Recurrent Events: Comparing and Explaining Behaviour

Abram Hindle, Micheal W. Godfrey, Richard C. Holt

Software Architecture Group David R. Cheriton School of Computer Science University of Waterloo Canada http://swag.uwaterloo.ca/ {ahindle,migod,holt}@cs.uwaterloo.ca

Introduction

- Care about recurrent events
- Events which repeat
- Care about events which induce behaviours
 - or are part of a behaviour
 - * Can we find the reason for a behaviour

Self Similarity

- Take regions of a project's lifetime, compare their similarity to other regions
 - Look for continuous regions that are relatively similar
 - When behaviour changes we can partition at that point
 - Different regions of different behaviour could indicate:
 - · An iteration
 - · A milestone
 - · A sub-part of an iteration
 - Freezes etc.

Self Similarity Methodology

- Extract a repository
- Break down into counts by unit
- Choose a Fourier Transform size (window)
- Per each window apply the Fourier transform
- Per each window determine all the similar windows
- Look for continuous regions which repeat ..

Self Similarity Plot

- Extract and compare windows
- Choose a color palette
- By default each window has its own color from the palette
- If a window is similar to another window color color it that color
 - Choose an order like for a set of similar windows they receive the color of the earliest window

month-sized window shown by color)

Slicers

- Idea: We can split up streams into slices which we can describe
- A slice we can easily describe
 - Authors
 - Files
 - Modules
 - ...
- If behaviour is induced by such a slice we can easily describe which data was at fault
 - "Look this spike with a frequency of 30 days is

caused by the European localization team"

A signal can be composed of slices

A behaviour explained by slices

Different slices can be responsible for sub-signals

Case Study: MaxDB 7.500

- Using Directory based slices
 - changes dir ranked very high in "individual best"
 - changes ranked last in leave one out analysis
 - This means that files or modules which frequent changes might have reasonable distance between said behavior
 - * But they might not actually take part
 - Their magnitude can give the illusion of participating
- The most commonly modified directory ranked high by individual distance to top 3 peak behaviour