
Measuring fine-grained change in software: towards modification-aware change
metrics

Daniel M. German Abram Hindle
Software Engineering Group
Department fo Computer Science

University of Victoria

Abstract

In this paper we propose the notion of change metrics,
those that measure change in a project or its entities. In par-
ticular we are interested in measuring fine-grained changes,
such as those stored by version control systems (such as
CVS). A framework for the classification of change metrics
is provided. We discuss the idea of change metrics which
are modification aware, that is metrics which evaluate the
change itself and not just the change in a measurement of
the system before and after the change. We then provide ex-
amples of the use of these metrics on two mature projects.

1. Introduction

Measuring change is important for several reasons: it
can help managers understand the direction that the soft-
ware product is taking , and help evaluate the work done
by the different members of the development team; met-
rics can also help developers improve their programming
and design practices and to forecast where change or test-
ing needs to occur (for examples of this see [12, 20, 10]);
and metrics can help researchers trying to understand how
software evolves.
In order to measure change it is not uncommon to mea-

sure the system at two points in time before and after an
event or time interval and then compare the measurements.
The expectation is that this comparison will tell us some-
thing about how the system has evolved during the observed
period. The Cyclomatic complexity measure [14] is com-
monly used in this manner as a way to detect erosion in a
software system.
Version Control Systems (VCS) are now at the core of

the development of most software systems. These reposito-
ries keep track of every change to the source code and an-
cillary files, such as documentation. VCS also record meta-
data about these changes: at the very least who committed
the change, and the date, and possibly an explanation of the
change. It is therefore possible to inspect every change to

any file. At the same time, the free and open source soft-
ware movements have provided researchers access to their
VCS repositories, allowing them to retrieve and analyze
these histories in the hope of, first, doing some case stud-
ies of real software evolution, and second, in understanding
how programmers work and software evolves.
There are been many attempts to mine and visualize

this information (for an survey of mining and visualiza-
tions methods see [9, 17]). One problem is clear: there
is too much data available. For example, by Aug. 2003
the Mozilla project was composed of roughly 35,000 files
which have been modified approximately 450,000 times in
5.5 years of development by almost 500 different develop-
ers. Inspectors must be able to filter this information such
that they are able to observe the most significant part. What
significant is depends upon, of course, the data available,
the role of the inspector and her goal (the what, who, and
why, respectively). Metrics are needed that can the measure
the changed object (the what), and that can yield meaning-
ful results which can be used to explain thewhy. The inspec-
tor will be able to concentrate on those changes which are
more relevant to her task, and hopefully, reduce the amount
of information to be sifted through.
We define change metrics as metrics that can be used to

measure how much a software system has been modified
between two versions of it. This modification can be fine
grained (a handful of lines of code in few files done by one
developer to complete a task), or more coarse grained, like
the differences between two releases of the system, spaced
by several months. As we described above, any traditional
software metric can be converted into a change metric by
measuring before and after a change and the comparing the
results. The problem with this technique is that the origi-
nal metric might not very meaningful as a change metric.
For instance, assume that we compute, for a given file, the
LOCs and the number of its functions before and after, and
then compute the difference of this values (the resulting val-
ues are our change metrics: “difference in LOCS” and “dif-
ference in functions”). We hope that these two numbers will

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

tell us something about the evolution of the file. Unfortu-
nately they can be misleading: a programmer might have
rewritten the file in its entirely, and by coincidence the num-
ber of LOCs and functions are the same. The number of
LOCs and functions of a file are a meaningful metric when
applied to one instance of a file, but when used as change
metrics their limitations have to be understood.
The main contributions of this paper are, first, the no-

tion of change metrics; we then provide a framework for
classification of metrics based on the type of change that
they measure, and whether the metric is aware that it is used
to measure change; and, finally, we argue that new metrics
are needed that take into account and effectively measure
change.
The organization of this paper is the following. In sec-

tion 2 we describe previous work in the area. In section 3
we provide a framework to organize and classify change
metrics based on the type of change that they measure. In
section 4 we classify metrics based on their awareness to
change. In section 5 we illustrate the use of change met-
rics in several mature projects. We end with a brief discus-
sion of future work and our conclusions.

2. Previous and related work

There is an ample body of knowledge in the area of soft-
ware metrics. Purao and Vaishnavi provide a comprehensive
overview of traditional software metrics and those intended
for object oriented system [16]. Lehman et. al exemplify the
use of metrics to understand the evolution of software. Their
metrics are coarse-grained, as they are based in regularly-
spaced snapshops of the code [13]. Many studies have used
releases and count their LOCs to analyze the change and
evolution of a large software system (for example [11, 8]).
Tu and Godfrey used traditional software engineering met-
rics such as LOCs, cyclomatic complexity, fan-in, fan-out,
S-Complexity, D-Complexity, etc, to track changes and the
evolution of software at the release level [18]. Ball et. al
proposed some of the first metrics and visualizations for
changes stored in a VCS (in this case CVS), and proposed
using “cluster analysis” to measure the probability that two
classes are modified at the same time; they proposed also
the use of time series analysis on the measurements ex-
tracted from CVS [2]. In [4] Eick et. al proposed “change
decay indexes”; several of them are weighted averages of
the count of entities after each modification, according to
the modification records of a VCS (they counted delta of
LOCS, number of files involved in the modification, to-
tal number of developers responsible for a set of modifi-
cations). In [15] Meli proposed the use of change metrics
to estimate effort, duration and costs. Atkins et. al proposed
metadata-based metrics, in which the changes were cate-
gorized into 4 types: NEW, BUG, CLEANUP, INSPECT.

They also proposed metrics based in the amount of time in-
vested by the contributor to complete the change [1]. In [3]
Draheim proposed VCS oriented metrics (for CVS), such
as computing LOCS per revision. In [7] we proposed met-
rics based in VCS recorded data to show relationships be-
tween files and authors.

3. Change Metrics

A version control system’s responsibility is to record
every modification made to the source code. Usually this
means tracking what the modification was, who made it,
and the description of the modification (as provided by the
developer). A modification is submitted by a developer and
typically involves several files. We will refer to this type of
modification as a “Modification Record” (MR). From the
point of view of a developer, an MR is considered to be
atomic (even if the version control system is not really trans-
action oriented). An MR is a set of file modifications (also
known as file revisions), plus some metadata associated
with it. These relationships are depicted in figure 1. Many
VCS systems permit the creation of “branches”, which are
alternate development paths. For the sake of space we do
not discuss branching in this paper.

MR

Revision

Author

File

1

1

1

*

*

*

Figure 1. Relationships between different en-
tities involved in an MR of a VCS

In order to describe our metrics we need to introduce our
notation.

• ei is the i-th revision of the entity e as stored in the
main branch of a version control system. An entity can
be a file, a class, an object, a method, etc.–whatever ob-
ject is uniquely identifiable by the system.

• εei
denotes ei and its previous revision (as stored in the

VCS) ei−1.

• MR denotes an MR and it is composed of a set of re-
visions of files and some extra metadata (such as the

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

author, date, etc). Each of its attributes is denoted by
MR.attribute. By extension anMR can be further de-
composed into the entities included in each file the MR
includes.

Metrics for change can be organized in the following di-
mensions, which take into account what is measured and
when the measurement takes place:

• Entity metrics: they apply only to two versions of the
same entity and measure the difference between them.

• MR-scoped metrics: they apply to the components of
an MR before and after it. These metrics measure the
“amount of change” in the MR. MRs correspond to the
minimum amount of measurable work.

• Time-based metrics: the metric is computed at two or
more given points in time, usually separated by a con-
stant time interval This type of metric can be applied to
a given entity, a set of entities (such as a functions, files
or modules), or the entire project. Time-based metrics
measure the amount of change during a given time in-
terval.

3.1. Entity change metrics

Entity change metrics measure how much a given entity
has evolved. This class of metrics is computed using two
versions of the entity:

δ(ei, ej) = Delta(ei, ej)

Change metrics might have more parameters, but they
have no impact in our discussion and we will, therefore,
not model them explicitly. The function Delta denotes the
function that takes as parameters the two versions of the en-
tity. For example, a entity metric that computes the number
of LOCs added in file revision ei can be defined as:

DeltaLOCs(ei, ei−1) � LOCS(ei) − LOCS(ei−1)

In other words, the number of LOCS added by a revision is
equal to the LOCS in the “after” version minus the LOCS
in the “before” version.
This type of metric is commonly used to compared an

entity to its predecessor (ei and ei−1). For the sake of no-
tation, if only one parameter is used in Delta, the other is
assumed to be its immediate previous version. The LOCS
metric can then be rewritten as follows:

DeltaLOCs(ei) � LOCS(ei) − LOCS(ei−1)

Examples of more complex metrics are: computing the
difference of the number of functions or methods in the file
before and after the modification, or computing “how dif-
ferent” the AST of a function, or the equivalent UML dia-
gram of a class are. The domain of theDeltawill vary from
metric to metric.

An interesting variant of the entity metric uses as input
the difference between its two versions, instead of their ac-
tual values (most version control systems, like CVS, store
the difference between two immediate revisions of a file
rather than the entire file version; when a user requests a
particular version of a file, it needs to be recomputed). More
formally, where difference is a function that computes a
difference between two entities (such as the diff com-
mand in Unix :

Deltadiff (ei, ej) � f(difference(ei, ej))

The CVS’s “lines added”, and “lines removed” change
metrics fall into this category).
Entity change metrics apply only to two versions of the

same entity. They do not inspect the rest of the system, or
any other version of the entity.

3.2. MR-scoped change metrics

We consider an MR the minimum amount of work a de-
veloper can get a VCS to record. An MR-scoped change
metric operates on the set of files that compose an MR, and
is defined as a function that maps a set of file revisions to a
metric domain (where f is a file entity):

δ(MR) = Delta(εf1
n
, ..., εfk

z
) where εfi

j
∈ MR

MR based metrics might rely on the use of entity met-
rics. For example: computing the average number of LOCS
added in an MR. We can define this metric as:

DeltamrLOCS �

∑
fi∈MR(DeltaLOCs(fi))

|MR|

Notice that by definition MR-scoped change metrics can
only inspect the file revisions that compose a givenMR (and
the entities these file revisions contain).

3.3. Time-based change metrics

Time-based metrics measure the evolution of the system
at given points in time: at each point the metric is com-
puted with respect to the previous point. Assume we are
interested to measure the change in e at times t0, t1..., tn
s.t. ti < ti+1. First it is necessary to find the versions of
e (ei for i = 0..n) at every time point ti, such that, for ev-
ery i there does not exist another version ek of entity e, such
that time(ek) > time(ei) and time(ek) < ti.
The metric is computed using the list of entities thus

computed. Formally, for any list of times timesList =
〈t0, t1..., tn〉 s.t. ti < ti+1, and an entity e:

∆(e, timesList) = Delta(〈t0, e0〉, 〈t1, e1〉, ..., 〈tn, en〉)

The result of this metric is a time series (a list of
〈time,metricV alue〉 tuples), but could potentially be a

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

single value (for example, by computing a weighted av-
erage of the metric over time). “Change decay indexes”
(defined in [4]) are an example of this type of met-
ric. This type of metric can be applied at any level of
granularity: a method, a file, a class, a package, or the en-
tire system.

3.4. Event-triggered change metrics

There is a special type of time-based change metric that
is so frequently used that it deserves its own classifica-
tion: event-triggered change metrics, in which a sequence
of at least two events define the times when the measure-
ment takes place. For example, if the event is an MR then
the metric is computed before and after that MR (MRs are
atomic). The events are organized in chronological order.
Formally, for any list of events eventList occurring at times
t0, t1..., tn s.t. ti < ti+1, and an entity e:

∆(e, eventList) = Delta(〈t0, e0〉, 〈t1, e1〉, ..., 〈tn, en〉)

Examples of event-triggered change metrics are “com-
pute the number of new methods since the last release”,
“compute the difference of LOCs between every release
in the system” , “compute the cyclomatic complexity ev-
ery time class A is modified”. Table 1 lists several potential
events that can trigger the measurement of an entity.

3.5. Change metrics that do not measure code

One important feature of change metrics is that code is
only one of the entities that can be measured. The metadata
of the MRs can provide valuable information. For example
Atkins et al. used the description of MRs to classify them
into NEW (new feature), BUG (defect fix), CLEANUP (re-
structuring and cleanup of code), INSPECT (defined as a
mixture of defect fix and cleanup) [1].

4. Awareness of metrics to change
As we have described, every type of change metric de-

pends on a Delta function that takes as parameters two or
more versions of the entity to be measured and then com-
putes a metric value. The Delta function can be of two
types:

• Modification-unaware. TheDelta function is defined
in terms of a metric that has been created to measure
only one version of a given entity. The change met-
ric is computed by independently analyzing each en-
tity’s version, never directly comparing one to another.

• Modification-aware. The Delta function is aware of
the versions of the artifact to be measured. The Delta

function is computed by inspecting and potentially
comparing each of these versions.

We now proceed to describe each type in detail.

4.1. Modification-unaware metrics

Modification-unaware metrics measure the difference in
a metric (when applied to two or more versions of an entity)
rather than how different two versions of the entity are. In
this type of metric Delta is computed via a comparison of
the independent application of the metric to each of the ver-
sions of the entity in question. ThisDelta does not have si-
multaneous access to each version, as it will never compare
the versions of the entities to each other. This change met-
ric uses a metric that is not aware of the notion of change
(like most of the metrics in common use in software engi-
neering). Modification-unaware metrics are represented in
figure 2. Formally, for a pair of versions ei and ej of en-
tity e:

Delta(ei, ej) � θ(µ(ei), µ(ej))

Where µ is a metric that can be applied to an entity e. θ
is a comparison function that will depend on the domain of
µ and the domain of Delta. Modification-unaware metrics
are by definition indirect metrics.

Before After

Metric Metric

Change Metric

Change Measure

Figure 2. Modification-unaware metrics.

DeltaLOCs (defined in section 3.1) is an example of
a modification-unaware metric. Table 2 describes several
types of modification-unaware change metrics based upon
object-oriented metrics. These change metrics depend upon
measuring (using the OO metric, which takes the place of µ
in the previous equation) the version of the entity (a class, a
method, a package, the entire system, a file) before and af-
ter, and then computing some measure of the difference of
these values (the θ in the previous equation), either as an
absolute number, or as a ratio of change (by taking into ac-
count the size of the object being measured).

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

Event Use
Releases Releases of software have been frequently measured in research for the purpose of analyzing

its evolution. One of the main reasons of their popularity is that they are easily available and
each provides a complete snapshot of the system (for example [11]).

Entity Any modification to a given entity (file, class, method, function, etc) triggers a measurement
of itself or another entity.

Metric-based event The system is measured after every change, and if the resulting value satisfies a given condi-
tion then another metric is computed and recorded. For example, measure the system every
time a new class is added to the system.

Author-based Any modification made by a given person is measured. This is a special case of metric-based
change, but it is frequently used and we believe it deserves to be in a category by itself. Many
visualization tools take advantage of this metric [5, 19, 6].

Table 1. Some events that can trigger event-triggered change metrics

Name Description Rational
Delta in the count of
〈entityType〉

The total count of 〈entityType〉 is computed after and before, and
then the difference is calculated and this value becomes the re-
sult of the metric. 〈entityType〉 could be methods, classes, mes-
sages sent, server-type classes, client-type classes, client/server
type classes.

Measures absolute
amount of change.

Ratio of change of
〈entityType〉

The total count of 〈entityType〉 is computed after and before and
the difference is prorated with respect to the same metric or an-
other one, applied to the “after” version. For example, the ratio
of change in the number of classes with respect to the total num-
ber of classes in the system, or the ratio of change in the number
of classes with respect to the total LOCs in the system.

Measures the rela-
tive amount of change.

Change in measurements Another metric is computed after and before, and the difference
reported. For example, the change of Cyclomatic complexity (this
type of metric could be considered a generalization of the ones
above).

Measures change using
the difference in the re-
sults of a another metric,
rather than by counting
the entities.

Table 2. Modification-unaware metrics based on OO Metrics

4.2. Modification-aware metrics

In modification-aware metrics the Delta function is
computed by analyzing and comparing, at the same time,
the different versions of the entity and it is not reducible to
a modification-unaware metric. Modification-aware met-
rics are capable of measuring the actual change , in the
parts of the system that are different between the ver-
sions of an entity . Modification-aware metrics have no
way to distinguish what has been altered from one ver-
sion to another. Modification-aware metrics are depicted in
figure 3.
CVS uses one of the simplest modification aware met-

rics. It records the number of lines added and the number
of lines removed in a file revision. An example of a CVS
change is depicted in figure 4: the left hand side shows the
version of the code before, and the one on the right side

Before After

Change Metric

Change Measure

Figure 3. Modification-aware metrics.

shows the version after. Two lines has been modified (if
(strlen(... and the one following one) and one line has been
added (the last one, with the }). CVS records a line that has
been modified as 1 deleted line and 1 added line. As a con-

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

sequence, the number of LOCs removed in the revision is 2
(the 2 lines modified) and the number of LOCs added is 3 (2
lines modified + 1 new line). A modification-unaware met-
ric that measured LOCs before and after will yield a value
of +1, and cannot be used to calculate lines added and lines
removed. Table 3 lists some modification-aware metrics.
Modification-aware change metrics are generally more

difficult to compute than modification-unaware primarily
because they need to compare two or more versions of the
file, not one, and measure those parts that are different be-
tween the versions.
Modification-aware metrics are not more important than

modification-unaware metrics. Both tell a part of the story,
and, as it is common when measuring a system, several met-
rics should be used in order to get a better view of the evo-
lution in the system.

4.3. Further observations

One important question is how do the first 3 classifica-
tions of metrics (entity, MR-scoped, time-based) relate to
modification-unaware and modification-aware metrics.
One can argue that entity metrics are special cases of

time-based ones: they measure two different versions of an
entity at different times. We believe, however, that given
that they are not aware of time (they only take 2 versions of
the same entity as a parameter) they deserve their own cat-
egory. Both entity and time-based metrics can be modifica-
tion aware or unaware. It is possible to define a modification
aware time-based metric based upon a modification aware
entity metric. Furthermore, entity based metrics take only
two versions of an entity as parameters, while time-based
ones take a list of size>= 2. Even when they are applied to
only two versions of an entity, the fundamental distinction
between both is that a time-based metric can take into ac-
count the time elapsed between the two versions, while the
entity metric cannot.
What is the use of the classifications discussed herein?

One important benefit of these classifications is to under-
stand the implications of a given change metric. For in-
stance, any metric that measures an entity can be converted
into a modification-unaware metric. Also, a system that
computes modification-unaware metrics of the evolution of
a system does not need to store or retrieve the versions to
be compared: the metric can be computed in advance, for
example while the change is submitted; when it is neces-
sary to compute the metric between the two versions it is
only needed to retrieve the corresponding values for each
version. This could have an significant impact in the perfor-
mance of the measurement.
Time-based metrics result in time series, and time se-

ries analysis has been used to define new metrics based on

known ones (for example, computing running averages of
the value of a metric).
Another observation is that there are very few

modification-aware metrics that are not based in
modification-unaware ones. It is clear that more work
is needed in this area.

4.4. Measuring Coupling in change

Couplings are a measure of how frequently one given en-
tity is modified at the same time as another one (usually dur-
ing the same MR) . For example, two files or two meth-
ods are usually modified together in several MRs by the
same developer. The fact that two entities are modified fre-
quently together could suggest an existing relationship be-
tween them. Couplings are a special kind of event-triggered
change metrics (the event is “when these 2 entities are mod-
ified together”). Table 4 lists some important types of cou-
plings. Several papers have used couplings to analyze trends
or forecast the future. For example [12, 20, 10] used cou-
pling change metrics to forecast where change will occur.

5. Examples of the use of change metrics

In this section we demonstrate the use of different change
metrics in two mature open source systems. Our objective
is to show some examples in which a modification-unaware
and modification-aware metrics give potentially contradic-
tory results, and to demonstrate some MR-scoped metrics.
We also show some visualizations that are created using
change metrics For this section we based our measurements
on the analysis of their version control systems (RCS and
CVS). Our methodology can be summarized as follows:

1. We extracted and saved all metadata for all the revi-
sions of all the files in the system. We also recon-
structed the MRs (CVS does not store this informa-
tion).

2. We retrieved every version of every file from the repos-
itory and saved it for further processing in a relational
database.

3. We created scripts to extract and measure these sys-
tems.

5.1. dcraw

We start by examining a small project. dcraw is a pro-
gram used to decode RAW images from high-end digital
cameras and it is widely used under Linux (where there
is no other equivalent tool, http://www.cybercom.
net/˜dcoffin/dcraw/). It is a single file, single au-
thor project that has been modified 207 times in 7 years.
The project started in Feb 1997 and we measured it in

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

Figure 4. LOCS added and removed in a CVS file revision.

Type Description Rational
Moved entities Identifies moved entities in the change Identifies code that was moved from one place to an-

other (in the same file, in different files, or in dif-
ferent modules). It can help identify restructuring or
refactoring in the system.

Renamed entities Identifies renamed entities Identifying renamed entities is important, otherwise
they can be counted as code removed and then
added. Also a moved entity often refers to some kind
of change in structure.

Changed entities Identifies entities that have been changed This is a typical operation in which code is added
without any change in the structure of the system.

Added or re-
moved enti-
ties

Identifies added or removed entities Help identify major changes in the system, such as
addition of new features, or the removal of dead
code.

Cloning Amount of cloned code added or removed in
the change.

Identifies potentially redundant code.

Table 3. Examples of types of modification-aware metrics

Sept. 2004. Figure 5 shows three MR-scoped metrics: LOCs
added, LOCs removed, and LOCs added - LOCs removed
(for every one of the first 100 MRs). In some MRs (such
as the first 10) the total for LOC Added - LOC Removed (a
modification-unaware change metric) becomes close to zero
because the value of LOC Added is almost the same as the
value for LOC Removed (both modification-aware change
metrics).

We also computed the number of added, removed
and modified functions during each MR (all modifica-
tion aware). To determine the number of changed functions
we used the following procedure: we removed comments
and empty lines, then standardized the indentation of ev-
ery version of every file (the rational was that we wanted
to avoid formatting based false positives); we then pro-
ceeded, for every version of the file, to extract each of its
component functions; next, we determined for each func-
tion if it was still present in the next version, and if so,
compared the two versions trying to detect a change, other-
wise it was considered removed. If a function was present
in the new version but not in the previous it was consid-

ered to be added. The resulting measurement is depicted in
figure 6.

With the exception of few MRs, most MRs add very
few functions. On the other hand, several functions are usu-
ally modified. We found that the most modified function
was main (173 times, 84%) followed by identify (79 times,
38%). Further inspection revealed that the change to main
was usually because the program version is printed every
time the program is run, and the corresponding string is lo-
cated inside the body of this function (e.g. Raw Photo De-
coder ”dcraw” v5.90). Moving this string to a #define at the
top of the file will significantly reduce the number of func-
tions observed to have changed. The changes to identify tell
a different story: every time a new digital camera is sup-
ported by dcraw this function is usually changed, thus its
modifications reveal more about the evolution of the project.
It is also interesting to observe that the peaks of both graphs
do not usually coincide. For example, at MRs 21, 66 and
70 there is a large jump in the number of functions modi-
fied. Yet, the number of lines changed remained very low.
This could suggest code reorganization or defect fixing.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

Description Metric Rational
Coupling between two entities (such as
file, class or method) in the same MR

The proportion of the MRs in which
both entities occur

Indicate that these files might be re-
lated in some way.

Coupling of author to entity Proportion of revisions made by a
given author to the total number of re-
visions of the given entity. The entity
can be a module, a file, a class, etc.

Suggests code ownership.

Table 4. Examples of Coupling metrics

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

L
OC

MRs

LOC Added - LOC Removed
LOC Added

LOC Removed

Figure 5. LOCs added and removed per MR for dcraw.

5.2. PostgreSQL

In Sept. 2004 we processed the CVS repository of Post-
greSQL, a free software database management system. Un-
fortunately its CVS repository only records its history from
July 1996 (version 1.02). Its developers did not use CVS
prior to this date. Its CVS repository included 5581 files
which were modified 91740 times by 27 different contrib-
utors. We created various charts and graphs using change
metrics. Our goal was to demonstrate that change metrics
can also be used for visualization purposes. Figure 7 shows
a time-based change metric. In this case we computed the
number of different authors of MRs per month during the
life of the project. This plot shows that the number of active
authors has varied widely. Figure 8 shows a visualization of
change in a module (backend) during the month of Feb. of
2002. Files are represented with rectangles an they are con-
nected to the directory they belong to. The darker a file is,
the more it has been modified (event-triggered change met-
ric). The purpose of this visualization is to show the areas
of the project being modified.
Figure 9 uses a coupling metric. The ovals correspond

to authors, and the squares are files. An author and a file
are connected if the author has modified the file; the thick-
ness of the line is proportional to how many times this has
occurred. The files are coloured according to the module

Figure 8. Use of change metrics in the visu-
alization of change. This visualization corre-
sponds to Postgresql during Feb. of 2002 and
depicts the files in the backend one module.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

-10

-5

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

M
eth

od
s

MRs

Methods modified
Methods Added

Methods Removed

Figure 6. Methods added, removed and modified for dcraw.

 2

 4

 6

 8

 10

 12

96/01 97/01 98/01 99/01 00/01 01/01 02/01 03/01 04/01 05/01

Au
th

or
s

Date

Authors for postgresql

Figure 7. Number of authors per month for the PostgreSQL.

they belong to. This visualization corresponds to activity
during January of 2002. The objective of this visualization
is to show code ownership, and potential areas of conflict.
As it can be seen, the PostgreSQL authors maintained, dur-
ing January of 2002, strict ownership of the code they main-
tained.

6. Future work

Change metrics based on traditional software metrics
have been widely used to study software evolution, but there
is little known about their usefulness for this purpose, par-
ticularly when they are applied to fine-grained software
modifications (such as MRs). It is also important to try to
define more modification-aware change metrics which can
provide more insight into the actual change that occurs to a
system.
The implementation of these metrics is also impor-

tant. One of the main impediments to empirical stud-
ies of modification-aware change metrics is that creating
and implementing algorithms that detect additions, modi-
fications and deletions in two versions of an entity is not
easy and is, unfortunately, language dependent. The cost
of modification-aware change metrics should also be stud-

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

Figure 9. Use of coupling metrics in the visu-
alization of change.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

ied: the older a system is, the more changes that have to
be analyzed. This analysis could lead towards the defini-
tion of more efficient algorithms, or at least to a classifica-
tion of “metrics for change” based upon their computational
cost. The visualization of these metrics is also a very im-
portant area of research. Empirical studies should be
performed to help us understand how metrics can be corre-
lated to the actual change of a system, and hopefully when
they are useful or not.

7. Conclusions

We have presented a framework to classify metrics for
change. We have divided them into four types, depending
upon how the metric is applied: entity metrics (which mea-
sure change in a given entity), MR-scoped metrics (which
measure change in a given modification record as recorded
by a version control system), event-based metrics (the mea-
surement is taken when a given event happens), and time-
based metrics (when the metric is taken as evenly spaced
time intervals). We also classify metrics that are aware of
being used to measure change (modification-aware metrics
take into account the version of the entity before and after
a change) and those that do not (modification-unaware met-
rics). We have argued that modification-aware metrics pro-
vide better (albeit not necessarily complete) insight into the
actual changes that a system is enduring.

Acknowledgments

We want to thank the reviewers of this paper for their
thoughtful comments. This research has been supported by
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version
control data to evaluate the impact of software tools: a case
study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, 2002.

[2] T. Ball, J.-M. K. Adam, A. P. Harvey, and P. Siy. If your ver-
sion control system could talk. In ICSE Workshop on Pro-
cess Modeling and Empirical Studies of Software Engineer-
ing, 1997.

[3] D. Draheim and L. Pekacki. Process-centric analytical pro-
cessing of version control data. In Sixth International Work-
shop on Principles of Software Evolution (IWPSE’03), pages
131–136. IEEE, 2003.

[4] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data. IEEE Transactions on Software
Engineering, 27(1):1–12, 2001.

[5] S. G. Eick, J. L. Steffen, and E. E. Summner Jr. Seesoft—
a tool for visualizing line oriented software statistics. IEEE
Trans. on Software Engineering, 18(11):957–968, 1992.

[6] D. German, A. Hindle, and N. Jordan. Visualizing the evolu-
tion of software using softChange. In Proc. of the 16th Inter-
nation Conference on Software Engineering and Knowledge
Engineering (SEKE 2004), pages 336–341, 2004.

[7] D. M. German. An empirical study of fine-grained soft-
ware modifications. In 20th IEEE International Conference
on Software Maintenance (ICSM’04), pages 316–325, Sept
2004.

[8] D. M. German. Using software trails to reconstruct the evo-
lution of software. Journal of Software Maintenance and
Evolution: Research and Practice, 16(6):367–384, 2004.

[9] D. M. German, D. D. Čubranić, and M. A. Storey. A Frame-
work for Describing and Understanding Mining Tools in
Software Development. In 2nd International Workshop on
Mining Software Repositories, 2005. Submitted for consid-
eration.

[10] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In 20th IEEE International Con-
ference on Software Maintenance (ICSM’04), pages 44–49,
Sept 2004.

[11] M. W. Godfrey and Q. Tu. Evolution in Open Source Soft-
ware: A Case Study. In Proc. of the 2000 Intl. Conference
on Software Maintenance, pages 131–142, 2000.

[12] A. E. Hassan and R. C. Holt. Predicting change propagation
in software systems. In 20th IEEE International Conference
on Software Maintenance (ICSM’04), pages 284–293, Sept
2004.

[13] M. M. Lehman, D. E. Perry, J. F. Ramil, W. M. Turski, and
P. D. Wernick. Metrics and laws of software evolution - the
nineties view. InMetrics ’97, IEEE, pages 20–32, 1997.

[14] T. J. McCabe and C. W. Butler. Design complexity measure-
ment and testing. Commun. ACM, 32(12):1415–1425, 1989.

[15] R. Meli. Measuring change requests to support effective
project management practices. In ESCOMConference, 2001.

[16] S. Purao and V. Vaishnavi. Product metrics for object ori-
ented systems. ACM Computing Surveys, 35(2), 2003.

[17] M. A. Storey, D. D. Čubranić, and D. M. German. On the
Use of Visualization to Support Awareness of Human Activ-
ities in Software Development:A Survey and a Framework.
In Proceedings of the 2nd ACM Symposium on Software Vi-
sualization, 2005. To be presented.

[18] Q. Tu and M. W. Godfrey. An integrated approach for
studying architectural evolution. In 10th International Work-
shop on Program Comprehension (IWPC’02), pages 127–
136. IEEE Computer Society Press, June 2002.

[19] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance: Ver-
sion control knowledge extraction. In Proc. 11th Working
Conference on Reverse Engineering, pages 90–99, 2004.

[20] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Min-
ing version histories to guide software changes. In ICSE ’04:
Proceedings of the 26th International Conference on Soft-
ware Engineering, pages 563–572. IEEE Computer Society,
2004.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:14 from IEEE Xplore. Restrictions apply.

