patterns and processes, such as waking,

eating, sleeping and even working. We noticed repeating

patterns of development, such as slow weekends or declin-

ing work quality on Fridays [4], in many software reposito-

ries.

The data stored in a source control system (SCS), such

as CVS or Subversion, is complex; it consists of thousands

of events recorded by many actors potentially working in

parallel, often in different time-zones. When we abstract

these events into time-series we observe much noise in the

time-series. It is not clear whether breaking down the ac-

tivity into natural time units such as days or weeks reveals

all the recurrent behavior of interest. Time-series analysis

relies on the assumption of a periodicity that is supplied by

the user looking at the data. Analysts will choose or guess a

Figure 1. Time Domain, Frequency Domain,

and Spectrogram of a whistle and a word.

period length and then analyze the time series with respect

to that period. Fourier analysis does not try to assume such

a periodicity; instead, it reflects the periodicity of the be-

havior by the magnitude of activity taking place at a certain

frequency.

Thus we propose the use of the Fourier transform to al-

low us to analyze data without assuming or guessing a pe-

riodicity that exists in the data. Fourier transforms can help

us by detecting the repeating and cyclic behaviors inside the

signal.

Our hypothesis is that interesting repeating signals exist

within the SCS and CVS repositories, we can detect and po-

tentially identify these signals using the Fourier transform.

1.1 Motivation

Before we started this investigation we assumed that we

could detect and see some frequent behaviors in a SCS with

1

a Fourier transform. We anticipated that we could detect

signals that were more complicated and more interesting

than signals of daily commits. We expected that the Fourier

transform would help us identify intentional, process-driven

recurrent activities and natural, time driven, recurrent activ-

ities. For instance if one day of a week was used for meet-

ings, we would expect there would be a noticeable pattern

with a frequency of one week.

We hope some repositories will exhibit recurrent behav-

iors that are composed of events at different frequencies,

such as the frequency of code review meetings versus gen-

eral development, or perhaps the end of an iteration. Fourier

transforms are especially good at separating out spectral

components of a signal, such as behaviors occurring con-

currently at different frequencies.

In our studies we will use the Discrete Fourier Transform

(DFT). In this paper we will be applying the DFT to counts

of revisions per time period.

Figure 1 depicts an audio signal depicted of a whistle fol-

lowed by the word “test”. The whistle has harmonic compo-

nents (the streaking lines seen in the spectrogram); a human

speaking the word “test” will consist of noise from the con-

sonants. In Figure 1 we can see the frequency domain plot

in the middle. Two peaks are highlighted, one main peak

and a secondary peak. These peaks indicate two strong fre-

quencies in the signal, specifically the frequencies of the

whistling. The two strong frequencies are not noticeable

in the time/amplitude domain plot shown on top, but these

signals are noticeable in the spectrogram just below it. The

two bottom light colored streaks across the first half of the

signal show the dominant frequencies of the whistle. The

largest streaks correlate with the two peaks in the frequency

domain. We suspect that this kind of observation and corre-

lation should work on signals extracted from SCSs.

Figure 2 illustrates how a Fourier transform can be used

to analyze a signal. We have two real signals, arising from

a tester and a main developer. The main developer is mak-

ing commits every two days, the tester is committing their

test code every four. It would be difficult to detect these

two mixed sub-signals from the time-series alone. Using

the Fourier transform we notice that the time-series can be

created from the linear combination of a sine waves with pe-

riods of two and four days. This shows that we can observe

the two signals that exist within the repository that were

difficult to separate in the time domain but easy to spot and

separate in the frequency domain.

The purpose of this paper is an exploratory investigation

to determine how to apply the Fourier transforms to some

of our Software Engineering related problems.

1.2 Previous Work

Within the Software repository mining community, there

has been work by Herraiz et al. [2] on using Time Se-

ries Analysis, ARIMA models, and autocorrelation on SCS

data. Herraiz studied many OSS projects and can charac-

terize the ARIMA model’s range parameters used to model

these projects.

LPC was applied by Antoniol et al. [1], which is simi-

lar to the Fourier transform but was not used to find time-

invariant relationships.

We have done previous work with time series and char-

acterizing the behavior in a repository by splitting the kinds

of revisions by their likely task [3].

2 Fourier Transform

In our work, we adapt Fourier analysis to mining logged

information about software development. For our purposes

a Fourier transform is a black box. We give it a time-series,

a signal, as input and it outputs the dominant frequencies of

that signal. We can use this output to help us identify the

behaviors that produced these signals. We can use the out-

put of a Fourier transform to see if there exists any high, low

or medium frequency behaviors common across the entire

development of the project, or even smaller periods such as

a month. Alternatively, multiple smaller Fourier transforms

of shorter time intervals can be combined into a spectro-

gram, which shows the changing behavior with respect to

frequency over time (see Figure 4).

The Fourier transform takes a time-domain function and

converts it into a frequency-domain function. This means

we can take a signal and convert it from a time / ampli-

tude signal to a frequency / magnitude signal. A Fourier

transform, of size n, outputs a series of coefficients for sine-

waves with frequencies of 0 to n. The magnitude of these

coefficients indicates how strongly a sine-wave of that fre-

quency exists in that signal. Fourier transforms are often

used in frequency analysis to analyze and plot the harmonic

or frequency based components of signals.

The signals that we analyze are often events per unit of

time, such as revisions per day over a range of days. With

an input of a window of revisions per day, the Fourier trans-

form outputs a frequency versus magnitude representation

of that window, as coefficients of sine waves with different

frequencies (from low frequency to high frequency). The

summation of these weighted sine waves produces the sig-

nal of the window in the time-domain. Thus the frequency

representation of a signal does not lose any information, in

fact it represents the same signal. We can use this to our ad-

vantage, since we can get the inverse of a Fourier transform

so we can filter and produce signals as well.

We use the Discrete Fourier Transform (DFT), this is the

most common Fourier transform used on discrete data. The

input to a discrete Fourier transform is a sequence of n real

or complex samples of a signal.

Sometimes a Fourier transform can be made less noisy

by multiplying the signal by a windowing function. Win-

Day 1 Day 3 Day 5 Day 7

Day 1 Day 3 Day 5 Day 7 Day 1 Day 3 Day 5 Day 7

Day 1 Day 3 Day 5 Day 7

4 day 3 day 2 day 4 day 3 day 2 day

Day 1 Day 3 Day 5 Day 7

Day 1 Day 3 Day 5 Day 7

4 day 3 day 2 day

x

x

x

x x

x

2x

2x

Fourier Transform:

Frequency Domain

of

Revisions Per Day

Sinusodial

Composit ion

Time-Domain

of

Revisions per day

Frequent Infrequent Sum of Frequent and Infrequent

Figure 2. Example of how a Fourier transform can be used to analyze a signal

dowing functions commonly used consist include the Ham-

ming window, and the Hanning window, which look similar

to the first half of a sine wave. Window functions are used

to help analyze data by massaging the data into a form that

seems more continuous and removes the discontinuity at the

beginning and the end of the signal, which reduces noise.

The Fourier transform is additive and this translates be-

tween both frequency and time domains. Two signals, with

frequencies of k and l, when added together in the time do-

main will produce a Fourier transform where frequencies

k and l have high magnitude. The additive property means

we can compose and take apart signals, thus we can analyze

subparts of a signal before hand, and then combine them to

observe the aggregated behavior.

2.1 Discrete Fourier Transform

Figure 3 depicts a Discrete Fourier Transform (DFT) ex-

ecuted across the entire lifetime of Max DB 7.500, an Open

Source database system maintained by MySQL. Max DB

7.500 was the first major version of Max DB that was re-

leased as Open Source. Large peaks stand out in Figure

3, they indicate a periodic, globally distinguishable, behav-

ior within the Max DB 7.500 repository. We can see that

the plot does not follow a power-law-like curve, which is

a common Fourier transform pattern that often indicates

either much low frequency activity or much noise. Thus

this plot is promising because it indicates potential frequent

and periodic behavior, it is not all skewed to low frequency

noise.

Before one looks for behaviors with a Fourier trans-

form, one must decide what is the maximum frequency,

or conversely the maximum length, of the behavior sought.

A Fourier transform operating on N time units can only

clearly represent frequencies between 0 and N/2. Any fre-

quencies over N/2 will be aliased by a frequency of x−N/2

where x was the frequency above N/2. N/2 is called the

Nyquist frequency, it is the maximum frequency we can

measure with a Fourier Transform of N bins. Although

Fourier transforms can operate on any number of bins, it

is often faster to choose bins that are powers of two.

If the number of bins is not a power of two we can pad

both the start and end of the data with zeroes until the length

of the signal, the data matches a power of two. If the ana-

lyzed signal fits into bins that are a power of two, then we

can apply the Fast Fourier Transform (FFT), which runs in

O(NlogN) instead of O(N2).
Since our time units will be discrete, the counts and val-

ues we measure will exist over the real numbers. Fourier

transforms operate on complex numbers so we shall assume

that all our inputs have an imaginary component of 0i.
Once the signal is passed through the Fourier Transform,

it is transformed into n + 1 coefficients. Coefficients 0
to n/2 will contain the coefficients for sine-waves of fre-

quency x/(n ∗ t) where x is a bin from 0 to n, and t is

length in time of the signal. Those bins with larger magni-

tudes (where a bin x value is a + bi, magnitude(a + bi) =√
a2 + b2) indicate that sine-waves of those frequencies are

prominent in the signal. Depending on the shape of the re-

current behavior, it could smear across multiple bins, but if

the shape of the signal was truly sinusoidal it should appear

prominently in one of the bins.

2.2 Spectrograms

Figure 4 illustrates a spectrogram where the magnitude

of the frequency is represented by color, time is along the

horizontal axis and frequency along the vertical. Spectro-

grams are formed by taking windows of events and applying

the Fourier transform to each window. The Fourier trans-

forms of these windows are plotted together in time-ordered

sequence, the first axis is time window, the second axis is

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
m

p
lit

u
d

e

Frequency

MaxDB 7.500 - Fourier Transform of revisions per day (16384 bins)

Amplitude of Frequency

Figure 3. Fourier Transforms of MaxDB 7.500

Figure 4. Spectrogram of MySQL 5.0

frequency and the third access is amplitude. The windows

are centered on the time in question, often causing the win-

dows to overlap. Figure 4, which is of MySQL 5.0, has a

horizontal smear at a frequency of 18 or 19, we suspect this

behavior represents the cycle of a development week. We

found that this behavior included interactions from accounts

that were not in the top-ten most frequent committing ac-

counts.

2.3 Applied to Revision Events

In this paper, our goal is to apply frequency analysis,

using the Fourier transform, to software engineering data

such as the daily records of maintenance activities. We ex-

pect that recurring patterns of behaviors exist within many

projects.

Behaviors we anticipate would include large or small

check-ins done on Fridays, or cases where no work is done

on Saturdays. We could recognize if programmers only

work from 9 to 5. These behaviors should not be difficult

to spot, perhaps other recurrent behaviors exist. We hope to

detect recurrent behaviors such as weekly or bi-weekly code

audits, or large change events that occur frequently within

an SCS.

We did preliminary work and looked for repeating be-

haviors in revision data and we found many examples. We

often observed large, noisy spikes consisting of many fre-

quencies, usually each spike is correlated with a period

that had many changes. We wanted to look for smears

of frequencies across time, such as those produced by the

whistling in Figure 1, or the smear in Figure 4, as these

smears would indicate a repeating process.

We extracted change data from many projects. We

have observed horizontal smears across Fourier transforms

for the following projects: Mozilla, MySQL, Evolution,

MaxDB, and Xerces. These smears indicate a recurring ac-

tivity during the development of these projects.

3 Conclusions

We have shown that the Fourier transform can be used

to uncover repeating patterns or processes that are hidden

in the logs of change events. Using the Fourier transform

we can analyze the behavior of these signals to isolate their

frequencies and their recurrent behaviors.

We have observed that some Open Source project be-

havior is externally variable but still internally consistent.

We observed repeating behaviors in a sample of large Open

Source systems such as MySQL and MaxDB.

Current and future work includes working with auto-

correlation and self-similarity of Fourier transforms to par-

tition time by recurrent development behavior. We are also

leveraging the use of the Fourier Transform on other soft-

ware engineering related data-sources such as traces and

server logs.

References

[1] G. Antoniol, V. F. Rollo, and G. Venturi. Linear predictive

coding and cepstrum coefficients for mining time variant in-

formation from software repositories. In MSR ’05: Proceed-

ings of the 2005 international workshop on Mining software

repositories, pages 1–5, New York, NY, USA, 2005. ACM.
[2] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. Fore-

casting the number of changes in eclipse using time series

analysis. In MSR ’07: Proceedings of the Fourth Interna-

tional Workshop on Mining Software Repositories, page 32,

Washington, DC, USA, 2007. IEEE Computer Society.
[3] A. Hindle, M. W. Godfrey, and R. C. Holt. Release pattern

discovery via partitioning: Methodology and case study. In

MSR ’07: Proceedings of the Fourth International Workshop

on Mining Software Repositories, page 19, Washington, DC,

USA, 2007. IEEE Computer Society.
[4] J. Śliwerski, T. Zimmermann, and A. Zeller. When do

changes induce fixes? In MSR ’05: Proceedings of the

2005 international workshop on Mining software reposito-

ries, pages 1–5, New York, NY, USA, 2005. ACM.

