
Software Process Recovery using
Recovered Unified Process Views

Abram Hindle, Michael W. Godfrey and Richard C. Holt
David Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

{ahindle,migod,holt}@swag.uwaterloo.ca

Abstract—The development process for a given software system
is a combination of an idealized, prescribed model and a messy
set of ad hoc practices. To some degree, process compliance can
be enforced by supporting tools that require various steps be
followed in order; however, this approach is often perceived as
heavyweight and inflexible by developers, who generally prefer
that tools support their desired work habits rather than limit
their choices. An alternative approach to monitoring process
compliance is to instrument the various tools and repositories
that developers use — such as source control systems, bug-
trackers, and mailing-list archives — and to build models of the
de facto development process through observation, analysis, and
inference. In this paper, we present a technique for recovering
a project’s software development processes from a variety of
existing artifacts. We first apply unsupervised and supervised
techniques — including word-bags, topic analysis, summary
statistics, and Bayesian classifiers — to annotate software ar-
tifacts by related topics, maintenance types, and non-functional
requirements. We map the analysis results onto a time-line based
view of the Unified Process development model, which we call
Recovered Unified Process Views. We demonstrate our approach
for extracting these process views on two case studies: FreeBSD
and SQLite.

I. INTRODUCTION

A custom more honour’d in the breach than the
observance.

– Hamlet, I:iv
In principle, software development processes offer a means

to ensure reliable and predictable results when creating and
modifying software systems. While there are a number of well
known processes and process frameworks — and the research
literature on this topic is extensive [1], [2], [3] — companies
commonly follow a “home-brew” development process that
mixes broad and well known process practices with narrower
and more specialized ones that are dictated by the particular
demands of their business model.

Anecdotal evidence suggests that even these customized
process models are often not followed very closely in practice.
Consequently, if a manager wants to carefully track what
actual process steps her developers have been following, she
must either interview the developers or analyze the observable
results of their efforts.

The advantages of interviewing are numerous: one can
ask both general, wide-ranging questions as well as directed
questions about specific areas of interest; one can adapt the

line of enquiry as new information is revealed; and the replies
are usually rich in detail, often providing additional context
to the interviewer that she may have been unaware of. How-
ever, interviewing also has many disadvantages: it is labour
intensive and time consuming for both the interviewer and
interviewee; it is hard to automatically extract and organize
the large amounts of details that typically result; developers
may view the interview as adversarial, and may be unwilling to
cooperate truthfully; and developers may have a mistaken view
of what process steps they actually followed. Additionally,
stakeholders other than team managers may wish to be able
to examine the development process of a software system.
For example, new team members might desire a way to learn
about a project and its development culture without bothering
their colleagues; also, regulating agencies and potential cor-
porate partners may wish to be able to scrutinize development
practices as part of a due diligence effort. In these cases,
the stakeholders may have limited or no direct access to the
developers in question, and semi-automated approaches may
be the only practical option.

The advantages of process recovery through semi-automated
artifact analysis include that it is largely automated, it is
relatively easy to gather the needed data — assuming that it is
available in the first place — and that, apart from validation, it
does not require access to the developers. However, there are
also disadvantages: it can be hard to meaningfully link data
from disparate sources; there are often large semantic gaps in
the available knowledge; and even if results of one study seem
promising, it is unclear how generalizable they may be.

This paper explores the extent to which semi-automatic
analysis of development artifacts can be used to extract the
processes used by the developers. Our goal is to be able to map
artifacts to process-oriented activity models such as the UP
time-line diagram shown in Figure 1. The artifacts of interest
we consider in this paper include changes to source code and
documentation, bug tracker reports and events, and mailing-list
messages. We analyze these artifacts to extract indicators of
use and behaviour. We also perform signal similarity analysis
to determine when behaviour within a repository significantly
changes. And finally we perform a topic analysis of the
artifacts; that is, we attempt to characterize the intent or pur-
pose of the artifacts by comparing the natural language used
within them against a benchmark glossary of general software



engineering concepts, such as non-functional requirements.
By analysis and presentation of the underlying focus, topics,
and behaviour we provide a historically accurate view of the
software development processes, as illustrated in Figure 3.

Our contributions include:
• a proposal of a methodology for process recovery,
• a proposal of a high-level process visualization called the

Recovered Unified Process Views (Figure 3), that is based
on UP time-lines (Figure 1), and

• a case study of FreeBSD and SQLite using these tech-
niques.

A. Motivation

Figure 1 depicts the time-line of development activities of an
idealized project through the lens of the Unified Process (UP).
We call this kind of model an UP diagram; it is a well known
and elegant visualization of the multi-dimensional nature of
iterative software development. In this diagram, we can see a
mixture of simultaneous behaviours and workflows that span
different development disciplines. Since a diagram like this is
effective at communicating a prescribed process, we conjecture
that it will be useful to describe the actual underlying and
observed process. In our approach to semi-automatic recovery
of a project’s process, we create diagrams that are similar to
these UP diagrams.

A persistent problem with this kind of approach is that
the activities within the various UP disciplines may not be
easily observable by simply monitoring available development
artifacts. For example, project requirements may be managed
by a group external to the development team, and key but
undocumented design decisions may be made informally be-
tween developers in face-to-face meetings. These holes in
the record present a challenge to meaningful analysis: if we
cannot observe all activities of the ongoing development effort,
how reliable are our results likely to be, and what can we
do with them? One thing we can do is to use the events
that we can observe to try to predict when undetected events
might have occurred. For example, discussions about APIs
and the modification of an API might be a result of the design
and analysis discipline. Even then there are disciplines within
the UP that may not have directly or indirectly observable
events. With our approach we model what we can observe
and infer, including activities that the process designers may
not have considered explicitly. For example, we can focus
quality assurance (QA) and the non-functional requirements
related to those qualities, such as reliability or portability.
These concerns are not an explicit part of the UP, yet may
be of interest to stakeholders.

II. PREVIOUS WORK

Our work leverages research primarily from the mining soft-
ware repositories (MSR) community [5], which often focuses
its mining efforts on version control systems, bug-trackers, and
mailing-lists.

The focus of our work concerns software development
processes. Unfortunately, the term “process” is overloaded

in this research field, so we must take care to distinguish
development processes from stochastic processes and business
processes.1 Stochastic processes and time-series have been
used to explore the laws of software evolution [6], [7]. For
example, Herraiz et al. [8] studied these processes in depth by
mining many software projects and studying their software
metrics; they found that metrics used to measure growth
usually followed Pareto distributions.

Business processes are closer to software development
processes because they concern sequences of related tasks,
activities, and methods that are combined to achieve some
business goal, such as the handling of product returns at
a retail store. Van der Aalst et al. [9] describes business
process mining as the extraction of business processes at run-
time from actual business activities. Van der Aalst deferred
to Cook and Wolf [10] when it came to applying process
mining on software projects. Software development is a kind
of information work, like research, and thus is not easy to
model so formally.

Software development processes are meant to ensure quality
and provide a reliable framework for the development of
software projects. Some processes address a specific part of
software development, such as maintenance [11]. The software
development life-cycle (SDLC) [3] describes how software
is often built, maintained, supported, and managed. Most
software development processes relate to some if not all of the
various aspects of the SDLC. Software development processes
are often posed as a methodology related to development,
such as the waterfall model [1] and the spiral model [2].
More recent software development processes include the
Unified Process [4], (see Figure 1 for a diagram of the
Unified Process disciplines over time), Extreme Programming
(XP) [12], SCRUM [13], and many methodologies related to
Agile development [14]. Most of the recent processes focus on
incremental development and smaller iterations, so that design
and requirements can be updated as they become clearer over
time. Software development processes and life cycles seek
to manage the creation and maintenance of software. Meta-
processes, such as the Capability Maturity Model (CMM) [15],
attempt to model the processes used to create software, much
like ISO standard 9000 [16] attempts to model and document
how processes are executed, tracked, modelled and docu-
mented. The CMM concerns modelling, tracking, and ranking
software process adherence.

Our work on non-functional requirements [17] that we
extract from software artifacts is based on Ernst et al.’s [18]
work and is also related to Cleland-Huang et al.’s [19] work
on mining requirements documents for non-functional re-
quirements (NFR). Cleland-Huang used keywords mined from
NFR catalogues [20]. With respect to the MSR community
Mockus and Votta [21] leveraged WordNet and word-bag
approaches to discover commits that dealt with security topics.
Treude et al. [22] produced ConcernLines, a visualization and

1In this paper, unless otherwise indicated the reader should assume that the
term “process” refers to a software development process.



Fig. 1. Unified Process diagram: this is often used to explain the division of labour within the the Unified Process [4]

methodology that mines manually created tags from software
in order to present views of the software history and processes.

All of this work is relevant to our attempts to produce
Recovered Unified Process Views (RUPV) where we need to
track changes, topics of changes, and discussions over time.

III. METHODOLOGY

Our purpose is to produce reports on activity within repos-
itories and to produce diagrams like the UP diagram. Our
recovered version of a UP diagram is called Recovered Unified
Process Views (RUPV). RUPVs are views in that there are
many possible perspectives from which to analyze and view
the software development history and processes of a software
project.

Our overall methodology can be broken down into seven
steps as illustrated in Figure 2: acquisition, extraction, unsuper-
vised analysis, annotation, supervised analysis, signal mapping
and reporting. Our methodology flows from acquisition and
extraction to supervised analysis and feeds back into unsuper-
vised analysis or transitions into signal mapping and reporting.

Acquisition is the discovering and mirroring of relevant
repositories of data and software artifacts. Often these repos-
itories need to be mirrored in order to avoid affecting perfor-
mance of the development environment or to ensure that the
repositories are archived.

Extraction extracts data from the artifacts collected during
the acquisition step. The type of data (and its meta-data)
depends on the repository being extracted. In Section III-B
we will discuss each kind of repository that we extracted for
this paper, but the most important information we are looking
for is creation and change events (revisions) of software
artifacts. We can get this kind of information from source
control, mailing-lists and bug trackers. Depending on the kind
of analysis used, we might need partial or entire artifacts:
source code analysis might require the full source code but
natural language processing-style (NLP-style) analysis might
only need word counts of textual data.

Unsupervised analysis is the analysis of the extracted data
and events, generally without the help of the end user, without

annotation. Automatic methods are used in this step. Unsuper-
vised analysis ranges from summary statistics and modelling,
to NLP-like analysis and word-bag analysis, to topic analysis.

Annotation is used to enhance the unsupervised analysis
by clarifying information such as classification decisions,
modifying stop words, or modifying word-bag dictionaries.

Supervised analysis includes methods that require some
form of human intervention such as tuning training sets
or labelling commits. We use supervised analysis to label
topics and classify revisions by their maintenance categories.
Supervised techniques often employ machine learning based
classifiers that require annotated training sets.

Signal Mapping and reporting takes previous analyses
and presents them as consumable Recovered Unified Process
Views. Signals are combined to produce process related mea-
sures that summarize the underlying observable processes.

The rest of this section will detail each of these steps and
demonstrate how they fit together.

A. Source Acquisition

We are interested in development events that we can extract
from a wide variety of data-sources, including source code
changes and bug tickets. The UP diagram illustrates how
a software process might consist of parallel efforts, such
as requirements and business modelling, that are related to
multiple sources of data and multiple kinds of artifacts.

Depending on the project, such information might not be
available. Even when artifacts, such as requirements docu-
ments, are unavailable, there still may be data that can act as its
proxy. Sources are particularly important when they relate time
to creation events or change events. A source can be useful
even if it is difficult to analyze or assess, the simple count
of an event occurring can suggest that some effort was taken
with respect to a certain kind of task. These counts of events
of a task could be further aggregated into larger disciplines
like those Figure 1.

A series of events can be abstracted as a signal. Signals
can be extracted from meetings, design document revisions,



Fig. 2. Methodology flow chart, describes how artifacts are extracted, analyzed, annotated and reported about.

revisions to artifacts, requirements revisions, releases, mile-
stones, deliverables, story cards and story card completions,
even diagram revisions. Our two case studies in this paper rely
on public data, so we are limited to available data sources such
as version control systems, mailing-lists, and bug-trackers.

Ideally during acquisition we could also mine developer
documents for information about mirroring or cloning the
repositories of a project, such as mailing-list archives or
version control systems. Tools like CVSup, cvssuck, svnadmin
and Git can be used to mirror version control repositories.

The acquisition step is meant to ensure that these data
sources are acquirable, thus it is useful to automate this process
to allow for analysis. Once acquisition of sources is complete
the data must be abstracted by the extraction step before they
can be analyzed further.

B. Extraction
The extraction step attempts to abstract the data from those

sources collected during the acquisition step. In this step we
extract events, their data, and information about when they
occur. This means we have to be able to convert the raw data
into a format that is usable by our various tools. This extracted
data will need further analysis in order to produce usable
signals. Extractors that could be useful include CREX [23],
CVSAnalY [24], SoftChange [25], MLStats [24], as well as
our own extraction tools. We have many kinds of repositories
that we can extract various kinds of development artifacts
from:

1) Version Control Repositories: For CVS data we use tools
such as CVSup to mirror the data, and we use SoftChange and
CVSanalY to extract it into a database format that allows us
to easily query authors, files, revisions, and commit messages.
In the case of CVS, commits are not recorded and need to
be rebuilt from file revisions. To extract FOSSIL repositories,
used by SQLite, we wrote our own extractor.

2) Mailing-lists: While tools for analyzing mailing-lists
such as MLStats exist, we wrote our own mailing-list analysis
tool called MBoxTractor2. The data we extract from mailing-
lists includes: authors, direct receivers, people mentioned
within the body of the message, message content, and the
content without quotes. Email address normalization should
also be employed to help consolidate identities.

A particular project might have multiple mailing-lists ded-
icated to different issues such as user support, or developer
discussions. These mailing-lists can be combined or separated
per project. A developer mailing-list might be more relevant
to development while traffic on a user mailing-list might be
more relevant to end-users of the software.

3) Bug trackers: The bug tracker is a convenient source of
process related information because interaction with the bug
tracker is relatively formal, well recorded and annotated. Some
bug trackers such as gnats or FOSSIL often are missing data of
interest such as identity of the bug reporter or dates of certain
events. Bug trackers are especially valuable because their bug
identifiers are referenced in other repositories like the version
control system. For example, the bug identifiers assigned to
a ticket or a bug are often referenced on mailing-lists and in
repository commit messages.

Bug trackers also may serve as a source of requirements
data. For example, some bug reports are marked as feature
requests and are sometimes used to discuss and flesh out re-
quirements. Bug reports are often rich with many timestamped
events. We used MBoxTractor, our own bug extractor, on the
reported bugs of FreeBSD and SQLite.

4) Traceability Links: Traceability links are meta-artifacts,
that is they are references between artifacts. An example
traceability link would be a bug ticket number embedded

2Bug and email and FOSSIL extractor: http://softwareprocess.es/
MBoxTractor/



in a commit log message. Traceability links highlight cross-
repository aspects of the development process as information
flows between repositories.

5) People: People are the ultimate traceable artifacts within
a repository as they are creators of artifacts and changes. They
are referenced by artifacts across repositories as they show
up in most of the repository meta-data, in the source code
copyright statements, in comments, and mentions in mailing-
lists. If a person interacts with multiple repositories it could
indicate what kind of role they play in a project. For example,
someone who participates on a user mailing-list may be only
a user. If they are referenced within the version control system
they might be a developer or they might have contributed a
patch.

Unfortunately people are not generally represented as en-
tities within a repository so they need to be identified. Even
once identified many contributors use more than one email so
their identities must be consolidated.

These repositories and entities discussed in this section will
be used as input for a more thorough analysis in the next step:
unsupervised analysis.

C. Unsupervised Analysis

The Unsupervised analysis step occurs after extraction and
is done automatically without the user’s help. Unsupervised
analysis often consists of partitioning data, decision making,
and classification. This goes beyond extracting entities. The
following subsections deal with the various kinds of supervised
analysis we used in this paper.

1) STBD revisions: In order to break revisions down by
their purpose, we track four main file-type revisions, which
we refer to as STBD [26]: Source code changes, Test code
changes, Build system changes, and Documentation changes.
These kinds of revisions are relatively simple to track and
extract with reasonable accuracy. To classify files into any
of the four types we compare the filename against sets of
regular expressions associated with each STBD type. STBD
partitioning is useful as it allows us to break down a stream
of revision events into semantically distinct streams.

2) Word-bags: Word-bag analysis is the matching of dic-
tionaries of related terms to lexical tokens extracted from
sources of natural language text. An example of a word-
bag is the requirements word-bag which includes words such
as requirements, specification, feature, and use case. If a
document, such as a change, uses one of these words it might
be labelled as a document related to requirements.

3) Topic Analysis: Topic analysis [27] tries to find inde-
pendent development topics in commit log comments. Topic
analysis utilizes tools such as latent Dirichlet allocation (LDA)
or latent semantic indexing (LSI) to automatically find de-
velopment topics. The topics produced are much like word-
bags, but these are automatically extracted from the commit
log messages and often represent development issues, such as
bug fixing, that are addressed during development.

Unsupervised analysis can be enhanced by annotation of
word-bags and stop words. The next step, annotation, can

employ unsupervised analysis to create training sets for su-
pervised analysis.

D. Annotation

The annotation step occurs after the unsupervised analysis
step and serves to enhance the results of the unsupervised
analysis. As well annotation serves as a method to prepare
training sets for supervised learners.

Stop words, such as “the” and “with”, are used to eliminate
common words that obscure automatic results. Sometimes
common words will dominate results and it might be necessary
to remove them from the data in order to enhance the results. In
the annotation step one should investigate the topics generated
by topic analysis and remove stop words that are not useful in
distinguishing topics from each other. For instance if a version
control system was automatically updated by another service,
such as a vendor’s version control system, the words used in
the automatic update might show up in most of the topics. The
removal of these words might enable more meaningful topics
to be extracted.

The lexicon of a project is often unique to itself [28].
Word-Bags should be tuned appropriately. For instance, if the
word optimize or optimizer refers to a module rather than
the performance of a project it might be best to avoid false
classifications by removing those terms from the performance
word-bags [18], [17].

Supervised analysis such as topic labelling or maintenance
classification needs training sets. During the annotation step
training sets can be fashioned out of previous unsupervised
analyses like word-bag analysis. These training sets will be
fed into the next step, supervised analysis.

E. Supervised analysis

Supervised analysis requires some human intervention, pro-
vided during the annotation step. These supervised methods
can often produce better, more project relevant results than
unsupervised methods. Two kinds of supervised analysis we
use are topic labelling and maintenance classification.

1) Topics Labelled by NFRs: Topic labelling [17] attempts
to label topics extracted during the unsupervised analysis step
with non-functional requirements (NFRs) such as: efficiency,
functionality, reliability, usability, maintainability and portabil-
ity. These topics are labelled based upon the words they are
composed of. We use a Bayesian classifier in order to label
topics by their NFRs, thus a training set of labelled topics
is needed to train the learner. By labelling topics by NFRs
we can attempt to characterize some of the quality-oriented
processes being followed within a software project.

2) Maintenance Classification: Maintenance classification
tries to classify commits to the version control system by
their maintenance categories based on their commit log mes-
sages [29]. The purpose is to characterize the maintenance
based aspects of the underlying development process.

The maintenance categories that we use are based upon
an extended version of Swanson’s maintenance categories:
corrective changes that fix bugs, adaptive changes dealing



with the run-time environment and portability, perfective
changes meant to improve maintainability or efficiency, feature
additions, and non-source-code changes such as copyright
statements. This is all done with a machine learning based
classifier that requires a training set of commits labelled by
their maintenance categories.

After our supervised analysis is complete we can either
feedback into unsupervised analysis and annotation again or
we can move on to aggregating and reporting our results.

F. Signals and reports

After completing the unsupervised analysis, the annotation
and supervised analysis, we are ready to report the results.
Results can be summarized textually, but our focus is to
produce Recovered Unified Process Views (RUPVs) that are
similar to the UP diagram in Figure 1.

For each set of events, such as commits, bug report mes-
sages, and mailing-list messages, we have signals of their
events over time. We may choose to partition these signals
by author interaction, by file type, or by their description.

For each set of events — commits, bug reports, and
mailing-list messages — we extracted word-bag derived sig-
nals for NFRs and software engineering terms. The word-bags
included efficiency, maintainability, reliability, functionality,
portability, usability, requirements, analysis, deployment, and
project management.

We combined signals into new signals meant to proxy or
simulate UP diagram disciplines such as business modelling,
requirements, analysis, implementation, testing, deployment,
configuration, project management and support environment.
These signals are explained in more detail in Section V.

Other signals we have access to are tags from version
control systems and releases. Releases are an especially valu-
able signal because they indicate a process driven event (the
release) has occurred.

These signals and results can then be presented to the
end user as described in Section V. Next, in Section IV, we
describe methods of visualizing and analyzing some of these
signals.

IV. SIGNALS

We can produce signals (measures over time) from events by
counting them or measuring them over time. We can deal with
signals in many ways, ranging from bucketing to windowing,
to moving averages, to visualization and comparison, as we
will now explain.

A. Signal Visualization

Generally to produce RUPVs we want to create parallel
plots of signals across time, i.e., multiple signals plotted in a
stacked fashion with a common time-line. Sometimes a signal
may be too noisy to be useful so moving averages, windowing,
or bucketing can be used to clean up the signal. In the cleaned
up signal, we may be able to see trends in the data that would
otherwise be obscured.

B. Signal Similarity

If we are analyzing process-oriented signals, we might want
to see when a signal correlates with another signal or when a
signal abruptly changes its behaviour. We can look for these
patterns by comparing a signal to itself using self-similarity.
Self-similarity is when we take periods (or regions) of the
signal and compare it to other periods of the signal. We can
use the same techniques to compare two signals as well.

We use two methods of signal similarity comparison, global
and local. Global comparison correlates the local bins to all
bins across time. The local comparison correlates the local bins
to bins nearby within a certain threshold, such as an iteration
or a three month window.

The comparison metric we use here is the Euclidean dis-
tance between feature vectors consisting of summary statistics.
Euclidean distance was chosen as it accommodates any kind of
extracted feature vector. We could use statistical measures like
X2 or Kolmogorov Smirnov or frequency-based comparisons
such as auto-correlation or Fourier transform comparison [30].

To create a similarity signal, we produce a signal of the
rank of the most similar periods to the current period, which
in a stable system is expected to be almost constant or linear.
This kind of presentation of a signal is useful because if the
similarity abruptly changes it indicates a kind of discontinuity
in behaviour.

We can combine all these different signal analysis methods
to produce different views for the RUPVs described in the next
section.

V. RECOVERED UNIFIED PROCESS VIEWS

Recovered Unified Process Views are views of repository
data that provide an overview that is similar to the UP diagram
in Figure 1. These views can be created by plotting signals
of development, extracted from the repositories. Whether the
signal consists of counts of commits, mailing-list messages,
bug reports, or relevant subsets of such artifacts, the default
view is to display signals as parallel time-lines of activity.

RUPVs are intended to be analogous to the original UP
diagram but instead of proposing a process they display data
that is observable and extracted from the repositories used.

A. Mapping signals back to the Unified Process

Depending on the level of overview that one wants to
provide to a stakeholder, a number of related signals will
be combined to produce a summary signal. For instance
signals about feature requests, signals of feature discussions
and signals about story-card creation could be combined into
one overview signal about requirements. It is these kinds of
mapped signals that should be presented to the end user.
Before we extract and plot Unified Process signals we have
to discuss the matter of observability of UP disciplines based
on the data we have.

1) Observability: We realize that not all signals are observ-
able based on the data we might have available. In terms of our
case study we lack concrete requirements, business modelling,
design and analysis, and project management signals.



2) UP Signals: When synthesizing the UP signals we
found that much of the data was derived from tool use and
the processes being followed. Nonetheless we tried to map
what we could back to original UP disciplines. Figure 3
demonstrates the UP signals that we extracted from FreeBSD
and SQLite. We will describe the signals displayed in Figure
3:

UP Business Modelling is meant to include requirements,
discussion of new features, and client interaction with new
features [4]. Based on our data-sets we felt the signals that
related to this discipline were commits that mention require-
ments and commits that mention usability. Unfortunately this
misses a lot of important work that might go into a project
in order to determine what are its goals. In this sense we feel
that this signal does not map well to observable data from
FLOSS projects unless one has access to the initial discussions
in which the project was fleshed out.

UP Requirements signals are built up of changes, bugs,
and mailing-list messages that mention requirements, usability
issues, or new functionality. That said all of these signals
require lexical approaches as one has to determine if require-
ments activities are taking place. This produces a signal that
is less trustworthy than a signal extracted from a repository of
documents that are dedicated to requirements.

The UP analysis and design signal might not be easily
observable in the projects we were evaluating. Analysis and
design will be discussions of new features, drastic changes
to architecture and new use cases. During the case study,
SQLite did show some design work in terms of designing and
implementing the new database file format for SQLite version
3.

The UP implementation signal is relatively simple; we
include revisions that change source code. Of course this could
be expanded but we did not want to include all revisions
because revisions to build files or documentation are not
necessarily implementation.

The UP testing signal is easily extracted from our data
sources. Changes to test files, which are easily matched by
filename or via lookup table, are a reliable signal to use,
but other signals could be added. UP suggests improvements
to qualities such as reliability, functionality, and performance
relate to testing.

The UP deployment signal is about packaging, portability,
distribution and building the software. Our UP deployment
signal is a combination of commits that mention deployment,
release and tag occurrences, portability related commits, and
changes to the build system.

The UP configuration and change management signals
consist of commits, and build changes. This signal is a
combination of revisions and build system related commits.

The UP project management signal deals with project plans.
We did not determine much in our case studies, FreeBSD and
SQLite, that concerned project management beyond version
control changes that might mention project management. We
used a word-bag related to project management in order to
find relevant commits, bugs, and discussions.

The UP Environment signal refers to process management
and tools. With the data we have from FreeBSD and SQLite
the closest signals are the revisions themselves and the build
revisions. Commits relating to portability might also be rele-
vant. Some projects have their own tools for cleaning up source
code or for generating source code. Perhaps the addition and
use of automated tools should be included.

We observe that the quality of the RUPVs depends of the
available data sources. The raw signals that compose higher
level signals, such as the UP signals, are more trustworthy and
accurate than these aggregate mappings.

3) Alternative signals: We found that the signals extracted
from the two FLOSS projects we analyzed were not a good
conceptual fit for some UP disciplines, so we explored other
signals that appeared promising in illustrating the development
processes. Alternative process-heavy signals that could also be
used are build revision signals and NFR signals.

Build revisions are a signal of changes to the build files of
a software project. Changes to these build files are often in-
dicative of changes in portability, architecture, and modularity.
Portability is often related to build revision changes because
supporting new platforms often causes new configuration op-
tions or checks to be employed. Architecture is often changed
or modified at the same time as build revisions because the
build system needs to be informed of new files or the changed
files.

Non functional requirements (NFRs) signals are less accu-
rate than say build revisions but commits, mailing-list mes-
sages and bugs that deal with non functional requirements
indicate the kind of software quality related topics occurring
within a repository. The focus of programmers at certain times
on certain qualities are potentially good indicators of process.

We will now discuss how we took all of these signals and
produced RUPVs for FreeBSD and SQLite.

VI. FREEBSD CASE STUDY

FreeBSD3 is an popular open source operating system.
FreeBSD was based on the original Berkley Software Dis-
tribution (BSD) and BSD386. FreeBSD differs from Linux in
that the FreeBSD kernel and userland (UI) are an inseparable
package. FreeBSD installations are expected to have at least
a bare minimum of programs and tools installed.

Figure 3 shows plots (on the left) of 9 disciplines for
FreeBSD over the roughly 16 year history of the project.
Figure 3 shows a large peak protruding across the FreeBSD
UP signals in 2001. In 2001 FreeBSD was ported over to
GCC 2.95 as its main compiler in the 4.3 branch of FreeBSD.
This meant that much code had to be semi-automatically
changed to conform. Mostly the function definitions had
to be changed. Requirements-related changes are related to
definitions and thus these definition related changes made the
peak in 2001 even larger. There were also other requirements-
related changes made as the project was trying to ensure

3FreeBSD: http://www.freebsd.org/



SUSV conformance, especially SUSV2, the Single UNIX
Specification version 2.

In Figure 3, the bump in 2002 testing, deployment, and
support environment signals appears to have been due pri-
marily to changes in C coding style. Much of the FreeBSD
project switched from K&R C style declarations to C89 style
declarations. This is notable because many of the changes that
use the term conformance are related to function definition
style. This was most likely spurred on by the adoption of
GCC3 over GCC2.95. In 2002 there were many portability-
related changes as well but there were also double the releases
and CVS tags than the previous year. When GCC3 was
introduced a new version of binutils was introduced as well
which meant that the project actively had to seek testers to
ensure the new GCC and binutils still worked with FreeBSD
and the ports software. OpenPAM, a pluggable authentication
module was a popular topic and release tag as well.

We investigated the peak in late 2009. At this time, FreeBSD
7.2.0 was released and version 8 of FreeBSD was being
prepared. Many requirements-related changes had to do with
the merge of Open Source Basic Module (OpenBSM). The
OpenBSM is designed for security auditing and it was merged
into the FreeBSD 8 branch. Since definitions used in the
OpenBSM API changed, this merge was flagged as a require-
ments and analysis related change.

We conclude for these examples that these RUPVs have
allowed us to find interesting requirements- and analysis-
related behaviours in FreeBSD.

VII. SQLITE CASE STUDY

SQLite is a library-oriented database system. It provides
an SQL interface to a common SQLite database file format.
It is meant for use in a wide variety of contexts, including
embedded devices, such as the iPhone, and web-browsers like
Mozilla Firefox. SQLite allows a program to have the power
of a SQL driven relational database without the need of a
separate DBMS process.

SQLite uses its own version control system called FOSSIL4.
FOSSIL is a version control system made by the SQLite
authors that integrates distributed version control, distributed
bug tracking, and a distributed documentation wiki. All of
these are combined together into one SQLite file.

SQLite is unusual among FLOSS projects in that the devel-
opment team explicitly documents, lists, and numbers their
requirements5. Unfortunately for this study, there seems to
be little traceability between the commits and the numbered
requirements.

To determine if our requirements and analysis signals were
at all relevant we decided to investigate SQLite’s requirements
peak around 2004 (see the right side of Figure 3). In our case
we did not have any tags in 2004 because when SQLite’s CVS
repository was converted to a FOSSIL repository, the tags were
not imported. The graph, in Figure 3 around 2004 has a peak

4FOSSIL SCM http://fossil-scm.org/
5SQLite Requirements: http://www.sqlite.org/requirements.html

across business analysis, requirements, analysis, implementa-
tion, testing, project management, and support environment
signals. We can see that a lot of work happened at that
time, but what portion was related to requirements? SQLite3
was being developed and there was a need to discuss and
implement an appropriate file format. Developers and users
were trading implementation notes and referencing literature
on database implementations in an attempt to define the
SQLite3 file format. One message discussed SQL 92, while a
few others discussed literature. Many source control changes
were flagged as requirements because they mentioned formats
and formatting, and in this case it was actually about the file
format itself. Thus this visible peak was attributable to new
features and new requirements.

From 2007 to 2008 the requirements, business analysis, and
the UP deployment signals peaked. We investigated related
events and found that in 2007 that the developers were con-
sidering converting their requirements documentation in their
code into formal requirements documents. That is the software,
SQLite, already worked and met most of the requirements,
as well the developers had already tracked the requirements,
but this was an effort to improve requirements documentation
within the project.

This trend continued into 2009 where requirements were
discussed further and API documentation for the C-API of
SQLite was being moved out of the code itself and into sepa-
rate documentation files. This was noticeable in 2009 because
requirements-related signals, business analysis, requirements,
and analysis, peaked up but other signals like deployment and
testing peaks lagged behind requirements.

Thus for SQLite the behaviour of the requirements-related
signals of UP Business Analysis, UP Requirements and UP
Analysis actually did indicate that efforts were being made
to define a new file format, to formalize requirements, and to
move requirements from code into formal documentation.

VIII. DISCUSSION

RUPV’s multiple time-line views highlights parts of the
development activity allowing us to notice behaviours that
might not have been obvious from plain aggregate views such
as commits per month. Mostly notably with SQLite we saw
the value of the UP requirements and UP analysis signals in
that we were able to find important events that would not have
shown up in a commits per month signal.

A. Threats to validity

There are many threats to validity with this research. We
rely on the output and artifacts left behind by programmers.
This varies between projects in terms of process, amount
of detail as well as consistency. Some projects are more
consistent in their practices than others, while others are more
lax. Certain activities might produce results which are of lower
detail than others.

Some disciplines we want to observe simply are not avail-
able in the repositories that we have studied so we had to
suggest proxy measures. The accuracy of these inferences and



Fig. 3. Recovered Unified Process Views: These are the Recovered Unified Process Signals of FreeBSD and SQLite: business modelling, requirements,
analysis and design, implementation, testing, deployment, configuration management, project management and environment. These signals have been extracted
from the entire lifetime of FreeBSD and SQLite, they are composed of counts of relevant development events such as commits.



proxies can affect our results greatly. Different projects will
not necessarily exhibit the same behaviour and might need
largely different mappings.

The accuracy of the unsupervised and supervised analysis
is a concern as it can produce spurious or biased results.
For instance some of the requirements commits that were
identified might have been more strongly related to design
than requirements.

IX. CONCLUSIONS

We have shown that through the integration of many mining
software repositories technologies that one can build high-
level views about the software processes of a project. The
repositories that we mined were mailing-list archives, version
control systems and bug-tracker systems. Inspired by the
UP diagram (see Figure 1) we wanted to integrate these
data sources to produce an applied version of that diagram:
Recovered Unified Process Views (RUPV). We detailed how
to build RUPVs and applied our tools to two open source
projects: FreeBSD and SQLite.

In order to attribute behaviour and events to various parallel
disciplines we used signal mappings where we combined event
and process signals to form proxy signals that represented
the events related to a discipline or process. The signals
proved useful when analyzing FreeBSD and SQLite as they
highlighted behaviours, such as requirements and design, that
would have been obscured without this kind of analysis.
A. Future Work

Our future work consists of further validating how well the
observations presented relate to actual behaviour and processes
that take place. We want to interview stakeholders, who are
involved in development, in order to see if RUPVs relate well
to their perception of the events that occurred and the processes
followed. We also want to further study correlations between
signals: we want to see if we can find projects with signals
that are not in other projects, such as requirements, and find
appropriate proxy signals that might be useful across projects.

REFERENCES

[1] W. W. Royce, “Managing the development of large software systems:
concepts and techniques,” in Proceedings of the 9th International
Conference on Software Engineering. IEEE Computer Society Press,
1987, pp. 328–339.

[2] B. Boehm, “A spiral model of software development and enhancement,”
SIGSOFT Softw. Eng. Notes, vol. 11, no. 4, pp. 14–24, 1986.

[3] I. I. Software and R. Singh, “International standard,” in Software
Lifecycle Process Standards, in CrossTalk, 1989, pp. 6–8.

[4] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software develop-
ment process. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1999.

[5] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” J. Softw. Maint. Evol., vol. 19, no. 2, pp. 77–131, 2007.

[6] M. M. Lehman, “Programs, life cycles and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[7] M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A
Case Study,” in Proceedings of International Conference on Software
Maintenance, 2000, pp. 131–142.

[8] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, “Towards a
theoretical model for software growth,” in MSR ’07: Proceedings of
the Fourth International Workshop on Mining Software Repositories.
Washington, DC, USA: IEEE Computer Society, 2007, p. 21.

[9] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters, “Workflow mining: A survey
of issues and approaches,” Data & Knowledge Engineering, vol. 47,
no. 2, pp. 237 – 267, 2003.

[10] J. E. Cook and A. L. Wolf, “Automating process discovery through
event-data analysis,” in ICSE ’95: Proceedings of the 17th international
conference on Software engineering. New York, NY, USA: ACM Press,
1995, pp. 73–82.

[11] H.-J. Kung, “Quantitative method to determine software maintenance
life cycle.” in ICSM. IEEE Computer Society, 2004, pp. 232–241.

[12] K. Beck, Extreme Programming Explained: Embrace Change, 1st ed.
Addison-Wesley Professional, October 1999.

[13] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[14] J. Highsmith and M. Fowler, “The agile manifesto,” Software Develop-
ment Magazine, vol. 9, no. 8, pp. 29–30, 2001.

[15] “Capability maturity model for software,” Tech. Rep. CMU/SEI-91-TR-
24 ADA240603, 1991.

[16] D. Stelzer, W. Mellis, and G. Herzwurm, “A critical look at iso 9000 for
software quality management,” Software Quality Control, vol. 6, no. 2,
pp. 65–79, 1997.

[17] A. Hindle, N. Ernst, M. W. Godfrey, R. C. Holt, and J. Mylopoulos,
“What’s in a name? on the automated topic naming of software main-
tenance activities,” 2010, submited to FSE 2010 http://softwareprocess.
es/whats-in-a-name.

[18] N. A. Ernst and J. Mylopoulos, “On the perception of software quality
requirements during the project lifecycle,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality, Essen, Germany, June 2010, in press.

[19] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The Detection
and Classification of Non-Functional Requirements with Application to
Early Aspects,” in International Requirements Engineering Conference,
Minneapolis, Minnesota, 2006, pp. 39–48.

[20] L. Chung, B. A. Nixon, E. S. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, ser. International Series in Soft-
ware Engineering. Boston: Kluwer Academic Publishers, October 1999,
vol. 5.

[21] A. Mockus and L. Votta, “Identifying reasons for software changes
using historic databases,” in International Conference on Software
Maintenance, San Jose, CA, 2000, pp. 120–130.

[22] C. Treude and M.-A. Storey, “ConcernLines: A timeline view of co-
occurring concerns,” in International Conference on Software Engineer-
ing, Vancouver, May 2009, pp. 575–578.

[23] A. E. Hassan and R. C. Holt, “C-REX: An Evolutionary Code
Extractor for C - (PDF),” University of Waterloo, Tech. Rep.,
http://plg.uwaterloo.ca/ aeehassa/home/pubs/crex.pdf.

[24] G. Robles, J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, and I. Her-
raiz, “Tools for the study of the usual data sources found in libre software
projects,” International Journal of Open Source Software and Processes,
vol. 1, no. 1, pp. 24–45, Jan-March 2009.

[25] D. M. German, A. Hindle, and N. Jordan, “Visualizing the evolution
of software using softchange,” in Proceedings SEKE 2004 The 16th
Internation Conference on Software Engineering and Knowledge Engi-
neering. 3420 Main St. Skokie IL 60076, USA: Knowledge Systems
Institute, June 2004, pp. 336–341.

[26] A. Hindle, M. Godfrey, and R. Holt, “Release pattern discovery: A case
study of database systems,” in Software Maintenance, 2007. ICSM 2007.
IEEE International Conference on, Oct. 2007, pp. 285–294.

[27] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and what’s
not: Windowed developer topic analysis,” in International Conference
on Software Maintenance, Edmonton, Alberta, Canada, September 2009,
pp. 339–348.

[28] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker, “Identifying
word relations in software: A comparative study of semantic similarity
tools,” in Program Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on, June 2008, pp. 123–132.

[29] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
classification of large changes into maintenance categories,” in Inter-
national Conference on Program Comprehension, Vancouver, 2009, in
press.

[30] A. Hindle, M. Godfrey, and R. Holt, “Mining recurrent activities: Fourier
analysis of change events,” in Software Engineering - Companion
Volume, 2009. ICSE-Companion 2009. 31st International Conference
on, May 2009, pp. 295–298.


