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Abstract—Computer musicians are a community of end-user
programmers who often use visual programming languages such
as Max/MSP or Pure Data to realize their musical compo-
sitions. This research study conducts a multifaceted analysis
of the software development practices of computer musicians
when programming in these visual music-oriented languages. A
statistical analysis of project metadata harvested from software
repositories hosted on GitHub reveals that in comparison to the
general population of software developers, computer musicians’
repositories have less commits, less frequent commits, more
commits on weekends, yet similar numbers of bug reports and
similar numbers of contributing authors. Analysis of source
code in these repositories reveals that the vast majority of code
can be reconstructed from duplicate fragments. Finally, these
results are corroborated by a survey of computer musicians and
interviews with individuals in this end-user community. Based
on this analysis and feedback from computer musicians we find
that there are many avenues where software engineering can be
applied to help aid this community of end-user programmers.

I. INTRODUCTION

Musicians currently have a multitude of tools at their

disposal for creating music. Before the digital age, music

was created by physically manipulating a conventional musical

instrument to produce sound. With the advent of synthesizers,

samplers, and sequencers came a rapid paradigm shift in

the music creation process that increasingly challenged the

definition of “instrument”, the role of musicians, and their

technical proficiency. Many musicians have embraced the

technical challenges arising from the changing landscape of

the music creation process, forming a relatively small [1] but

tight-knit community of individuals invested in developing

music-making applications on computers or mobile devices.

Computer musicians are end-user programmers who “face

software engineering challenges that are similar to their pro-

fessional counterparts” [2]. As end users, computer musicians

still have to be mindful of data flow, data structures, debug-

ging strategies, testing, and calls to application programming

interfaces [3]. As a consequence of having to learn a variety

of skills from computing science, music theory, electrical

engineering, and software engineering, the technical aptitude

of computer musicians is quite varied. Novice programmers

in specialized domains, such as computer music, who are

not formally trained in software engineering tend to gravitate

towards visual programming languages [4].

Fig. 1: Max/MSP patch consisting of a triad of oscillators with stereo
volume control.

Visual music programming languages allow users to

programmatically generate sounds and respond to human-

computer interaction devices by spatially arranging rectangular

objects on the screen and connecting them with lines called

patchcords. Objects represent functions whose purpose is to

manipulate audio signals or other data structures. Objects

have inlets and outlets, which correspond with parameters

and return values, respectively. A patch is a file containing a

collection of connected objects that perform some function that

is typically musical in nature. Computer music applications

typically consist of several interconnected patches. There are

several proprietary and opensource visual music programming

languages that are used by the community of computer musi-

cians including, but not limited to, Max/MSP [5], Pure Data,

AudioMulch, and OpenMusic. This paper will focus on the

analysis of Max/MSP and Pure Data patches. Pure Data is an

opensource alternative to Max/MSP, having similar objects and

functionality as its proprietary counterpart. Figure 1 displays a

Max/MSP patch consisting of three cycle∼ objects referred

to as oscillators, which each produce a periodic sine wave.

We currently know little about how computer musicians

program, share, and collaborate on patches developed in

visual music programming languages such as Pure Data and

Max/MSP. Furthermore, we are unaware if computer musi-

cians use software engineering tools such as source control

repositories or bug trackers and where they seek help with

programming syntax and semantics. We also lack understand-

ing of issues that computer musicians face while developing

musical applications, if they potentially lack development and

software engineering tools, and the extent to which current

software engineering practices and tools could positively im-

pact the development process of computer musicians.



In response to these issues, the objective of this research

is to analyze the software development practices of computer

musicians when creating musical applications in the Max/MSP

and Pure Data visual programming languages, and investigate

to what extent their development practices differ from the

general population of software developers. The intent of this

analysis is to reveal software engineering tools that could aid

the development practices of computer musicians, and more

broadly, other end-user communities using visual program-

ming languages. To this end, Section III presents a statistical

analysis of project metadata harvested from computer musi-

cians’ source control repositories hosted on GitHub [6]. In

Section IV, clone detection is performed on Max/MSP and

Pure Data patches to reveal which code structures are often

used by computer musicians. Finally, a survey of computer

musicians is conducted in Section V and is supplemented with

computer musician interviews to provide qualitative evidence

to support the quantitative results in the paper.

II. RELATED WORK

A. End-user Visual Programming

End users constitute a large demographic of program-

mers [7]. The study of end-user programmers and their com-

munities is an active research topic, which aims to create

tools to aid development and improve software quality by

studying how end users program [3]. There has recently been a

fundamental shift in the perception of end users as consumers

to being participators [8], demanding software frameworks

and programming environments that are easily extensible and

malleable to their needs [9]. Ko et al. [3] state that end-

user programmers have different goals than professional pro-

grammers who are paid to develop, test, deploy, and maintain

software over a period of time; they often develop programs

using special-purpose languages to achieve a personal goal in

their domain of expertise [10]. Considering these definitions,

computer musicians fall into the category of end users be-

cause they often use specialized music-oriented programming

languages for their personal creative musical endeavours.

Although specialized audio libraries exist for languages

such as C or Java, these are general-purpose programming

languages, which are arguably ill-suited for the specific needs

of computer musicians [11] who require flexibility in the

combination of concepts and tools for their creative com-

positions [12], [13]. Among the specialized music-oriented

programming languages used by computer musicians are

visual programming languages such as Max/MSP or Pure

Data, which “represent the programmable world as graphical

metaphors” [14] to lower the learning curve. These real-

time programming environments provide immediate visual and

auditory feedback to the programmer, allowing them to test for

and hypothetically eradicate bugs at run-time [4]. Burnett [4]

also noted that although some users of these visual languages

are professional programmers, many are end users with no

formal training in software engineering methods. Furthermore,

they often face several barriers to entry when learning to

program in these languages [15], [16].

In an effort to understand how end-user programmers create

and share software artifacts, Stolee et al. [2] analyzed the Ya-

hoo! Pipes end-user community and Ko et al. [3] investigated a

variety of other end-user communities such as children, system

administrators, web designers, and so forth. Bogart et al. [17]

analyzed the reuse and extension of software artifacts created

by end-user programmers developing in CoScripter, a web-

browser macro recording language, and found that end users

often reused similar scripts shared by the community for their

own endeavours. An exceptional amount of effort has also

been directed towards the analysis of end user interactions with

spreadsheet applications [18] and the development of tools

to aid these users [19], [20]. However, no empirical end-user

studies have been conducted on the community of computer

musicians and their software artifacts.

B. Mining Software Repositories

One facet of analysis for computer music end-user pro-

grammers is how they use software engineering tools such as

source control repositories and bug trackers. Significant effort

has been devoted to mining Git software repositories in order

to analyze software artifacts, calculate project development

metrics, and study authorship and collaboration tendencies.

Hosting over 6.8 million public Git repositories, GitHub is

among the most popular collections of publicly available

software projects on the internet [21]. However, Bird et al. [22]

warn that mining the wealth of information in Git repositories

on GitHub comes with its own set of perils to be wary of.

For example, Git allows commit rebasing, which obfuscates

the true software development history. Moreover, an analysis

of Git repositories hosted on GitHub revealed that most

repositories have very few commits, are relatively inactive,

and do not necessarily contain software artifacts [21]. Despite

these perils, the mining software repositories (MSR) research

community has gone through great lengths to harvest the

publicly available software repository data hosted on GitHub

and publish the resulting dataset called GHTorrent [23], [24].

C. Clone Detection

After mining a set of computer music repositories, it is

worthwhile to analyze the software artifacts produced by this

end-user community. One facet of analysis is clone detection.

Software clones are duplicates or near-duplicates of code

entities. The detection of clones in a software system can

promote code reuse, refer novice programmers to existing

related code, as well as locate software entities that may

benefit from refactoring. Several clone detection algorithms

have been proposed in the literature [25]–[27] and operate by

first setting the granularity of detected clones. For example,

one might be interested in clones that are exact replicas

of other code entities, or clones that are identical except

for changes in literal values, identifier names, layout, and

comments. Next, the relevant information is extracted from

each code entity under analysis and a suffix tree [28], [29],

dynamic pattern matching [30], or hash comparison [31]–[33]

algorithm is used to detect matches.



Focusing on clone detection in visual programming lan-

guages, several research studies have adapted conventional

clone detection algorithms to locate clones in Matlab Simulink

models. Simulink is a visual programming language used

to mathematically model systems in which blocks (objects)

represent mathematical functions that are connected together

with lines to form a directed graph. Clones are detected in

these models using graph search algorithms with heuristics to

improve computational complexity [33]–[37].

Matlab Simulink is conceptually similar to the Max/MSP

or Pure Data visual music programming languages. Contrary

to Simulink models, the spatial arrangement of objects in

Max/MSP or Pure Data patches potentially affects the prece-

dence of operations. Taking this into consideration, Gold et

al. [38] propose a clone taxonomy and use pairwise compari-

son of Max/MSP patch subgraphs to locate clones. This clone

detection algorithm was run on 68 preprocessed Max/MSP

tutorial patches supplied with the software and found that

86% of connected objects were clones in the lowest level of

granularity. Gold et al. [38] did not consider Pure Data patches

or patches developed by the computer music community.

III. MINING GIT REPOSITORIES

In an effort to understand if computer musicians develop

software differently than the general population of program-

mers, a statistical analysis of project metadata harvested from

Git repositories hosted on GitHub has been performed. From

this analysis we hope to uncover how computer musicians’

interactions with source control repositories and bug trackers

differ from the general population of developers on GitHub.

A. Datasets

The GHTorrent database of extracted Git repositories [23],

[24] is queried to compile two datasets. The first dataset

consists of 819 computer music repositories and was formed

by querying the language field in the GHTorrent MySQL

database to retrieve repositories that predominantly contain

Max/MSP or Pure Data files. Table I provides an overview

of the scale of the compiled dataset. Notably, Pure Data

projects are over-represented in the compiled dataset; there

are almost four times as many repositories containing predom-

inantly Pure Data patches as there are Max/MSP patches on

GitHub. The second dataset consists of 819 general software

repositories collected by random sampling using the following

methodology: 819 random GHTorrent project identifiers were

generated; if a repository was unable to be cloned due to

deletion or renaming, a new project identifier was resam-

pled. The resulting dataset represents a random sample of

GitHub repositories from the general population of software

developers. No computer music repositories were present in

the random sample dataset. The randomly sampled dataset

has an average of 831 files per repository. Projects in this

dataset are written in a variety of programming languages

including Java, JavaScript, Perl, Lua, Matlab, R, Python, Ruby,

C, and derivatives of C. These code repositories serve a

TABLE I: Computer music dataset metrics

MAX/MSP PURE DATA TOTAL

REPOSITORIES 168 651 819

PATCHES 15,016 103,465 118,481

OBJECTS 565,705 2,521,573 3,087,278

COMMENT OBJECTS 86,127 419,109 505,236

MEAN OBJECTS PER PATCH 37.67 24.37 26.06

PATCHCORDS 508,295 1,973,871 2,482,166

variety of purposes such as vim plugins, online games, low-

level data structure implementations, and jQuery plugins. For

each extracted Git repository, several attributes of interest

are calculated: number of commits, number of weekend or

weekday commits, frequency of commits, number of issues,

and the number of unique authors.

B. Hypotheses

The following hypotheses regarding the software develop-

ment practices of this end-user community were posed as open

questions to 15 computer musicians who agreed to participate

in an interview. Section V presents the interview recruitment

strategy in detail. Relative to the general population of soft-

ware developers we hypothesize that:

1) Computer musicians make less commits.

Responses: 7 computer musicians agreed with this hypothesis,

1 disagreed, and 7 were uncertain.

Rationale: Advocates of the hypothesis argued that:

◦ “Computer musicians are used to working solo ... there’s

less incentive to keep source control repositories up to

date.”

◦ “The community [of computer musicians] resembles a

musical community more than a development commu-

nity. The culture of sharing ideas is different.”

◦ “It is really hard to differentiate minor changes from

actual, structural changes in your code. After a while, it

gets pedantic to commit changes like ‘Changed param-

eter X so it sounds more like a guitar’.”

The computer musician who disagreed argued that music

projects are no different than general opensource projects.

2) Computer musicians commit more on the weekend.

Responses: 4 computer musicians agreed with this hypothesis,

2 disagreed, and 9 were uncertain.

Rationale: Advocates of the hypothesis argued that “many

others have day-jobs unrelated to computer music, meaning

their projects are more hobbyist in nature, which may mean

the weekend is the only opportunity they have to make solid

contributions”. Those that disagreed argued that the number

of weekend contributions would differ “only if computer

music is your hobby”.

3) Computer musicians make commits less frequently.

Responses: 5 computer musicians agreed with this hypothesis,

1 disagreed, and 9 were uncertain.

Rationale: Computer musicians advocating this hypothesis

argued that since computer music software development is
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Fig. 2: Box plots of the log commit counts for the sample of computer
music repositories (left) and the random sample of repositories (right).

often a hobby, commits to repositories are less frequent:

“Computer music does tend to be a field in which our output

is not particularly commercial (making it a free-time activity

for a lot of us).” The computer musician who disagreed

argued that music-oriented projects are no different than

general opensource software projects.

4) Computer musicians report less issues (bugs).

Responses: 7 computer musicians agreed with this hypothesis,

3 disagreed, and 5 were uncertain.

Rationale: Advocates of the hypothesis argued that:

◦ “It is hard to describe some bugs in words. How do we

solve ‘my synthesizer sounds too bright ... ?’”

◦ “Many work solo, and the incentive to learn and update

bug trackers is not so urgent.”

◦ “So many computer music people are not initiated into

the world of software development. It is a kind of

amateurish community when it comes to technical stuff

(notable exceptions abound, of course).”

Those that disagreed argued that music projects have similar

numbers of bugs to report as general opensource projects.

5) Computer musicians’ repositories have less unique con-

tributing authors.

Responses: 8 computer musicians agreed with this hypothesis,

1 disagreed, and 6 were uncertain.

Rationale: Advocates of the hypothesis argued that:

◦ “Music projects are generally going to be more creative,

and they might only reflect the vision of one developer.”

◦ “The people who slave away at this wonderful software

often work alone. Such is often the case, I am afraid,

for audio people in general.”

The computer musician who disagreed argued that there

exists large-scale music projects with several contributors.

C. Methodology

The previously presented hypotheses are quantitatively con-

firmed or refuted using the Wilcoxon rank sum test. In this

research study, the first population sample is the 819 computer

music repositories queried from GHTorrent and the second

population sample is the 819 repositories randomly sampled

from GHTorrent. For each statistical test performed in the

following section, both the z-value, p-value, and Cliff’s Delta

effect size are reported.
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Fig. 3: Box plots of the proportion of commits that occur on weekends
for the sample of computer music repositories (left) and the random
sample of repositories (right).

D. Results

Hypothesis 1: Number of repository commits

H0: Computer musicians and general software developers

make the same number of commits.

Ha: Computer musicians make less commits than general

software developers.

Figure 2 displays a side-by-side box plot of commit counts

for the compiled computer music dataset and the random

sample dataset. To properly display the results, the commit

counts were transformed into the logarithmic domain.1 The

median number of commits per computer music repository is

17, while the median for general software developers is 36
commits per repository. The Wilcoxon rank sum test reports a

z-value of −7.332 and a p-value of 1.133e−13. The value of

Cliff’s Delta effect size is small (−0.209 ± 0.052 with 95%

confidence). At α = 0.01 there is strong evidence to reject the

null hypothesis and conclude that computer musicians make

less commits than the general population of software develop-

ers. As several computer musicians noted during interviews,

less commits may be made because of the community’s culture

of sharing intellectual property or the inability of computer

musicians to identify significant structural changes in code.

Hypothesis 2: Number of weekend commits

H0: Computer musicians and general software developers

make equal numbers of weekend commits.

Ha: Computer musicians make more weekend commits than

general software developers.

Before performing the statistical test, the data first needs to

be preprocessed. Each repository has zero or more commits

and each commit has an associated timestamp, which was

processed to control for global time zones. If the commit

occurred on a weekday it is assigned a value of zero, otherwise

it is assigned a value of one. The average of these values are

calculated for each repository and the result is the proportion

of commits that occur on weekends. Figure 3 displays a side-

by-side box plot of the proportion of commits occurring on

weekends for the compiled computer music dataset and the

random sample dataset. The Wilcoxon rank sum test reports

a z-value of 3.805 and a p-value of 7.091e−5. The value of

1For the display of box plots: to avoid taking the logarithm of elements
with the value of zero, 0.5 was added to each measurement.
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Fig. 4: Box plots of the log number of hours between commits
for repositories in the computer music dataset (left) and the general
software developers dataset (right).

Cliff’s Delta effect size is small (0.109 ± 0.056 with 95%

confidence). At α = 0.01 there is evidence to reject the null

hypothesis and conclude that computer musicians make more

weekend commits than general software developers. However,

it is incorrect to reach the conjecture that computer musicians

typically operate on the weekend; the box plot in Figure 3

shows that the median proportion of weekend commits is

23.6% for the sample of computer musicians’ repositories.

Hypothesis 3: Commit frequency

H0: Computer musicians and general software developers

commit with the same frequency.

Ha: Computer musicians commit less frequently than gen-

eral software developers.

For each software repository, the difference in hours be-

tween subsequent commits is calculated and concatenated

into an array of 49,762 commit delays for the computer

music dataset and 1,207,413 commit delays for the random

sample dataset. Figure 4 displays a side-by-side box plot

of logarithmic commit delays for the sample of computer

music repositories (mean of 131.688 hours, median of 0.471
hours, between commits) and the random sample of reposi-

tories (mean of 8.220 hours, median of 0.034 hours between

commits). The Wilcoxon rank sum test reports a z-value of

167.323 and a p-value of ≈ 0. The value of Cliff’s Delta

effect size is moderate (0.442± 0.004 with 95% confidence).

At α = 0.01 there is extremely strong evidence to reject the

null hypothesis and conclude that computer musicians commit

less frequently than general software developers. This result

makes sense given that computer musicians make significantly

more commits on weekends in relation to the general popu-

lation of software developers, yielding longer delays between

subsequent commits.

Hypothesis 4: Number of issues (bug reports)

H0: Computer musicians and general software developers

create the same number of issues.

Ha: Computer musicians create less issues than general

software developers.

Figure 5 displays a side-by-side box plot of issue counts for

the computer music dataset and the random sample dataset.

The median number of issues for both datasets is zero, mean-

ing that the general population of developers also create few
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Fig. 5: Box plots of the log issue counts (left) and the number of
unique authors (right) contributing to the repositories in the computer
music dataset and the general developer dataset.

issues when contributing to software repositories on GitHub.

The Wilcoxon rank sum test reports a z-value of −0.792
and a p-value of 0.214. The value of Cliff’s Delta effect

size is negligible (−0.023 ± 0.024 with 95% confidence).

At α = 0.01 there is insignificant evidence to reject the

null hypothesis and we conclude that computer musicians

create the same number of issues as the general population

of software developers, which refutes our hypothesis and the

intuitions of many computer musicians.

Hypothesis 5: Number of unique authors

H0: The number of unique authors contributing to computer

musicians’ and general software developers’ reposito-

ries are equal.

Ha: Computer musicians’ repositories have less unique

authors than general software developers’ repositories.

The number of distinct commit authors is calculated for each

software repository. Figure 6 displays a side-by-side box plot

of unique author counts for the computer music and random

sample dataset of Git repositories. The median number of

distinct contributing authors for both population samples is

one, meaning that both computer musicians and the general

population of developers contributing to software repositories

on GitHub tend to work alone. The Wilcoxon rank sum test

reports a z-value of −0.082 and a p-value of 0.4673. z-value
of −0.792 and a p-value of 0.214. The value of Cliff’s Delta

effect size is negligible (−0.002±0.003 with 95% confidence).

At α = 0.01 there is insignificant evidence to reject the null

hypothesis and we conclude that both computer musicians’

and general software developers’ repositories have similar

numbers of distinct authors, which refutes our hypothesis as

well as several computer musicians’ intuitions.

Summarizing the statistically significant results, computer

musicians make less commits to software repositories, more

commits on weekends, and less frequent commits in compar-

ison to the general population of developers on GitHub. Our

interviews with computer musicians revealed several possible

causes for these differences: the culture of sharing intellectual

property may differ; the tendency of computer musicians to

work alone may influence how interactions with software

engineering tools occur; and the varied programming skill

of computer musicians indicates that education of software
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Fig. 6: Box plots of the number of unique authors contributing to
repositories in the computer music dataset (left) and to repositories
in the general software developers dataset (right).

engineering methodology and tools may be beneficial to this

end-user community.

IV. CLONE DETECTION

After mining computer music repositories to analyze the

software development practices of this end-user community,

we focus on analyzing the software artifacts within these

repositories. Clone detection is an effective analysis tool for

investigating the extent of code reuse in these visual pro-

gramming languages. A revisitation of the previous Max/MSP

clone detection study by Gold et al. [39] is performed in

order to scale the clone detection’s O(n2) pairwise matching

algorithm to a O(n) hash-based matching algorithm capable of

processing a large quantity of patch files. Furthermore, instead

of analyzing tutorial patches covering a wide variety of topics

and concepts in the language, the following clone detection

algorithm is used to locate duplicates or near duplicates of

object structures in the abundance of both Max/MSP and Pure

Data patches developed by computer musicians on GitHub.

A. Clone Detection Algorithm

The developed Max/MSP and Pure Data clone detection

algorithm operates with two levels of granularity, locating DF1

and DF2 type clones in patch subgraphs. Recall that a patch is

a directed graph consisting of objects (vertices) and patchcords

(edges). The clone taxonomy is as follows:

◦ DF2 clone: two subgraphs with the same object types

connected by patchcords to the same inlets and outlets.

◦ DF1 clone: two subgraphs that are a DF2 clone and, fur-

ther, the corresponding objects in each subgraph possess

the same literal values as default parameters.

Note that this clone taxonomy differs from Gold et al. [39]

in that the absolute and relative positions of objects are not

considered. In this research study we are solely interested in

which objects computer musicians interface with other objects

and are not concerned with situations where object position

affects operational precedence.

The clone detection algorithm, presented in Algorithm 1,

begins by parsing and translating Max/MSP and Pure Data

files into a graph data structure consisting of nodes and

edges. Using the resulting patch graphs as input, the proposed

clone detection algorithm begins by setting the granularity of

detected clones to either DF1 or DF2 clones. For each vertex

in each directed graph representing a Max/MSP or Pure Data

patch, the graph is traversed in a depth-first fashion. With each

traversal, the attributes of objects (type, parameters, number

of inlets, number of outlets) and patchcords (source object,

outlet number, sink object, inlet number) along the path from

the root vertex to the current vertex is compiled. Considering

the size of the dataset of Max/MSP and Pure Data patches,

the depth of paths considered by the clone detection algorithm

is limited to eight. Depending on the granularity of clone

detection, the gathered object and patchcord attributes are

filtered accordingly. For example, when searching for DF1

clones all of the patchcord attributes are necessary but the

parameters attribute of all objects should be discarded. The list

of objects, patchcords, and their attributes are stored in a JSON

data structure that is converted to text prior to hashing. Similar

to the hash-based matching algorithm proposed by Hummel et

al. [32], [33], this textual representation of the patch subgraph

is transformed using the MD5 hash algorithm. If the hash is

not unique, the subgraph is a clone.

Algorithm 1 Max/MSP and Pure Data clone detection

1: cloneLevel ← 1 or 2

2: hashes ← ∅
3: clones ← [ ]

4: i← 0
5: for all patch graphs do

6: for all objects in patch do

7: paths ← depth-first traversal from object

8: for all paths such that depth(path) ≤ 8 do

9: // gather attributes of path for clone granularity

10: attributes ← filter(path, cloneLevel)

11: hash ← MD5(attributes)

12: if hash ∩ hashes = ∅ then
13: hashes ← hashes ∪ hash

14: else

15: clones[i] ← path

16: i← i+ 1
17: end if

18: end for

19: end for

20: end for

21: return clones

To validate our implementation, the proposed clone detec-

tion algorithm was run on the dataset of 68 preprocessed

Max/MSP tutorial patches used by Gold et al. [39] and

received results similar to their algorithm: 31.8% of paths

are DF1 clones and 88.2% of paths are DF2 clones, while

Gold et al. report that 22.7% of paths are DF1 clones and

86.2% of paths are DF2 clones. Note that the slight increase

in clone counts reported by our algorithm is likely due to

the relaxed criteria for clone detection that disregards object

position information.



TABLE II: Clone counts in Max/MSP and Pure Data patches.

TYPE CLONE COUNTS PATHS CLONE PROPORTION

DF1 9,798,031 10,985,064 89.2%
DF2 10,462,725 10,985,064 95.2%
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Fig. 7: Clone counts for different Max/MSP and Pure Data subgraph
orders.

B. Experiment Methodology

The compiled dataset of 819 computer music repositories

used in Section III is also used as the dataset for the clone de-

tection experiment outlined in this section. This dataset of soft-

ware repositories contain approximately 118,000 Max/MSP

and Pure Data patches, 3 million objects, and 2.5 million

patchcords (Table I). The proposed clone detection algorithm

is run on the patches in the dataset once to locate DF1 clones

and once more to locate DF2 clones.

C. Results

The number of DF1 and DF2 clones detected by the

proposed algorithm is presented in Table II. Approximately 9.8

million DF1 clones and 10.5 million DF2 clones were detected

out of the roughly 11 million paths traversed by the algorithm.

From this analysis we note that 89.2% of connected object

subgraphs in Max/MSP and Pure Data patches programmed by

computer musicians are DF1 clones and 95.2% of connected

object subgraphs are DF2 clones. These clone proportions are

significantly higher than those reported by our algorithm on the

validation dataset of preprocessed Max tutorial patches. This

result is expected given the intentional variety of concepts and

object connections explored in the tutorial patches, whereas

patches created by computer musicians do not necessarily

utilize all the features of these visual programming languages.

The distribution of clone counts over the order of path

subgraphs is presented in Figure 7. The order of a graph

G = {V,E} is |V |, the cardinality of the set of vertices in

the graph. For example, Figure 7 reports that approximately

50, 000 of the DF1 clones detected in Max/MSP and Pure Data

patches created by computer musicians are composed of eight

connected objects. The resulting distribution of clone counts

reveals that as the order of subgraphs increase, the number of

clones decrease. Moreover, as the criteria for clone detection

becomes more relaxed—for example, as we move from DF1

to DF2 clone detection—the number of clones increase.

Among the millions of DF1 and DF2 clones detected within

the Max/MSP and Pure Data patches gathered from GitHub,

several commonly occurring clone structures (Figure 8) stand

out that emphasize common practices of computer musicians

and highlight idiosyncrasies of these visual programming

languages. The clone depicted in Figure 8 (a) is a Pure

Data envelope follower object, which outputs the amplitude in

decibels of an input audio signal. However, an output of 1 is

normalized to 100 decibels, and so many computer musicians

subtract 100 to reverse the normalization. Figure 8 (b) displays

a frequently occurring clone involving the loadbang object,

which fires a bang when the patch loads. The bang message

acts as a trigger for connected objects to start processing.

This clone triggers two bangs instead of one when the patch

starts, which suggests that the loadbang object should have

a parameter indicating the number of bang messages to output.

The following Pure Data clone shown in Figure 8 (c) outputs

the number 1 when the patch loads. In Max/MSP, an object

called loadmess exists to accomplish this task; however

it is not implemented in Pure Data. The clone depicted in

Figure 8 (d) is the identity function that simply outputs its

input. A possible explanation for the frequency of this clone

is that computer musicians create an identity function with

the intent to add functionality later but forgot. The clone

shown in Figure 8 (e) provides commentary on the point

in which some computer musicians choose to abstract code

fragments into functions. In this case, the clone is an overly

simplistic function that attenuates the amplitude of the input

signal. The clones in Figure 8 (f) demonstrate that computer

musicians often choose default parameters that have no effect

on the output—for example, multiplying a value by one—

or choose default parameters that zero a value or silence an

audio signal until an event occurs that changes the default

parameters. The clones in Figure 8 (g) display two methods

that computer musicians use to perform calculations: either as

a one-line expression using the expr object, or as a daisy

chain of mathematical operations. The clone displayed in

Figure 8 (h) is a high-pass filter—responsible for passing high

frequencies in audio signals—that is immediately followed

by a low-pass filter, which passes low frequencies in audio

signals. This configuration of objects is essentially a band-

pass filter, which already exists as a stand-alone object in

both Max/MSP and Pure Data. The clone shown in Figure 8

(i) demonstrates that computer musicians often use external

objects, such as this crossfade object in a popular Pure Data

library, to simplify common musical functions like fading out

one audio signal while fading in another. Finally, the clones

in Figure 8 (j) demonstrate that computer musicians often use

magic numbers such as 127—the highest value encoded in the

musical instrument digital interface (MIDI) protocol—or even

divisions of the mathematical constant π.

These clones are a mere subset of examples that offer

insight into the refactorings one could apply to Max/MSP

or Pure Data patches and the development tools that could



be adopted to ease end-user implementation. For instance,

with advice from a critic program [40] similar to Microsoft’s

Clippy [41], [42], computer musicians could be prompted to

leverage already existing functionality within the language.

Moreover, the detected clones could be used to create a

corpus-based code completion and search tool that suggests

similar object connections made by other computer musicians.

Furthermore, the high number of clones within patches (Ta-

ble II) is indicative of copy and paste programming techniques,

emphasizing the finding that source code is often repetitive in

structure [43], and reinforcing the importance of tools that

suggest similar code to copy and modify. These tools could

be generalized to other visual programming languages, such

as Matlab Simulink, to aid other end-user communities.

V. COMPUTER MUSICIAN SURVEY AND INTERVIEWS

A survey of 175 computer musicians and interviews with

15 computer musicians was conducted to gather more infor-

mation about this end-user community. Computer musicians

were recruited using relevant forums on www.reddit.com, the

Max/MSP and Pure Data forum boards, and several mailing

lists. Authors of the 819 computer music GitHub repositories

outlined in Section III were not used as the survey population

due to sampling bias, since all respondents would report

using version control. The surveyed computer musicians were

invited to respond to a series of questions regarding their

experience, motivations, programming methodology and use

of software engineering tools, as well as the support they seek

in the development process.2 As supplementary commentary,

those surveyed optionally participated in an interview over e-

mail or in person to provide a more detailed analysis of themes

investigated in the survey. No compensation was provided for

participating in the survey or interview.

A. Experience

The first series of questions prompted computer musicians

to reflect on how long they have been programming in the

2http://cs.ualberta.ca/ gburlet/musiccoders survey.html

context of computer music and introspectively assess their

skill level. Figure 9a presents the distribution of experience in

years of computer musicians. Of these computer musicians,

15 considered themselves beginner programmers, 84 con-

sidered themselves intermediate programmers, 74 considered

themselves advanced programmers, and 2 did not respond.

According to these responses, the computer music commu-

nity varies in experience, but predominantly consists of self-

reported intermediate and advanced programmers.

B. Motivations

The next portion of the survey prompted computer musi-

cians to reflect on their motivations for programming musical

applications. Of the computer musicians who responded to the

survey, 65% program musical applications as a hobby, while

the remaining portion of computer musicians write musical

code as a main source of income. If the majority of computer

musicians program in their free time, one would expect their

commits to occur more on weekends and be less frequent than

professional software developers. Indeed, the results procured

by the significance tests performed in Section III support

this claim. In addition, only 40% of computer musicians

who responded to the survey write music software for other

individuals or companies. This response was resonated in the

interviews with computer musicians, where the majority of

interviewees advocated that music projects tend to be highly

personal and follow the creative vision of one musician.

C. Programming Methodology and Source Control

The following portion of the survey prompted computer

musicians to reflect on how they program. First, computer

musicians were asked which programming languages they

typically use for music application development. Figure 9b

presents the top five languages used by computer musicians

who responded to the survey. According to the responses,

Max/MSP and Pure Data are the top two programming lan-

guages used by computer musicians.

Second, computer musicians were asked if they write tests

for their musical code, to which 30% responded yes. Tests

Fig. 8: Thirteen noteworthy clones detected in Max/MSP and Pure Data patches programmed by computer musicians.
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Fig. 9: Computer musicians’ responses to selected survey questions.

may be written for user or device interfaces, infrastructure and

logic code, or attributes of the sounds produced. A possible

explanation for the large proportion of computer musicians

who do not write tests is that it may be difficult to express

desired qualities of a sound as a quantifiable property that can

be asserted in the context of a test.

Next, computer musicians were asked if they comment their

music-related code. Of the surveyed computer musicians, 34

barely comment their code, 94 provide comments on key

functions, 44 extensively comment their code, and 3 did not

respond. Within the dataset of 819 repositories containing

Max/MSP and Pure Data patches, there exists 505, 236 com-

ment objects out of the 3, 087, 278 objects in the dataset (see

Table I), which provides empirical evidence that computer

musicians do comment their musical code.

Computer musicians were then asked if they use source

control repositories, to which 54% responded yes. The top

5 source control systems used by computer musicians are

outlined in Figure 9c, which reveals that nearly all computer

musicians who use source control use Git. With roughly half

of computer musicians not using source control repositories,

we turn to interview responses for possible explanations:

◦ “I’m still trying to figure out how best to work with it.”

◦ “It hasn’t really seemed necessary; lack of backup for

previous versions hasn’t really caused me any significant

problems.”

◦ “No one else really uses my code, so versioning isn’t a

priority for me.”

These responses indicate that source control systems may be

avoided by the computer music community due to a lack of

technical understanding of the tool, a lack of understanding of

the merits of the tool, or because collaboration is unnecessary

in their computer music endeavours.

D. Development Support

The final portion of the survey prompted computer mu-

sicians to report the knowledge sources they consult for

development support. Of the surveyed computer musicians,

only 26% use www.stackoverflow.com, a popular question and

answer website for software development. If the majority of

computer musicians don’t use www.stackoverflow.com, which

knowledge sources do they consult for aid? Interviews with

computer musicians revealed that search engines are first

used before consulting their community through mailing lists.

Indeed, 54% of the surveyed computer musicians subscribe

to mailing lists. These results indicate that the community

of computer musicians could benefit from more knowledge

sources for support, such as a question and answer website

dedicated to computer musicians.

In summary, the survey and interviews revealed that the

community of computer musicians consists of predominantly

intermediate and advanced programmers who typically pro-

gram musical applications in Max/MSP and Pure Data as a

hobby for their own musical works. These end-user program-

mers comment their code, infrequently write tests, and roughly

half use source control systems. Furthermore, the computer

music community is more reliant on mailing lists than sites

such as www.stackoverflow.com for support.

VI. THREATS TO VALIDITY

A possible threat to validity of the statistical tests in

Section III is the sampling methodology. Only public data

observable on GitHub was collected with the assumption

that computer music repositories on GitHub are assumed to

be a representative sample of the development practices and

software artifacts of computer musicians. Although computer

musicians who contribute to source control repositories may

exhibit more proficiency in software engineering tools than

other community members, the conclusion that they are also

more technically proficient is unwarranted. Moreover, the

assumption is made that developers who use GitHub are

representative of the greater population of developers and that

repositories unrelated to music are assumed to be a represen-

tative sample of the practices of general software developers.

Furthermore, Kalliamvakou et al. [21] estimate that a third

of repositories hosted on GitHub are not necessarily software

projects but rather experimental sandboxes, academic projects,

or file stores. Our random sample of GitHub repositories is not

filtered to remove such repositories; analogously, the collected



computer music repositories are not filtered to remove patches

that appear experimental or academic in nature.

A possible threat to validity of the clone detection experi-

ments conducted in Section IV arises from mixing Max/MSP

and Pure Data patches: a handful of objects have the same

functionality but have different names in Max/MSP and Pure

Data. For example, in Max/MSP the oscillator object is called

cycle∼, while in Pure Data the same object is named osc∼.
Although clones involving these different objects should be

detected because they are semantically equivalent, they will

remain undetected due to the different object names; thus,

clone counts are likely underestimated.

The survey and interview recruitment strategy also invites

a possible threat to validity since the sampling of certain

computer music sub-communities may bias results.

VII. FUTURE DIRECTIONS

This research provides a glimpse into the operations and de-

velopment practices of this end-user community and provides a

foundation to develop and tailor existing software engineering

tools for visual programming environments. Currently there

are no software development tools explicitly tailored towards

visual programming in languages such as Max/MSP or Pure

Data, apart from external code libraries. Computer music

end-user programmers could benefit from tools such as code

completion, where object insertions in patches are intelligently

suggested based on the context of the current patch or other

music patches; code critics, which assess the semantics of

recently connected objects and suggest alternative refactorings

or abstractions; code search, which could provide references to

similar object structures within their repository or other com-

puter musicians’ repositories; the adaptation of text-based code

highlighting tools [44] to highlight important object structures

to aid patch navigation; visual code clustering, which could

group objects based on their abstract musical function and

modify the layout of the patch accordingly; and music software

testing frameworks to facilitate any quantitative tests necessary

within musical patches. Further mining of computer music

repositories containing textual source code could reveal other

software development tools that are unavailable to visual music

programmers. The aforementioned tools could be generalized

to benefit other end-user communities using visual program-

ming languages.

This research study also revealed interesting facts about the

collaboration tendencies of computer music end-user program-

mers. The conducted survey and interviews showed that only

half of computer musicians use source control systems for

various reasons. In response to these findings, we encourage

future research on adapting current revision control systems

and source code difference tools to better handle visual patch-

based source code by focusing on what the patch encoding

represents rather than the patch encoding itself. It is our

hope that adapting these software engineering tools to satisfy

the needs of computer musicians will facilitate collaboration

within this end-user community.

Finally, this research study indicates that the education

of computer musicians about software engineering tools and

methodologies is an important next step. The interviews in-

dicate that a subset of this end-user community are either

unfamiliar with currently available software engineering tools,

lack the technical proficiency to use them, or do not acknowl-

edge the merits of introducing such tools into their software

development practices. Thus the software engineering research

community can contribute much to this end-user community.

VIII. CONCLUSION

A multifaceted study of computer music programmers has

been conducted to gain insight into how this community of

end users develop music patches written in the Max/MSP and

Pure Data visual programming languages.

The first facet of analysis was a comparison of the software

development practices of computer musicians and the general

population of software developers. Using a dataset of Git

repositories hosted on GitHub, a series of statistical tests

established that in comparison to the general population of

software developers, computer musicians’ repositories have

less commits, less frequent commits, more commits on the

weekend, yet similar numbers of bug reports and contributing

authors. These differences are attributed to the cultural differ-

ences in sharing intellectual property or the lack of education

surrounding the merits or use of version control systems.

The second facet of analysis was an investigation of cloned

code and repeated object structures in visual music program-

ming languages. When run on 118, 481 Max/MSP and Pure

Data patches, the algorithm detected that 89% of connected

objects are DF1 clones (object types, parameters, and connec-

tions are equivalent) and 95% of connected objects are DF2

clones (object types and connections are equivalent). Several

clones discovered in source code programmed by computer

musicians were re-implementations of already existing objects

in Max/MSP and Pure Data.

The final facet of analysis investigates, via surveys and inter-

views, how computer musicians build their software and which

software engineering tools they use. The surveys reinforced

that computer musicians do not necessarily use source control

repositories or bug trackers. Furthermore, computer musicians

lack a dedicated support website for posing questions and

answers to the entire computer music community and instead

subscribe to mailing lists for support.

Now that an empirical study of computer music program-

mers has been conducted, more work can be done to edu-

cate computer musicians and develop software engineering

tools for this end-user community and others using visual

programming languages. For more details about the results

and analyses presented in this paper, please see the technical

report [45].
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