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Researchers have used topic modeling and concept location
to understand the latent topics of software development arti-
facts. These techniques use unsupervised machine-learning
algorithms to recover topics. These topics are word-lists
and are difficult to distinguish and interpret. Topics are
not meaningful until they have been named or interpreted.
Current topic labelling approaches are manual, and do not
use domain-specific knowledge to improve, contextualize, or
describe results for the developers. We propose a solution:
labelled topic extraction. Topics are extracted using Latent
Dirichlet Allocation (LDA) from commit-log comments re-
covered from source control systems such as CVS and Bit-
Keeper. These topics are given labels relating to a generaliz-
able cross-project taxonomy consisting of non-functional re-
quirements. Our approach was evaluated with experiments
and case studies on two large-scale RDBMS projects: MySQl
and MaxDB. Labelled topic extraction produces appropri-
ate, context-sensitive labels relevant to these projects, which
provides fresh insight into their evolving software develop-
ment activities.Categories and Subject Descriptors
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1. INTRODUCTION
Topics in software engineering practice refer to specific

shared threads of discussions between project stakeholders.
These topics can include particular requirements, mainte-
nance requests, bug fixes or other software engineering tasks.
While addressing a topic of development, stakeholders often
produce or modify multiple development artifacts. These
artifacts can include source code, bug reports, revisions to
source code, and test cases. Topics are typically latent, i.e.,
not explicitly named, and can be in several potential states:
they may not be immediately resolved, they may re-occur,
yet others are only dealt with briefly (e.g., a bug report that
is closed).

Developers often interact with abstractions of the arti-
facts from which topics are derived, rather than the arti-
facts themselves. Such abstractions include project dash-
boards [16], tags [29], and complexity metrics [22]. Without
the structured information which dashboards typically rely
on, topics become a valuable and automatically extractable
abstraction of software artifacts. Topics abstract software
artifacts by their subject matter, rather than their con-
crete representation. Much like aspect-oriented program-
ming, topic labeling can identify cross-cutting concerns in
a software project (as in [1]). The topics of development
are relevant because they identify the distinct issues facing
stakeholders at a particular time.

The goal of concept location and topic analysis research is
to recover these topics and the related software artifacts. To
date, the results of topic analysis and concept location are
project specific, and not generalizable. Much of the current
research stops short of automatically interpreting the pur-
pose of the topic, e.g. [1, 18, 20]. That is, extracted topics
are usually manually named and labelled by those who read
the topic words.

Deriving and labelling topics is a challenging machine
learning problem. Topic analysis produces unlabelled context-
free word-lists or word distributions. Topics have to be iden-
tified by interpreting the prevalent words in a word distri-
bution and by inspecting related documents. This manual
approach is impractical when handling hundreds of differ-
ent topics. To scale to large projects (thousands of lines of



code and multiple releases), we need automatic assistance
to determine the topic label. We propose a method of inter-
preting and labelling topics, and their related artifacts, that
is generalizable and relevant to multiple projects.

In our previous work we dealt with topic trends, which
are topics that recur over time [13]. We observed that
topic trends were often non-functional requirements (NFRs).
NFRs have the property of being cross-domain and widely
applicable. In this sense, they are useful abstractions for
developer conversations about different software projects.

In general, the mining of software artifacts tends to be
very project specific, yet NFRs are not. There is a series
of standards on NFRs, such as [14], specifically intended to
apply to projects of varying types. These standards indicate
our approach is possible. In particular, we use software qual-
ity models to generalize topics across projects. This allows
us to mine software systems with the intention of comparing
their NFR-related development topics.

There are many practical applications of labelled topic ex-
traction. These methods are useful for providing abstrac-
tions of development activities and artifacts. Particularly
in large projects, summarization of developer activities is
essential to maintenance. Rather than looking for specific
concepts in a project [20], we are interested in understand-
ing a software project relative to common properties of all
software. We can improve project dashboards, used by man-
agers, by showing both the current topics of development as
well those that relate to domain-independent taxonomies,
such as NFRs. Some quality assurance questions can be ad-
dressed by seeking evidence within repositories that NFR-
related topics are being addressed. Topic modelling can be
used to check if development is on track and focused. For
outside users of the software, our technique can provide in-
sight into that company’s development practices in order to
answer questions such as, “Are they focused on usability?”
Within the organization labelled topic extraction can act as
a historical sanity check, used to avoid confirmation bias,
which is the difference between what people think happened
and what actually happened. Some software releases, for in-
stance, are poorly received since they are quite buggy. Our
technique would help explain why this was the case, since
it can identify NFRs which are dominating developer atten-
tion.

In this paper, we describe labelled topic extraction. It
addresses two gaps in the topic mining literature:

1. Topic mining of software has been limited to one project
at a time. This is because traditional topic mining
techniques are specific to a particular data-set. La-
belled topic extraction allows for comparisons between
projects.

2. Topic modeling creates word lists that require inter-
pretation by the user to assign meaning. Like (1), this
means that it is difficult to discuss results independent
of the project context. Our technique automatically
assigns labels across projects.

This paper first introduces labelled topic extraction, and
then uses that technique to analyze development activity in
two large-scale examples. We begin by describing how we
generated our data (Sections 2.1 and 2.2). We show that
labels with their topics can be learned and used to clas-
sify other data-sets, either without training (Section 2.3), or

Figure 1: Research methodology process view.

with training (Section 2.4). We then present visualizations
of named topics and their trends over time to aid commu-
nication and analysis. We use an exploratory case study
of two open source database systems to show how named
topics can be compared between projects (Section 3). The
paper concludes with a discussion of limitations (Section 4)
and related work (Section 5).2. STUDY DESIGN AND EXECUTION

Figure 1 gives an outline of the methodology followed. We
began by gathering source data. We then applied unsuper-
vised and supervised learning techniques to identify topics.
These topics were used to analyze the role of non-functional
requirements in software maintenance.2.1 Generating the data

To evaluate our approach, we sought candidate systems
that were mature projects and had openly accessible source
control repositories. We selected systems from the same
application domain, so the functional requirements would
be broadly similar. We selected MySQL 3.23 and MaxDB
7.500 as they were open-source, partially-commercial data-
base systems. MaxDB started in the late 1970s as a research
project, and was later acquired by SAP. As of version 7.500,
released April 2007, the project has 940 thousand lines of
C source code1. The MySQL project started in 1994 and
MySQL 3.23 was released in early 2001. MySQL contains
320 thousand lines of C and C++ source code. Choosing
an older version of these projects allowed us to focus on
projects which have moved into the maintenance phase of
the software life-cycle.

1generated using David A. Wheeler’s SLOCCount.



For each project, we used source control commit com-
ments, the messages that programmers write when they
commit revisions to a source control repository. This is
the most readily accessible source of project interactions
for outside researchers; bug trackers and email-list archives
were not available for both projects. An example of a typi-
cal commit message is: “history annotate diffs bug fixed (if
mysql real connect() failed there were two pointers to mal-
loc’ed strings, with memory corruption on free(), of course)”.
We extracted these messages and indexed them by creation
time. We summarized each message as a word distribution
but removed stop-words such as the and at. Stemming was
performed in the later stages of our analysis.

For the commit message data-sets of each project, we cre-
ated an XML file which separated commits into 30 day pe-
riods. This size of period, 30 days, is smaller than the time
between minor releases but large enough for there to be suffi-
cient commits to analyze [13]. For each 30 day period of each
project, we input the messages of that period into Latent
Dirichlet Allocation (LDA), a topic analysis algorithm [2],
and recorded the topics the algorithm returned.

A topic analysis tool like LDA will try to find N indepen-
dent word distributions within the word distributions of all
the messages. Linear combinations of these N word distri-
butions are meant to represent and recreate the word distri-
butions of any of the original messages. These N word dis-
tributions effectively form topics: cross-cutting collections
of words relevant to one or more of our commit messages.
LDA extracts topics in an unsupervised manner; the algo-
rithm relies solely on the source data, word distributions of
messages, with no human intervention.

In topic analysis a single document, such as a commit
message, can be related to multiple topics. Representing
documents as a mixture of topics maps well to source code
repository commits, which often have more than one pur-
pose [13]. A topic, in this paper, represents both a word
distribution and a group of commit log comments that are
related to each other by their content. In this paper a topic
is a set of tokens extracted from commit messages found
within a project’s source control system (SCS).

We applied Blei’s LDA implementation [2] against the
word distributions of these commits, and generated lists of
topics per period. We set the number of topics to generate
to 20, because past experimentation showed that fewer top-
ics might aggregate multiple unique topics while any more
topics seemed to dilute the results and create indistinct top-
ics [13].2.2 Generating word lists

Topics are word distributions, lists of words ranked by
frequency, that are burdensome to interpret and hard to
distinguish and understand. While the topic models them-
selves are generated automatically, how to interpret these
topics is less clear. For example, in Baldi et al. [1], top-
ics are named manually: human experts read the highest-
frequency members of a topic and assign a label accordingly.
Given the word list “listener change remove add fire”, Baldi
et al. would assign the label event-handling. The labels are
reasonable enough, but still require an expert in the field
to determine them. We sought to automate the process of
naming the topics.

Accordingly, we tried to associate each topic with a label
from a list of keywords and related terms. We intersected

the words of the topics and the words of our word-lists. We
‘named’ a topic if any of its words matched any of the word-
list’s words. A topic could match more than one keyword.
We used several different sets of word-lists for comparison,
which we refer to as exp1, exp2, exp3 in the text which fol-
lows.

Our first word-list set, exp1, was generated using the on-
tology described in Kayed et al. [15]. That paper constructs
an ontology for software quality measurement using eighty
source documents, including research papers and interna-
tional standards. The labels we used:

integrity, security, interoperability, testability, maintain-
ability, traceability, accuracy, modifiability, understand-
ability, availability, modularity, usability, correctness, per-
formance, verifiability, efficiency, portability, flexibility,
reliability.

Our second word list set, exp2, relied on the ISO quality
model, ISO9126 [14]. ISO9126 describes six high-level non-
functional requirements (listed in Table 1). There is some
debate about the significance and importance of the terms in
this model. However, ISO9126 is “an international standard
and thus provides an internationally accepted terminology
for software quality [3, p. 58],” that is sufficient for the pur-
poses of this research. We use these qualities later on as
classes in supervised labelling. The terms extracted from
ISO9126 may not capture all words associated with the la-
bels. For example, the term“redundancy” is one most would
agree is relevant to discussion of reliability, but is not in the
standard. We therefore took the words from the taxonomy
and expanded them.

To construct these expanded word lists, we used Word-
Net [9], an English-language “lexical database” that con-
tains semantic relations between words, including common
related forms (similar to word stemming), meronymy and
synonymy. We then added Boehm’s 1976 software quality
model [4], and classified his eleven ‘ilities’ into their respec-
tive ISO9126 qualities. We did the same for the quality
model produced by McCall et al. [23]. Finally, we analyzed
two mailing lists from another software project to expand
our set with domain-specific terms. For example, we add the
term“performance”to the synonyms for efficiency, since this
term occurs in most mail messages that discuss efficiency.

For the third set of word-lists, exp3, we extended the word-
lists from exp2 using unfiltered WordNet similarity matches.
Similarity in WordNet means siblings in a hypernym tree.
We do not include these words here for space considera-
tions (but see the Appendix for our data repository). It
is not clear the words associated with our labels are specific
enough. For example, the label maintainability is associated
with words ease and ownership.
Creating a validation corpus — For MySQL 3.23 and
MaxDB 7.500, we manually annotated each extracted topic
in each period with the same NFR labels as exp2 (software
qualities). We looked at each period’s topics, and assessed
what the data — consisting of the frequency-weighted word
lists and messages — suggested was the topic for that period.
We were able to pinpoint the appropriate label using aux-
iliary information as well, such as the actual revisions and
files that were related to the topic being annotated. For ex-
ample, for the MaxDB topic consisting of a message “exit()
only used in non NPTL LINUX Versions”, we tagged that
topic portability. We compared against this data-set, but we
also used the data-set for our supervised machine learning



Label Related terms

Maintainability testability changeability analyzability stability maintain maintainable modu-
larity modifiability understandability interdependent dependency encapsula-
tion decentralized modular

Functionality security compliance accuracy interoperability suitability functional practical-
ity functionality compliant exploit certificate secured “buffer overflow” policy
malicious trustworthy vulnerable vulnerability accurate secure vulnerability
correctness accuracy

Portability conformance adaptability replaceability installability portable movableness
movability portability specification migration standardized l10n localization
i18n internationalization documentation interoperability transferability

Efficiency “resource behaviour”“time behaviour” efficient efficiency performance profiled
optimize sluggish factor penalty slower faster slow fast optimization

Usability operability understandability learnability useable usable serviceable usefulness
utility useableness usableness serviceableness serviceability usability gui acces-
sibility menu configure convention standard feature focus ui mouse icons ugly
dialog guidelines click default human convention friendly user screen interface
flexibility

Reliability “fault tolerance” recoverability maturity reliable dependable responsibleness
responsibility reliableness reliability dependableness dependability resilience
integrity stability stable crash bug fails redundancy error failure

Table 1: NFRs and associated signifiers – exp2

Project Measure exp1 exp2 exp3

MaxDB 7.500 Named Topics 281 125 328
MaxDB 7.500 Unnamed Topics 219 375 172
MaxDB 7.500 Total Topics 500 500 500

MySQL 3.23 Named Topics 524 273 773
MySQL 3.23 Unnamed Topics 476 727 227
MySQL 3.23 Total Topics 1000 1000 1000

Table 2: Automatic topic labelling for MaxDB and
MySQL

based topic classification.2.3 Unsupervised labelling
Using our three word lists, we labeled our topics where

there was a match between a word in the list and the same
word in the topic. A named topic is a topic with a matching
label. There are roughly 20 times the number of topics as
there are periods per project. This is because we told LDA
to extract 20 topics per period. All experiments were run
on MaxDB 7.500 and MySQL 3.23 data. Table 2 shows how
many topics were labelled for MaxDB and MySQL.

For exp1, our best performing labels, those with the most
topics, were correctness (182 topics) and testability (121).
We did not get good results for usability or accuracy, which
were associated with fewer than ten topics. We also looked
for correlation between our labels: Excluding double matches
(self-correlation), our highest co-occurring terms were verifi-
ability with traceability, and testability with correctness (76
and 62 matches, respectively).

For exp2, there are more unnamed topics than exp1. Only
reliability produces a lot of matches, mostly with the word
‘error’. Co-occurrence results were poor. This suggests our
word lists were overly restrictive.

For exp3, we generally labelled more topics. As we men-

tioned, the word-lists are quite broad, so there are likely to
be false-positives (discussed below). We found a high of 265
topics for usability, with a low of 44 topics for maintainabil-
ity. Common co-occurrences were reliability with usability,
efficiency with reliability, and efficiency with usability (200,
190, and 150 topics in common, respectively).
Analysis of the unsupervised labelling – Based on the
labels, and our manual topic labelling, we compared the re-
sults of the unsupervised word matching approach. For each
quality we assessed whether unsupervised labels matched
the manual annotations. Figure 2 shows our results for
MaxDB and MySQL. Our performance is measured using
the Receiver Operating Characteristic area-under-curve value [8],
abbreviated ROC. ROC values provide a score, similar to
school letter-grades (A is 0.9, C is 0.6), reflecting how well a
particular learner performed for the given data. ROC maps
to the more familiar concepts of precision/sensitivity and
recall/specificity: it plots the true positive rate (sensitiv-
ity) versus the false positive rate (1 - specificity). A perfect
learner has a ROC value of 1.0, reflecting perfect recall and
precision. A ROC result of 0.5 would be equivalent to a
random learner (that is, issuing as many false positives as
true positives). The area under the ROC of a classifier is
equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly
chosen negative instance.

Based on these results we find that reliability and usability
worked well for MaxDB in exp2 and better in exp3. MySQL
had reasonable results within exp2 for reliability and effi-
ciency. MySQL’s results for efficiency did not improve in
exp3 but other qualities such as functionality did improve.
If a C grade performance has a ROC value of 0.6 then most
of these tests scored a grade of C or less, but our classifier
nonetheless performed substantially better than random.2.4 Supervised labelling

Supervised labelling requires expert analysis of the correct
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Figure 2: Performance, ROC values (range: 0-1), of unsupervised topic labelling for each NFR and per
word-list. This graph shows how well the unsupervised topic labelling matched our manual annotations.

class/label to assign to a topic. In our approach, we use the
top-level NFRs in the ISO 9126 standard [14] for our classes,
but other taxonomies are also applicable.

We used a suite of supervised classifiers, WEKA [11].
WEKA includes machine learning tools such as support vec-
tor machines and Bayes-nets. We also used the multi-labelling
add-on for WEKA, Mulan [30]. Traditional classifiers map
our topics to a single class, whereas Mulan allows for a mix-
ture of classes per topic, which maps to what we observed
while manually labelling topics.

To assess the performance of the supervised learners, we
did a 10-fold cross-validation [17], a common technique for
evaluating machine learners. The original data is partitioned
randomly into ten sub-samples. Each sample is used to test
against a training set composed of the nine other samples.
We have reported these results below.

Analysis of the supervised labelling – Because our
data-set was of word counts we expected Bayesian tech-
niques, often used in spam filtering, to perform well. We
tried other learners that WEKA [11] provides: rule learners,
decision tree learners, vector space learners, and support
vector machines. Figure 3 shows the performance of the
best performing learner per label. We considered the best
learner for a label to be the learner which had the highest
ROC value for that label.

Figure 3 shows that MaxDB and MySQL have quite dif-
ferent results, as the ROC values for reliability and func-
tionality seem swapped between projects. For both projects
Bayesian techniques did the best out of a wide variety of
machine learners tested. Our best learners, Discrimina-
tive Multinomial Naive Bayes, Naive Bayes and Multino-

mial Naive Bayes are all based on Bayes’s theorem and all
assume, naively, that the features are independent. The fea-
tures we used are word counts per message. One beneficial
aspect of this result is that it suggests we can have very fast
training and classifying since Naive Bayes can be calculated
in O(N) for N features.

The less-frequently occurring a label, the harder it is to
get accurate results, due to the high noise level. Never-
theless, these results are better than our previous word-list
results of exp2 and exp3, because the ROC values are suffi-
ciently higher in most cases (other than MaxDB reliability
and MySQL efficiency). The limitation of the approach we
took here is that we assume labels are independent; how-
ever, labels could be correlated with each other. The next
section (2.5) addresses the issue of a lack of independence
and correlation between labels. In the next section we will
evaluate how well these learners perform together.2.5 Applying multiple labels to topics

As noted in Section 2.1, each topic in our data-set can be
composed of zero, one, or more NFRs. For example, a com-
mit message might address reliability in the context of effi-
ciency, or make a maintainability improvement in the source
code that related to usability. However, traditional machine
learning techniques, such as Naive Bayes, can only map top-
ics to a single class. The Mulan [30] library encapsulates
several different multi-label machine learners which can label
elements with multiple labels. Mulan also includes methods
for determining the performance of such techniques.

Two perspectives to evaluate multi-label learners are with
micro or macro measurements (used in Figure 4). Macro
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Figure 3: ROC value for the best learner per label
for MaxDB and MySQL. Values range from 0–1.

measurements are aggregated at a class or label level (per
class) while micro measurements are at the element level
(per element). A macro-ROC measurement is the average
ROC over the ROC values for all labels, where a micro-ROC
is the average ROC over all examples that were classified.
For MaxDB, the macro-ROC values are undefined because
of poor performance of one of the labels.

Figure 4 presents the results of Mulan’s best multi-label
learners for our data. Calibrated Label Ranking (CLR)
is a learner that builds two layers, the first layer deter-
mines if an entity should be labelled, while the second layer
determines what labels should be assigned. The Hierar-
chy Of Multi-label classifiERs (HOMER) and Binary Rel-
evance (BR) act as a hierarchy of learners: BR is flat, while
HOMER tries to build a deeper hierarchy to build a more ac-
curate learner [30]. These classifiers performed better than
other multi-label classifiers as they have the best micro and
macro ROC scores. The multi-label and single-label learners
had similar performance: for MySQL, BR and NaiveBayes
had similar macro-ROC scores of 0.74.2.6 Annotation observations

We found many topics that were not non-functional re-
quirements (NFRs) but were often related to them. For
instance, concurrency was mentioned often in the commit
logs and was related to correctness and reliability, likely be-
cause concurrent code is prone to bugs such as race condi-
tions. Configuration management and source control related
changes appeared often; these kinds of changes are slightly
related to maintainability. A non-functional change that
was not quality-related was licensing and copyright; many
changes were simply to do with updating copyrights or en-
suring copyright or license headers were applied to files. In
these cases we assigned the None class.

We noticed that occasionally the names of modules would
conflict with words related to other non-functional require-
ments. For instance, optimizers are very common modules in
database systems: both MySQL and MaxDB have optimizer
modules. In MySQL the optimizer is mentioned but often
the change addresses correctness or another quality. Despite
this difference, the name of the module could fool our learn-
ers into believing the change was always about efficiency.

In these cases the advantages of tailoring topic names to
specific project terminologies are more clear. Project spe-
cific word-lists would avoid automated mistakes due to the
names of entities and modules of a software project.2.7 Summary of techniques

While an unsupervised technique such as LDA is appeal-
ing in its lack of human intervention, and thus lower effort,
supervised learners have the advantage of domain knowl-
edge, which typically means improved results. Our manual
annotations were fairly quick to do, taking only a few min-
utes per 30 day period.

Very rarely did exp2 and exp3 (naive word matching) ever
perform as well as the supervised machine learners. For
MaxDB, reliability was slightly better detected using the
static word list of exp2. In general, the machine learners
and exp3 did better than exp2 for both MaxDB and MySQL.
For both MySQL and MaxDB usability was better served by
exp2. Usability was a very infrequent label, however, which
made it difficult to detect in any case.

We found that the multi-label learners of BR, CLR and
HOMER did not do as well for Macro-ROC as NaiveBayes
and other naive Bayes derived learners. This suggests that
by combining together multiple NaiveBayes learners we could
probably label sets of topics effectively, but it would require
a separate NaiveBayes learner per label.3. UNDERSTANDING SOFTWARE MAIN-TENANCE ACTIVITIES

Since our ROC values produced acceptable results, we now
turn to applying those techniques to understand software
maintenance activities. We evaluated two research ques-
tions:

1. Do label frequencies change over time? Is a certain
quality of more interest at one point in the life-cycle
than some other?

2. Do the different projects differ in their relative topic
interest? Is a particular quality more important to one
project than the other projects?3.1 Timeline analysis

Figures 5a and 5b show the temporal patterns of label
frequencies. There are two measures represented. One, the
relative frequency, shown in the grey boxes, represents the
number of labels with that NFR in that period, relative to
the maximum number of topics assigned to that NFR. The
second, absolute frequency, compares the number of topics
labelled with that NFR per period relative to the maximum
number of labelled topics overall, for that project. The top-
most row in each diagram is reserved for historical events of
note. We refer to these occurrences in the discussion which
follows.

In Figure 5a, we see that the NFRs functionality, porta-
bility and maintainability contain more labeled topics, since
these NFRs have been more intensely shaded. There are
more None labels in MaxDB because a number of topics were
to do with code cleanup or automated checking using tools
like sutcheck, a tool-specific to the development process at
MaxDB.

As discussed earlier, the top row in each figure shows key
events for each project. Labelled topic extraction can pick
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Figure 4: MySQL and MaxDB macro (grey) and micro (black) ROC results per multi-label learner. Possible
values range from 0–1.

out the underlying NFR activity behind these events. For
example, both projects show a high number of NFRs recog-
nized at the first period of analysis. This is due to our win-
dow choice: we deliberately targeted our analysis to when
MySQL 3.23 was first announced and when MaxDB 7.500
was first announced. For MaxDB, version 7.5.00 was re-
leased in December of 2003. From analyzing the mailing
list for external validation, we know that release 7.5.00.23
saw the development of PHP interfaces, possibly accounting
for the simultaneous increase in the portability NFR at the
same time. The gap in MaxDB (Figure 5b) is due to a shift
in development focus (from February 2005 to Jun 2005) to
MaxDB 7.6, which is released in June 2005.

For MySQL (Figure 5a), we similarly validated our NFR
patterns with external mailing list data. This release of
MySQL was the first to be licenced under the GPL. Version
3.23.31 (January, 2001) was the production release (non-
beta), and we see a flurry of topics labelled with functionality
and maintainability. After this point, this version enters the
maintenance phase of its life-cycle. In May 2001, there is
an increase in the number of topics labelled with portability.
This might be related to release 3.23.38, which focused on
Windows compatibility. Similarly, in August, 2002, both
functionality and portability are frequent, and mailing list
data suggests this is related to the release of version 3.23.52,
a general bug fix with a focus on security (a component of
the functionality NFR in the ISO9126 model). After this
point, efforts shift to the newer releases (4.0, 4.1, 5.0).

This analysis allows to address the questions raised in Sec-
tion 2.4:

Do label frequencies change over time? – In both
projects the frequencies generally decreased with age. How-
ever, there are variations within our NFR labels. In MySQL,
usability and efficiency do not appear very often in topics. A
proportionately smaller number of commits addressed these
NFRs. As discussed in the previous section, certain peaks
in topic numbers coincide with a particular emphasis from
the development team on issues such as new releases or bug
fixes. This suggests that maintenance activity is not nec-
essarily strictly decreasing with time, but rather episodic
and responsive to outside stimuli. In MaxDB, we can ob-

serve that Maintainability topics became more prevalent as
MaxDB matures. This is likely due to our analysis time-
frame for MaxDB being shorter than the timeframe for the
MySQL product.

Do the different projects differ in their relative
topic interest? – Yes. MySQL 3.23 had proportionally
more topics labelled functionality, while MaxDB had pro-
portionally more efficiency related topics. MaxDB was a
very mature release ‘donated’ to the open-source commu-
nity. MySQL, on the other hand, was in its relative infancy.
Security problems were more common (security is a com-
ponent of ‘functionality’ in the ISO 9126 model). In both
cases portability was a constant maintenance concern and
was prevalent throughout the entire lifetime of the projects.4. DISCUSSION

The unsupervised labelling had difficulty distinguishing
between common labels and infrequent labels. The learners
would occasionally mislabel a topic deserving of an infre-
quent label with a more common label. The word-lists for
correctness tended to be too lengthy, non-specific and broad,
especially if WordNet words were used, as correctness is a
loosely defined concept in common parlance.

With ROC values ranging from 0.6 to 0.8 we can see there
is promise in these methods. exp2 and exp3 both indicate
that static information can be used to help label topics with-
out any training whatsoever. MySQL and MaxDB’s ma-
chine learners made some decisions based off a few shared
words: bug, code, compiler, database, HP UX, delete, memory,

missing, problems, removed, add, added, changed, problem,

and test. Adding these words to the word-lists of exp2 and
exp3 could improve performance while ensuring they were
only domain specific.

If the techniques used in exp2 and exp3 were combined
with the supervised techniques we could reduce the training
effort by boosting training sets with topics classified with
the unsupervised techniques. Both Naive Bayesian learners
and the word-list approaches were computationally efficient.
These results are promising because they indicate that these
techniques are accurate enough to be useful while still main-
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relative to a particular NFR. Dashed vertical lines relate a project milestone (*Key Event*) to our topic
windows.

taining acceptable run-time performance.4.1 Threats to validity
Our work faced multiple threats to validity and we at-

tempted to address many of them.
Construct validity – we used only commit messages rather

than mail or bug tracker messages. Conversely, construct
validity was addressed in our validation as we used the files,
topics and revisions to annotate the commit messages. We
used mailing-lists to verify the purpose behind some events.
We also chose our taxonomy and the data to study. We did
not show these results to the stakeholders.

Internal validity – includes inter-rater reliability and our
lack of rival explanation building. We improved internal
validity by trying to correlate and explain the behaviours
observed in the analysis with the historical records of the
projects. We did not attempt to match our results to any
particular model or theory.

External validity was addressed by our use of multiple case

studies, but there are still issues. Our data originated from
OSS database projects and thus might not be applicable to
commercially developed software. Furthermore, our analy-
sis techniques rely on a project’s use of meaningful commit
messages.

Reliability was addressed by each annotator following the
same protocol and using the same annotations. Unfortu-
nately only two annotators were used; their annotations
could be biased as we did not analyze for inter-rater reli-
ability.5. RELATEDWORK

The idea of extracting higher-level ‘concerns’, also known
as ‘concepts’, ‘aspects’ or ‘requirements’, has been approached
from documentation-based and repository-based perspectives.

Cleland-Huang and her colleagues published work on min-
ing requirements documents for non-functional requirements
(NFR) (quality requirements) [6]. Their approach was sim-
ilar to ours, as they mined keywords from their own NFR



catalogues [5]. They managed a recall of 80% with precision
of 57% for the Security NFR, but could not find a reliable
source of keywords for other NFRs. Instead, they developed
a supervised classifier by using human experts to identify
an NFR training set. Our worked differed because we had
a more comprehensive set of terms based on the taxonomy
we chose. We also wanted a common taxonomy that al-
lows us to make cross-project comparison; this was not one
of their objectives. The objective of Cleland-Huang’s study
was to identify new NFRs for system development, yet our
objective was to recover those latent NFRs from commit-
log messages of the project. Another difference was that
our data was far less structured than the requirements doc-
uments used in their study.

In the same vein, Mockus and Votta [26] studied a large-
scale industrial change-tracking system. They also leveraged
WordNet, but only for word roots as they felt the synonyms
would be non-specific and cause errors. Mockus et al. had
access to system developers, with whom they could validate
their labels. Since we try to bridge different organizations,
these kind of interviews are infeasible (particularly in the
distributed world of open-source software).

The other approach is to extract concerns from software
repositories. Marcus et al. [20] describe their use of Latent
Semantic Indexing to identify commonly occurring concerns
for software maintenance. ConcernLines [28] shows tag oc-
currence using colour intensity. They mined developer cre-
ated tags in order to analyze the evolution of a single prod-
uct. The presence of a well-maintained set of tags is obvi-
ously essential to the success of this technique.

Mens et al. [25] conducted an empirical study of Eclipse, a
popular Java IDE, to verify the claims of Lehman [19]. This
paper examines the notions of quality in terms of a consistent
ontology, as Mens et al. call for in their conclusions.

Mei et al. [24] use context information to automatically
name topics. They describe probabilistic labelling, using the
frequency distribution of words in a topic to create a mean-
ingful phrase. They do not use external domain-specific in-
formation as we do. In [7], we describe our earlier project,
similar to this, to identify change in quality requirements
in GNOME software projects; our approach is solely text-
matching, however, and does not leverage machine learning
strategies.

Massey [21] and Scacchi [27] looked at the topic of require-
ments in open-source software. Their work discusses the
source of the requirements and how they are used in the de-
velopment process. German [10] looked at GNOME specif-
ically, and listed several sources for requirements: leader
interest, mimicry, brainstorming, and prototypes.

Hindle et al. [12] examined release patterns in OSS. They
showed that there is a difference between projects regard-
ing maintenance techniques. This supports our result that
software qualities are not discussed with the same frequency
across projects.6. CONCLUSIONS AND FUTUREWORK

In this paper we presented a cross-project data mining
technique, labelled topic extraction. The technique leveraged
a non-functional requirements (NFRs) taxonomy to mine
and label latent software development topics. Our contribu-
tions include:

• We provided an unsupervised method of topic labelling

(word-lists);

• We demonstrated a supervised method of labelling top-
ics by a single NFRs (machine learning);

• We demonstrated a supervised method of labelling top-
ics by multiple NFRs (multi-label machine learning);

• We provided a method of cross-project analysis via
topic labelling;

• We demonstrated a method of visualizing these topics
across time, which we used to analyze maintenance
activities.

We validated our topic labelling techniques using multi-
ple experiments. We first conducted unsupervised labelling
using word-lists. Our next approach was supervised, using
single-label and multi-label learners. Both kinds of learn-
ers performed well with area under the ROC curve values
between 0.6 and 0.8.

These labelling techniques allowed us to investigate the
occurrence of non-functional requirements in our projects.
We showed that NFRs are often trending topics; that NFRs
are quite common in developer topics; and that there are
efficient methods of automating topic labelling. Although
it may seem like common knowledge that maintenance is
a concern as a project matures, our technique was able to
show this independently.

Previous topic analysis research produced topics that needed
to be manually labelled, but topics without labels are diffi-
cult to interpret. To improve this, we leveraged software en-
gineering standards to produce a method of domain specific
topic labelling. Since the word-list technique is not project
specific, it can be used to compare multiple projects. We
demonstrated multiple supervised and unsupervised meth-
ods of topic labelling, including multi-label learners. We
provided a case study and visualization of NFR related top-
ics in MaxDB 7.500 and MySQL 3.23. During the case study
we manually labelled hundreds of topics by hand and then
used these annotations to validate the positive performance
of topic labelling techniques. The implication of our pa-
per is that topics with labels are more useful for analyzing
software development activities than are unlabelled topics.
To furnish stakeholders with labelled topics, our technique
provides many methods of automatic topic labelling.

There are several avenues of further investigation. More
external validation would be useful. Although we validated
our comparisons using a mailing list for each project, inter-
views with developers would provide more detail. We also
think multi-label learning techniques, although in their in-
fancy, are crucial in understanding cross-cutting concerns
such as NFRs. We want to leverage different kinds of ar-
tifacts to discover threads of NFR-related discussions that
occur between multiple kinds of artifacts. Finally, we would
like to extend this analysis to other domains, to see what
patterns might occur in, for example, a consumer-facing soft-
ware product.APPENDIX
Our data and scripts are available at:
http://softwareprocess.es/nomen/

http://softwareprocess.es/nomen/
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