
Topic Modelling of Climate Model Source Code

Abram Hindle
University of California, Davis

Davis, CA
ah@softwareprocess.es

1. INTRODUCTION
Eric Evans, in his book Domain Driven Design [1], argues

that all stakeholders should try to share a similar vocabulary
and lexicon when developing software. The idea is that if
developers use the same agreed upon terminology that other
stakeholders use, such as domain experts in the field being
modelled, that serious design issues and domain-specific de-
fects in software can be fixed or avoided very early during
development.

Climate modelling is a very complex and complicated do-
main. To a software practitioner unfamiliar with climate
modelling some of the entities found in the code might be
unclear. Optimizations and common representations of the
data used in climate modelling are probably unknown the
practitioner.

An example of a semantic failure that is avoidable by us-
ing a shared vocabulary is the use of arrays of numbers.
These arrays are effectively untyped. Does one understand
the assumption of the data type, is it a count of elements,
is it a unit measurement such as temperature, what is the
unit of the array, is it time-series data, is it a distribution?
A software practitioner might not know any of this unless
they are familiar with the domain. They might understand
the purpose if they knew the terminology to describe the
function, and the terms used to name the array. But how
can a practitioner gain enough domain knowledge such that
their debugging can be fruitful?

1.1 Proposal
We propose a potential solution: a word network, or dic-

tionary, of terms pulled from existing climate modelling sys-
tems. We propose associating source code terms, documen-
tation terms and literature terms together in order to form
unifying and shared concepts. For instance if temp appears
in an identifier, how often does it relate to temperature ver-
sus temporary value. Perhaps in many climate modelling
code bases tmp means temporary while temp means temper-
ature. If a practitioner can look up the possible meanings
of identifiers and identifier fragments they can avoid making
dangerous assumptions.

1.2 Immediate Application
Our first step would be to investigate topics extracted

from the source code and documentation of Nemo1 and GISS
GCM ModelE2 by by techniques such as Latent Semantic
Indexing (LSI) or Latent Dirichlet Allocation (LDA). These

1http://www.nemo-ocean.eu/
2http://www.giss.nasa.gov/tools/modelE/

tools are unsupervised methods of teasing out underlying
independent word distributions from documents, such as
source code [2]. We would then investigate the topics ex-
tracted and identify climate-modelling specific and software
engineering relevant topics.

We hope to find topics belonging to the climate modelling
domain and the software engineering domain. These topics
will be sets of words and can provide a reasonable starting
point for any kind of lexicon elicitation or grooming.

1.2.1 Potential Applications
Future potential tools include:
Concept Thesaurus would allow plug-ins in Eclipse and

other IDEs to access a thesaurus or ontology of concepts.
One could right click on a word or token and see the relevant
annotations of that concept.

Lexicon Enforcer would be a tool to ensure that when
new concepts are added, they are documented (or ignored).
The lexicon enforcer could be used to help developers and
modellers keep a consistent and tight lexicon without a lot
of semantic drift.

Code idiom look-up by leveraging code cloning and code
query technology, one could check how often a certain idiom
was being used in contexts such as: correct climate data,
smoothing, model assumptions. A sample usage would be
to highlight code in the IDE that was unclear to the practi-
tioner and see where it re-occurs across potentially multiple
projects. One could also allow the annotation of patterns.
This is valuable in languages like C, Fortran and Java where
sufficient efficient abstractions might not be available.

1.3 Conclusion
In conclusion we propose to extract and analyze topics

from the source code, documentation and change history of
climate modelling software that is available to us. We plan
to interpret these results and relate terms to each other via
topics.

We hope to find software engineering topics as well as do-
main specific (climate modelling) topics that can be used to
relate documents and terms to actual topics of importance.

2. REFERENCES
[1] E. Evans. Domain-Driven Design: Tacking Complexity

In the Heart of Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[2] A. Kuhn, S. Ducasse, and T. Girba. Semantic
clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243,
March 2007.


