Naive Bayes

Abram Hindle

University of California, Davis Davis, California http://softwareprocess.es/

abram.hindle@softwareprocess.es

Machine Learning

- Teaching a computer to make decisions
- Teaching a computer to learn about data
- Like AI except specific to data-mining
- Usually based on analyzing data
- Supervised learning
 - Manually annotated training data often to classify.
- Unsupervised
 - Automatic discovery of properties used to describe data.

Supervised Learning

- We'll focus on classification
- We want to say an entity belongs to a class
 - Spam / Ham or On-topic / off-topic
- We need:
 - A learning algorithm to learn properties associated with labels
 - A training set manually annotated examples used to learn from
 - A test set manually annotated examples used to validate performance

Alice Quotes

- 'What a curious feeling! I must be shutting up like a telescope.'
- 'That would be grand, certainly, but then I shouldn't be hungry for it, you know.'
- 'I think you might do something better with the time, than waste it in asking riddles that have no answers.
- 'Is that the reason so many tea-things are put out here?'

HK

Mad Hatter Quotes

- 'Your hair wants cutting,'
- 'Why is a raven like a writing-desk?
- 'I told you butter wouldn't suit the works!'
- "Twinkle, twinkle, little bat! How I wonder what you're at!"

Name the speaker

- "Up above the world you fly, Like a tea-tray in the sky.
 Twinkle, twinkle —"
- 'It tells the day of the month, and doesn't tell what
 - o'clock it is!'
 - 'Two days wrong!'

Name the speaker

- 'Then you keep moving round, I suppose?'
- 'They couldn't have done that, you know, they'd have been ill.'
 - 'And be quick about it, or you'll be asleep again before it's done.'

Name the speaker (Fragments)

• '... guessed the riddle ...'

'... I have to beat time when I learn music.'

'... Time as well as I do ...'

Naive Bayes

How did you identify the speakers?

Can you think of ways that a computer could do the

same?

How can we describe these quotations to a program?

- Features and Feature vectors
 - Features measurable aspects of a sample
 - Feature vector features normalized into a vector form
 - * Easy to summarize a single entity

Discussion

• What kinds of features can we tease from text?

Discussion

- What kinds of features can we tease from text?
 - Words
 - Characters
 - substrings
 - n-grams (strings of tokens)
 - typography

Word Counts

• Word counts of the Mad Hatter and Alice

Word	Mad Hatter	Alice
I	9	14
you	16	5
twinkle	4	0
clock	3	1
now	1	3
in	3	3
Total	36	26

Bayes

- Thomas Bayes inspired a field of statistics referred to as:
 - Bayesian Statistics
 - Bayesian Probabilities

The Gist of Bayes

- Belief or "priors" are based on past events and experiences.
- If I see dogs and cats fight on most occasions I will assume they do not get along.
- If someone makes a claim that is counter to my personal observations I am less inclined to believe it because I have prior evidence.

Naive Bayes for documents

- We assume all features are independent
 - no dependant probabilities between features.
- Classifier:

 $classify(D) = \arg \max P(C) \prod_{i} P(w_i | C)$

- – Return the class C whose product of word (w_i) probabilities is the greatest.
 - Note lack of dependence between the words!
 - Also considered to be Maximum Likelihood
 Estimation (MLE)

Documents!

- We model each document D as a set of words from w_0 to w_n .
- $P(w_i|C)$ means $count(w_i, C)/count(C)$
 - $count(w_i, C)$ how many training samples of class C include w_i where $w_i \in D$.
 - count(C) how many training samples are of class C

Classify Hatter or Alice

• Word appearance per class

Word	Mad Hatter	Alice
I	9	14
you	16	5
twinkle	4	0
clock	3	1
now	1	3
in	3	3
# Docs	40	30

- D = "I now clock"				
	Word	Mad Hatter	Alice	
	Ι	9	14	
	now	1	3	
	clock	3	1	
	# Docs	40	30	

$$- P(Mh|D) =$$

P(Mh)P(I|Mh)P(now|Mh)P(clock|Mh)

$$- 0.00024 = \frac{40}{70} \frac{9}{40} \frac{1}{40} \frac{3}{40}$$
$$- P(A|D) = P(A)P(I|A)P(now|A)P(clock|A)$$
$$- 0.000\overline{6} = \frac{30}{70} \frac{14}{30} \frac{3}{30} \frac{1}{30}$$

Implementation issues

- Floating point underflow:
 - The product of many features quickly race to zero
 - * Iff P(A|D) > P(Mh|D) then log(P(A|D)) > log(P(Mh|D))* classify(D) = $arg \max P(C) \prod_i P(w_i|C)$ becomes classify(D) = $arg \max log(P(C)) + \sum_i log(P(w_i|C))$

Implementation issues

- Zero probability
 - Dangerous when multiplying and is negative infinity in log form.
 - Smoothing is a solution
 - * Simplest smoothing is to use the equation $P(w_i|C) = \frac{count(w_i,C)+1}{count(C)+n}$ where *n* is the number of training samples.

Bayes Theorm

• Useful to convert 1 conditional probability into another.

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

•
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Bayes on Documents

- Given words w_0 to w_n
 - The probability of w_i appearing in class C is $P(w_i|C)$.
 - * If there are 1000 total documents in C and w_i in in 100 of them then $P(w_i|C) = 0.1$

Bayes On Documents

 $\bullet\,$ Given class C what's the probability of D?

-
$$P(D|C) = \prod_i P(w_i|C)$$

$$- P(D|C) = P(D \cap C)/P(C)$$

- And thus $P(C|D) = P(D \cap C)/P(D)$
- $\bullet \,$ We want P(C|D) but we have P(D|C)
 - By Bayes Theorm:

$$-P(C|D) = \frac{P(D|C)P(C)}{P(D)}$$
$$-P(C|D) = \frac{P(C)}{P(D)} \prod P(w_i|C)$$

Bayes On Documents

• If we want to classify 1 document, what is constant in this equation:

• -
$$P(C|D) = \frac{P(C)}{P(D)} \prod P(w_i|C)$$

– If we're comparing probabilities We don't actually need ${\cal P}(D),$ it's a constant.

$$-\frac{P(A|D)}{P(Mh|D)} = \frac{P(A)}{P(Mh)} \frac{\prod P(w_i|A)}{\prod P(w_i|Mh)}$$

Conclusions

- Naive Bayes algorithm can be used to classify known and unknown examples using examples that have been previously annotated by a class.
- Naive Bayes is naive because it assumes no relationship between the features of a class, thus each feature is evaluated independently per class.
- Efficient and effective, it is often used in Spam classification.

Get Help!

• My page on Naive Bayes:

http://softwareprocess.es/wiki/Naive_Bayes

- Wikipedia: http://en.wikipedia.org/wiki/Naive_Bayes_classifier
- Another concrete example:

http://www.cs.rpi.edu/academics/courses/fall03/ai/misc/naive-example.pdf

• Python implementation

http://ebiquity.umbc.edu/blogger/2010/12/07/naive-bayes-classifier-in-50-lines

• Alice in wonderland http://www.gutenberg.org/ebooks/11

Copyright

- This work is covered under a Creative Commons Attribution-ShareAlike License (C) 2011 Abram Hindle
- Some of this work is derived from CC-BY-SA licensed
 (C) Wikipedia:

http://en.wikipedia.org/wiki/Naive_Bayes_classifier **and**

http://en.wikipedia.org/wiki/File:Thomas_Bayes.gif

 Public domain Alice in Wonderland illustrations by Sir John Tenniel http://www.gutenberg.org/ebooks/114 and Gordon Robinson http://www.gutenberg.org/ebooks/19033
 provided by Project Gutenberg.