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Abstract

There is a wealth of software development artifacts such as source code, issue reports, and revision

histories, contained within publicly-accessible and privately-accessible repositories. Mining this data

presents myriad opportunities that may benefit future software development efforts; however it is

unclear exactly how to leverage this data. This thesis explores the naturalness of software—the

assertion that source code, much like natural languages, is regular and predictable. This enables

the application of techniques borrowed from the fields of natural language processing (NLP) and

information retrieval (IR) to gain insight from existing software repositories. This thesis demonstrate

different methods of mapping software artifacts to natural language models and full-text databases.

Then, we show how to use these models and databases in the tasks of predicting whether a commit

may break the build; clustering crash reports in a scalable and time-efficient manner; and detecting

and correcting syntax errors in code written by novices. This thesis empirically demonstrate the

effectiveness of these tools on real world software repositories. I conclude by suggesting ways of

further exploiting the data contained within software repositories.
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Chapter 1

Introduction

The exponential popularity of websites that cater to software development such as GitHub [52], and

Travis CI [157], has brought along with it an avalanche of publicly available software artifacts; these

are artifacts such as source code, commit logs, and issue reports, that are products of the software

development process. Software engineering researchers and practitioners alike stand to benefit greatly

from the analysis and dissection of this public data. This data can be leveraged to predict when a

change to the codebase will introduce a fault; or we can categorize a new crash report with already

known crashes; or we can use historical data to help find and fix mistakes as we’re typing new code.

If one poses these questions as search problems—that is, searching for a solution out of a large space

of possible solutions—the quantity of possible solutions offered by these massive software repositories

becomes dauntingly large. In order to make any such search problem feasible, we must find a way to

reduce the search space.

Natural languages, such as English, American Sign Language, or Hausa, allow for great flexibility

in expression; as a result, natural languages present an unfathomably large possibility space. Despite

this, natural language processing (NLP) researchers have noted that utterances in natural language

are often regular and predictable: the languages humans use to communicate with each other are,

in general, rife with redundancy, and often posses very little novel information content [136]. As

such, one can exploit these properties to heuristically prune the search space. For example, in speech

recognition, one may need to determine whether a speaker said “I went to their house” or “I went to

there house”. These utterances are homophones—that is, most fluent English speakers will pronounce

the two phrases identically, thus, a speech recognition system will not be able to distinguish between
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the two possibilities using the audio signal alone. With statistical language models, we can count

how often “I went to” is followed by “there” and how often it is followed by “their”; likewise, we can

count how often “house” follows “their” and how often it follows “there”. By counting the occurrence

of these phrases in a corpus—a large body of text that is somehow representative of the language

one is modelling—it becomes clear that “I went to their house” is quantifiably more likely, and thus,

is likely what the speaker said (discussed in greater detail in Section 2.2.2). As a corollary, certain

utterances are quantifiable unlikely: these anomalies may be indicative of mistakes or creative usage.

Hindle et al. [74] asserted that software source code “is a natural product of human effort”; thus,

the authors posited that source code, like natural language, possesses the properties of being regular

and predictable. Using n-gram language models, the authors measured the average information

content (the cross-entropy) on Java source code and two English corpora. They found that Java

source code had lower cross-entropies than the English corpora meaning that these software corpora

are even more regular and predictable than English text. The authors dubbed this property “the

naturalness of software”. The naturalness of software raises the possibility of using tools originally

intended for natural language, such as n-gram language models, and full-text search engines, and

applying them to software artifacts.

There is one problem, however: language models and full-text search engines work with tokens—

the smallest unit of language that carries meaning by itself. Thus, to employ language modeling

tools to reduce the search space in software engineering problems, one must create a mapping of

software artifacts to a sequence of tokens. As I demonstrate throughout this thesis, tokenization is

not always straightforward, and sometimes requires experimentation.

In this thesis, I discuss how we can exploit the naturalness of software—the regularity and

repeatability of source code and other software artifacts—as a way to reduce the search space

such as when finding possible duplicates of new crash report, or when finding the right way to fix a

syntax error.



1 Introduction 3

1.1 Contributions

The contributions I have made in this thesis are as follows:

• I established a methodology for the “unnaturalness” of commit log messages. Using this

methodology, I empirically discovered that the “unnaturalness” of a commit log message is a

weak, yet statistically significant feature in predicting build failure (Chapter 3).

• I co-implemented a crash report deduplication tool that uses the principals of information

retrieval to provide online, non-stationary clustering of crash reports, without developer

intervention (unsupervised clustering); it can cluster crash reports at the volumes seen by

industry. This was in response to a number of existing crash report deduplication tools attested

in both academia and industry that either used crude, hand-written, developer-maintained

heuristics, or cluttering algorithms that run in at least O(n2) time—which are untenable for

the volume of crash reports seen in industrial contexts. I collected a number of hand-written

“signature generation” heuristics attested in literature, which we used as a baseline comparison.

Our tool, PartyCrasher, outperformed existing heuristics in overall F-measure, as well as

providing an adjustable trade-off of precision and recall after clustering (Chapter 4).

• I developed a heuristic based on naturalness that finds fixes for single-token syntax errors. The

fix generation heuristic uses naturalness to bias the search for the correct syntax error location

and the correct token to insert or substitute; thus, instead of performing an exhaustive search

for a viable solution, my approach can generate a valid solution within a small constant number

of trials. Based on my empirical analysis of BlueJ interaction logs, we found that single-token

syntax errors account for the majority (57 %) of syntax errors made be novice programmers.

Importantly, the training data for the heuristics does not come from novice code; rather, it

comes from code sampled from the most popular Java repositories on GitHub. Thus, unlike

prior work, the approach I proposed is general-purpose and redistributable. Given these two

facts, I believe there is evidence that my approach is useful to novices (Chapter 5).
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1.2 Thesis organization

This thesis is organized into the following chapters: Chapter 2 presents background knowledge on

language modeling, information retrieval, and recurrent neural networks; Chapter 3 presents an

application of naturalness on commit messages using the principles of tokenization and unnaturalness;

Chapter 4 applies classical information retrieval algorithms on the problem of crash report clustering,

discussing various methods of tokenization prior to the ingestion of documents; Chapter 5 shows

how language modeling can be used to find and fix syntax errors in the Java programming language.

Finally, Chapter 6 concludes this thesis and suggests future research directions.
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Chapter 2

Background and related work

In this chapter, we explain what naturalness is by explaining its context in mining software repositories

(Section 2.1). We describe the techniques borrowed from natural language processing (Section 2.2)

and how they can be applied to software (Section 2.3). We describe information retrieval (Section 2.4)

and recurrent neural networks (Section 2.5), which we used in this thesis to add value to software

artifacts. Finally, we provide a listing of prior work in the naturalness of software and its existing

applications (Section 2.7).

2.1 Mining software repositories

This thesis broadly concerns mining software repositories (MSR). Unpacking the phrase, a software

repository is any cohesive collection of artifacts regarding a particular piece of software. Those

familiar with version control systems might assume that a software repository is synonymous with a

collection of a project’s source code and its associated change history, or simply the source code itself

in its present published form. However, in this thesis, we use the term “software repository” more

broadly. Not only is a project’s source code contained within a version control system (VCS) such

as Git, Subversion (SVN), Concurrent Versions System (CVS) a software artifact; other software

artifacts include:

commits (also, revisions or changesets) are discrete, incremental sets of changes to a source code

repository, created by a primary author and accompanied by a commit message (also, a

log message) describing, in natural language, what changes have been made. Commit logs are
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interesting, because the series of commits that make up the current version of the software

show the incremental development and evolution of a piece of software. Commits are the

primary artifact maintained by version control systems such as Git, CVS, or SVN; consequently,

commit logs are available through public VCS hosting such as GitHub [52], SourceForge [140],

BitBucket [15], and Google Code [56] (now defunct). Commits are also available through

secondary services intended specifically for MSR tasks such as GHTorrent [60] and Boa [44].

bug trackers (also, issue trackers) are repositories of bug reports which are often hand-written

reports regarding an issue, fault, or shortcoming of the software product. Since they are often

free-text, bug reports consist of primarily natural language text, though they may also contain

semi-structured metadata about how the issue was encountered. Publicly available bug trackers

include Bugzilla [115], GitHub Issues [53], Jira [16], and Trac [45].

crash trackers are repositories of crash reports, which catalogue a particular software crash on a

remote computer. As opposed to bug reports, crash reports are often automatically generated

and tend to contain more structured data—diagnostics of the computer and software systems

that encountered the software crash. For this reason, they may be considered a form of telemetric

error reporting. Due to their similarity to bug reports, crash repositories may share the same

infrastructure [30]. Some publicly accessible crash repositories are Canonical Launchpad [30]

and Mozilla Crash Error Reports [113].

build history are repositories that enumerate the status of builds over the course of developing a

software system. A build historically refers to the compilation of a codebase at a particular

point in time, however, in modern parlance, a “build” may also include the results of running

automated test suites. Periodic builds are often automated through the use of continuous

integration services. These services not only perform periodic or on-demand builds of software

systems, but also maintain a history of passed and failed builds. Publicly available continuous

integration services include AppVeyor [14], CircleCI [34], Jenkins [143], and Travis CI [157].

These mounds of software artifacts are often interrelated and have explicit and implicit links. For

example, a bug report may be related to a crash report; a crash may be caused due to a certain

line of code; the code was written with a particular intent, documented by the developer’s commit

message; the impetus for the change may have been a point of discussion in the issue tracker, or in
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the developers’ mailing list; the discussion may reference a fix for an earlier failing build. Finding

and studying the implicit and explict links between software repositories is called traceability [84].

To mine these repositories is to sift through the reams of data and add value in some way. “Value

added” includes understanding how and when faults are introduced [141, 160, 64, 87], automatically

triaging bug reports to the most appropriate developers [107, 4, 96, 90, 95, 130], understanding the

evolution of software projects [49, 75, 71], increasing developer productivity [74, 134, 162, 5, 128],

and preventing the introduction of faults [29].

There is little doubt that mining large repositories of software artifacts is a worthwhile endeavour,

however, there remains the question of how to extract value from the semi-structured data sources

that comprise a software project.

2.2 Natural language processing

Natural language processing (NLP) is the application of quantitative methods to examine, predict,

and manipulate natural language [104]—that is, languages that are the result of unconscious, organic

evolution such as English, Plains Cree, or Nicaraguan Sign Language. Contrast these to artificial

languages that are consciously constructed and meticulously designed. Common tasks in natural

language processing include language modelling and prediction, machine translation, speech

recognition, part-of-speech tagging, and optical character recognition, among many more.

Many tasks in the related discipline of information retrieval (discussed in Section 2.4) require

preprocessing using techniques borrowed from NLP.

In this thesis, we focus primarily on the subfield of NLP called language modelling—capturing the

essence of a language such that we may reason about its regularity and make predictions about

incomplete utterances.

2.2.1 Tokenization

Prior to applying any quantitative methods to natural language within a computer, the input must

be transformed into an appropriate representation of natural language. Natural language input may

come in the form of a digital audio signal, a digital image, or as a linear sequence of characters or code

points,1 themselves representing a series of graphemes in a written language. In this thesis, we focus
1Henceforth, we will use character and code point interchangeably; however a code point is specifically an integer

allocated in the Unicode [152] code space. Not all code points are defined, and not all defined code points are characters.
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primarily on the latter type of input. Regardless of the medium, the original input representation is

usually not amenable to quantitative analysis.

Language models require a representation where each element of the input must be an indivisible

unit of meaning, called a token [104]. The process of transforming one representation of language into

a linear sequence of meaningful units is called tokenization. Consider the sentence fragment I’ll be

right. We want to determine the most likely English word that would proceed this fragment. This

fragment is represented as a series of code points: latin capital letter i, apostrophe, latin

small letter l, another latin small letter l, space, and so on. When modelling the English

language, we may be tempted to use the code point as the basic unit of meaning. However, note

that the space code point is simply used in written English to separate two words in the language.

Thus, perhaps the better option is to coalesce each word in the language into a single token, and

discard all space characters. Thus, instead of letting each character be an indivisible unit of meaning,

our sequence of tokens is instead I’ll be right . Note that, under this scheme, we consider I’ll

to be one unit of meaning, whereas a fluent English speaker understands I’ll to be a contraction of

the fragment I will. I’ll would itself be transformed into two tokens under this scheme: I and

will . We must chose whether it is more appropriate to model I’ll as one token ( I’ll ) or as two

( I will ). Note, however, that the latter choice would transform the input I will be right into

the same sequence of tokens, and thus both inputs would be consider as an identical utterance in the

eyes of our language model. Perhaps, we may want to decompose I’ll into two tokens, however

we’ll preserve the clitic ’ll as its own token. Thus, the input I’ll is transformed into two tokens

I and ’ll that are distinct from the tokenization of the fragment I will: I , will .

Tokenization is rife with making decisions as illustrated in the previous example. The decisions

of transforming a language utterance into a sequence of tokens factor into one’s goals in language

modelling. In this example, we did not factor for differences in letter case or the consideration of

punctuation—what’s more, we simply glossed over semantic distinctions that could be made given

differences in spacing. A common theme in this thesis is the exploration of different tokenization

schemes, guided by a specific modelling goal.

That said, when referring to code points in this thesis, we usually mean any code point that is a graphic or formatting
character (letters, numbers, combining marks, and spacing characters).



2 Background and related work 9

2.2.2 Language modelling

Given tokens from an input language, a language model is a probability distribution defined over

a sequence of tokens (an utterance) from an input language [104]. Language models are useful for

determining how likely an utterance came from the input language, and for predicting the most likely

tokens to complete an utterance, among other uses.

A language model for predicting tokens in an utterance can be considered as the conditional

probability distribution of a token wn as a function of all tokens preceding it, called its history [104].

Pr(wn|w1, . . . , wn−1)

However, it is impractical to maintain a record of every arbitrary prefix of tokens. A practical

approximation employs the Markov assumption—only the local prior context affects the likelihood

next token [104]. An n-gram language model uses a truncated history of n − 1 tokens of local context

of tokens immediately prior to the token we are interested in predicting, where n is the order of the

n-gram model. To construct an n-gram model, we count the occurrence of every token sequence of

length n witnessed in a corpus. A corpus is a large existing body of text that is considered to be

representative of the language.

Thus, if one is interested in the probability of a token wi using an n-gram model, we compute the

maximum likelihood estimation (MLE) using,

Pr(wn|w1, . . . , wn−1) ≈ C(w1 · · · wn)∑
w∗∈V C(w1 · · · w∗) (2.1)

where C(w1 · · · wn) denotes the count of occurrences a particular n-gram has been witnessed in the

corpus, C(w1 · · · w∗) denotes how many times any n-gram with the same prefix of n − 1 tokens has

been witnessed in the corpus, and V denotes the vocabulary—the set of all possible individual tokens.

2.2.3 Cross-entropy and perplexity: measuring language model quality

To measure how well a language model reflects the actual language, we often use cross-entropy and

perplexity as measures. Roughly speaking, cross-entropy, denoted as H(p, q), is a measure of how
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much information2 on average is required to explain an outcome x, x ∈ X. p and q are probability

distributions, where p is the “true” distribution, and q is a probability distribution that models p.

According to Manning and Schütze [104]:

The secret [is] the idea that entropy is a measure of our uncertainty. The more we know

about something, the lower the entropy will be because we are less surprised by the

outcome of a trial.

Cross-entropy can be defined as the addition of the entropy of the true distribution p (denoted as

H(p)), with the relative entropy (or Kullback-Leibler divergence) of p and q (denoted as DKL(p||q)):

H(p, q) = H(p) + DKL(p||q)

H(p, q) = −
∑
x∈X

p(x) log p(x) +
∑
x∈X

p(x) log p(x)
log q(x)

H(p, q) = −
∑
x∈X

p(x) log q(x)

Muller et al. [117] provide an excellent intuitive explanation of cross-entropy:

The cross entropy measures the amount of surprisal obtained when you believe an event

is distributed as Y , but in reality is distributed as X. This amount is not typically

symmetric in Y and X. The cross entropy is minimised when Y is selected to be equal to

X, in which case the believed distribution equals reality. 3

In this thesis, we use cross-entropy to quantify the surprisal obtained from learning that an estimated

distribution q is actually distributed p. Greater surprisal means an event is more “unnatural”, or

contrary to expectations of the language model.

In the NLP community, a related measure, perplexity, is often used instead of cross-entropy to

measure how well a method predicts samples from a probability distribution (such as a language).

Perplexity is derived from cross-entropy in Equation 2.2:

Perplexity = 2H(p,q) (2.2)
2Information is routinely measured in bits, hence all equations in this section using an unadorned “log” refer to the

base-two logarithm, or log2.
3What Muller et al. write as Y and X, we notate as p and q, respecively.
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Perplexity may be preferred to cross-entropy, as it may be intuitively interpreted as the “number

of choices”, on average, that a model has to choose from to predict an outcome. The lower the

perplexity, the more likely it is to predict an outcome correctly.

In this thesis, I prefer to use cross-entropy (“how much information”) to perplexity (“how many

choices”). We provide the definition of both, as one may be derived from the other.

2.2.4 Smoothing

When n-gram models are used in practice, is almost unavoidable to encounter the issue of data

sparsity, especially as the order n becomes larger. It is infeasible that every n-gram possible in

the language will exist in a corpus. There will always be an n-gram that a human observer would

consider as being a probable, natural utterance in the language, yet is not present at all in the

corpus. Since this token sequence in its entirety has never been witnessed, its count (the numerator

in Equation 2.1) is zero, and thus its probability according to the n-gram language model will also

be zero.4 A key insight in resolving this is the fact that unknown n-length token sequences are often

composed of smaller token sequences that have been witnessed in the language model.

To resolve the issue of data sparsity, smoothing is used to estimate the likelihood of unknown

n-grams. “Smoothing” refers to the shape of the probability distribution after zeros are removed

from it by “discounting” highly probable events [104]; token sequences that would normally have

zero probability are lent the probability from more probable events. Many n-gram smoothing

techniques have been devised; Chen and Goodman [32] performed an empirical study of the existing

techniques at the time, and introduced a novel smoothing technique—an extension of an earlier

smoothing technique by Kneser and Ney [91]—which they found to be the best performing of all

smoothing techniques that they surveyed. Thus, this thesis exclusively uses modified Kneser-Ney

smoothing for n-gram language models.

Returning to the topic of mining software repositories, are n-gram models—created to solve

problems in natural language processing—appropriate for use on software source code?
4This also implies taking the logarithm of zero when calculating cross-entropy, which is an undefined result.
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2.3 The naturalness of software

Hindle et al. [74] posited that software source code is “natural” in the sense that, due to it being

created manually by human programmers, source code exhibits the predictability and regularity

typical of natural languages, such as English [136]. That is, “despite being written in an artificial

language (like C or Java), [source code] is a natural product of human effort” [74]. The authors

validated this hypothesis by estimating (training) n-gram models on both English corpora (the Brown

and Gutenberg corpora), as well as on software projects written in C and Java. Figure 2.1 plots

the average cross-entropy as the order n of the n-gram models increases, for three cases: English

text against an English corpus, two held-out code samples against its corresponding code corpus,

and code in general. The average cross-entropies across all orders n tried were consistently lower

in the Java source code language models than for the English language model. This suggests that

code is more regular and predictable than English, and thus, source code lends itself to modeling

with n-gram models. The authors implemented one possible application of the naturalness: a code

suggestion engine that predicts the next token that a programmer types. By augmenting the Eclipse

IDE’s existing suggestion engine, the authors demonstrated that statistical language models can

provide from 33%–67% additional correct code suggestions, saving an estimated 61% of keystrokes

that the programmer would otherwise have to input.

The authors demonstrate that statistical natural language modeling is adept at modeling software

source code—are there any other models, traditionally used for natural language that can be used on

source code, and other software artifacts?

2.4 Information retrieval

Information retrieval (IR) is the study of satisfying a user’s information need, typically under a tight

time constraint. Typically, this means finding the most relevant document or subset of documents

from a very large collection. According to Baeza-Yates et al. [17], IR encompasses “the representation,

storage, organization of, and access to information items such as documents, web pages, online

catalogs, structured and semi-structured records, and multimedia objects.” In this thesis, we will

focus on IR’s applications to searching semi-structured text documents.
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Figure 2.1: Cross-entropy of code-to-code, and English-to-English (adapted from Hindle et al. [74]).
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To search a large collection of documents efficiently (in terms of time), one needs an effective

data structure that facilitates searching. For this, an inverted index is used. An inverted index maps

each term (roughly synonymous with token from Section 2.2) to documents that contain that term.

Inverted indices are designed such that the time complexity for returning documents which contain a

given term is either constant, with respect to number of documents in the collection, |D|, or, has a

relatively small upper-bound, such as O(log |D|).

Quickly finding the set of all possibly relevant documents is one-half of the problem; the other

problem is ranking the results from most relevant to least relevant. For this, tf-idf was created. tf-idf,

or term frequency × inverse document frequency, ranks a document’s relevance to a query using the

importance of each term t of a query q, within the document (its term frequency—how many times

the term t appears in the document d), and the rarity of the term t throughout the entire collection

(its inverse document frequency—the inverse of the amount of documents in which term t is found).

For example, the Lucene information retrieval system defines the score of a document d given a query

q as follows [101]:

score(q, d) ∝
∑
t∈q

(
tf(t ∈ d) · idf(t)2

)
(2.3)

As with NLP, information retrieval often requires special care in tokenizing—both the documents

ingested into the searchable collection, and the queries used to filter the results.

2.5 Recurrent neural networks

To discuss recurrent neural networks (RNNs), it is useful to discuss artificial neurons. An artificial

neuron is a function which, given a linear combination of inputs x1 · · · xn, produces an output, filtered

through an activation function or “squashing function” [23]. Artificial neurons are parameterized by

their input weights w1 · · · wn, their bias b, and their activation function σ. Thus, the output y of an

artificial neuron is given by Equation 2.4 [12, 23].

y = σ

(
b +

n∑
i=1

wixi

)
(2.4)

Consider a neuron with two inputs x1, x2, and the activation function σ such that its output is

1 when its input is greater than or equal to 0, and outputs 0 otherwise5. A neuron with a binary
5 Also known as the Heaviside step function, denoted as H or θ.
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output, such as that given by this activation function, is called a perceptron. Let the weights w1 = −1,

w2 = −1 and let the bias b = 1. Notice that when x1 and x2 are given inputs in {0, 1}, the artificial

neuron is equivalent to the binary nand function (↑) (Figure 2.2).

σ
1

−x1

−x2

y

x1 x2 y x1 ↑ x2

0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

Figure 2.2: The nand perceptron.

Since nand is functionally complete—all other boolean functions can be produced using a

combination of nand gates [137]—then artificial neurons may also be combined to produce any

boolean function [109]. A function composed of multiple artificial neurons is called an artificial

neural network. In practice, neurons are not composed arbitrarily, but rather by creating layers of

mutually-disconnected neurons, and stacking the layers on top of each other, connecting the outputs

of higher layers to every input in the layer directly below it, such that connections between neurons

contains no cycles. Such a neural network architecture is called a multilayer perceptron (MLP) [23]

or, more generally, a feedforward neural network [12].

An extension of the feedforward architecture is the aforementioned recurrent neural network

(RNN). In an RNN architecture, the previous output of each neuron is fed back into itself (up to

a fixed number of time steps) and becomes an additional input—hence, it is recurrent. RNNs use

the recurrent input as a way to represent internal state, and are adept at learning time sequences

and series. RNNs are Turing complete [139]. Thus, one may compose RNNs and assign precise

parameters (weights and biases) to perform any computable function. This in and of itself is not

remarkable; what is remarkable is that there are procedural means by which to learn the parameters

given a wealth of training examples, so long as the activation function is continuously differentiable.

The algorithm to learn the parameters is called backpropagation [161]. As training examples are

repeatedly presented to the training algorithm in batches, backpropagation updates the parameters

iteratively, using the error or loss between the training outputs and the actual outputs of the network

as a guide. Backpropagation calculates the gradient of each weight and bias in the network—that

is, it determines how changing a parameter will affect the loss. This gradient dictates how the

parameters should be tweaked in order to reduce the loss with respect to the example outputs. The
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process of using a batch of random training examples to update parameters (stochastic gradient

descent) is iterated until loss is sufficiently minimized—that is, until the weights and biases in the

network have learned the desired function to a satisfactory degree.

A problem presents itself when training “deep” neural networks such as RNNs. As the number of

layers—or in the case of recurrent networks, time steps—increases, the gradients calculated during

backpropagation become smaller and smaller, although the algorithm does not get proportionally

closer to minimizing the training loss. This is known as the vanishing gradient problem. As a result of

the compounding of smaller gradients which dictate increasingly minute changes in the weights and

biases further back in the network, it becomes increasingly time-consuming to achieve high accuracy

when training deep neural networks.

× ×

×

it

ft

ot

ct
xt

Input Gate

Output Gate

Forget Gate

yt
Cell

ct−1

yt−1

Figure 2.3: An LSTM block [76], featuring the memory cell ct, the input gate it, the output gate ot,
and the forget gate ft. The “S”-shaped circles represent some non-linear, contiguously differentiable
“squashing” function, such as tanh or the logistic function. Each arrow represents a vector of inputs
(adapted from Fig. 1. in Graves et al. [61]).

To alleviate the vanishing gradient problem, Hochreiter and Schmidhuber [76] created the long

short-term memory (LSTM) architecture, as an extension of RNNs. LSTMs (Figure 2.3) protect

the gradient of each neuron by abstracting it into a memory cell that “traps” the internal state of

the neuron. Each memory cell is protected by three gating units—an input gate, an output gate,

and a forget gate—which allows each “block” to determine how to consider its input, whether to
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overwrite the value in the memory cell, and whether to output the previous contents of its memory

cell. Critically, the previous state of the memory cell ct−1 is never “squashed” by an activation

function (such as tanh or the logistic function) prior to being fed back into the memory cell; instead,

it is fed back verbatim. Thus, these processes can preserve a constant error rate as training progresses.

As a result of the practical benefits of shorter training time, in Chapter 5, we use LSTMs exclusively

as the recurrent neural network of choice.

As mentioned, RNNs and, by extension, LSTMs are adept at learning functions related to

sequences. As such, they may be employed to create language models, similar to n-gram models

(Section 2.2.2). LSTMs have enjoyed success in the space of speech recognition [61, 66, 10], creating

“bidirectional” language models that learn acoustic and linguistic models of speech both “forwards

and backwards in time”. Chapter 5 describes a similar approach, however we applied bidirectional

LSTMs to create language models of software source code.

2.6 Search-based software engineering

Search-based software enginering (SBSE) is the application of search-based optimization to software

engineering problems [67]. This means that a problem is defined as having a number of possible

solutions with varying degrees of suitability or “fitness”. Given a fitness function, that allows one

to compare the suitability of one solution to another, search-based optimization trawls through the

search space to find one or more suitable solutions. Compare the usage of the word “search” in the

context of SBSE to its usage in IR (Section 2.4): In IR, “search” means to apply a query to collection

of documents, and find a set of suggestions that may be relevant to the query; in contrast,“search”

in SBSE is the process of evaluating solutions and attempting to navigate the search space until at

least one solution of suitable fitness is found.

Typically, the search space is so large and multidimensional that it is intractable to use an

exhaustive search (evaluating the fitness of every possible candidate) to find a suitable solution. As

such, a staple of SBSE is the use of heuristics to trim the search space when evaluating candidate

solutions. Such heuristics include genetic algorithms and hill climbing [68] (such as stochastic gradient

descent; c.f. Section 2.5).

An example application of SBSE is automated program repair, wherein the input is a buggy

program, such as one containing a buffer overflow or an infinite loop, and the output is that same
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program lacking the bug. GenProg by Le Goues et al. [59] is one such example of automated program

repair using SBSE principles. GenProg represents the space of possible solutions as pairs of an

abstract syntax tree (representing a possible program) and a weighted path representing how often a

statement in the program is run (this helps localize a fault). The fitness function takes the program

(generated by the abstract syntax tree) and a test suite for the buggy program. The goal is to

maximize the fitness (i.e., the program compiles and all test cases pass). To navigate the space

of solutions, GenProg uses genetic programming to create many random edits to the program (a

generation) and randomly mixes “traits” of the programs with the highest fitness. This process is

iterated until the fault is removed (the entire test suite passes).

In this thesis, we pose naturalness as a way to bias search (in the SBSE sense). We posit that

naturalness is useful for carving out the search space of possible solutions to software engineering prob-

lems in a time efficient manner. Cross-entropy (Section 2.2.3) can either be minimized (“naturalness”)

or maximized (“unnaturalness”) as a fitness function to evaluate candidate solutions.

2.7 Applications of the naturalness of software

In this section, we discuss how naturalness has been applied to other software artifacts. Additional

prior work is discussed in greater detail in Chapters 3, 4, and 5.

As an extension of Hindle et al. [74], Tu et al. [158] describe the localness of software: in addition

to using n-gram language models, the authors employed the use of cache language models—dynamic

language models which change the probability of utterances given local context. The authors show

that software source code exhibits the properties of being endemic (tokens that occur only in one

source file), specific (tokens that occur only in a few related source files), proximally repetitive (tokens

that occur frequently in a small range of tokens). Applying localness to code suggestion, combing a

“global” language model—trained on a large corpus of code—with a local, cache language model—

trained on a sliding window of code examples local to the current modification point—improves

suggestion accuracy considerably.

As opposed to code completion, Allamanis et al. [5] used naturalness to mine coding conventions

in shared source code, to increase the stylistic consistency of large source code repositories. The

authors’ tool, Naturalize trains a language model on the stylistic conventions of a code base, including

formatting and the naming of identifiers. The framework can not only determine if a file is “natural”



2 Background and related work 19

with respect to the rest of the corpus, but can also generate stylistic fixes. The authors evaluated

this by applying Naturalize to open source Java projects, and applying the automated changes. The

authors opened pull requests, such that the maintainers of the respective Java projects may accept

the changes and merge them in the codebase. Out of 15 changes suggested, all but one were accepted

in some way.

Allamanis and Brockschmidt [6] applied deep learning on source code to approximate solutions to

intractable program analysis problems. SmartPaste solves the problem of automatically adapting

snippets of source code from a foreign domain—such as from a different project, or from an online

example such as Stack Overflow—to a separate source code file. The problem can be reduced to

mapping identifier names in the foreign snippet, to the semantically equivalent variable names in the

source code file. As opposed to many of the methods described to create models from source code

which only consider lexical and syntactic information, SmartPaste integrates semantic information,

such as the static types and scope of variables, and the dataflow of the partially completed source

code file. These data sources are used as features to the gated recurrent unit (GRU) (a type of RNN)

deep neural networks, which, given a “placeholder” identifier in the foreign snippet, output the most

likely identifier in the current context of the source code. Using this technique, the authors reported

58.6% accuracy in mapping all variables in a snippet to the correct names in the local context.
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Chapter 3

Judging a commit by its cover

In this chapter, we present the usage of language models (Section 2.2.2) on natural language—with a

twist: we demonstrate tokenization (Section 2.2.1) that takes into account many artificial languages

that may be embedded in natural language utterances by software developers. We train n-gram

models, and use cross-entropy as a measure of “unusualness” or unnaturalness—a theme we revisit

in Chapter 5. The special-cased tokenization decisions made in this chapter avoid the high-degree

of hapax legomena—tokens that only appear once in the data—that would have resulted from the

many instances of structured artificial languages, such as file paths, method names, and version

numbers. Replacing these embedded languages with synthetic tokens increases their probability in

the corpus, thus allowing them to be judged as unnatural. In this chapter, we also explain how we

derived correlations from two interrelated software repositories—commit logs from GitHub, and build

histories on Travis CI.

The takeaways and lessons learned from this chapter include:

• a methodology for quantifying the “unusualness” of a commit log message

• an non-comprehensive list of embedded languages in commit messages

• commit messages on GitHub are not always written in English

• not all commit messages are written by hand

• a statistically significant correlation does not imply a positive practical result
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Readers should pay particular attention to Figure 3.1: this graph plots commit message cross-entropy

against the cumulative count of build statuses collected from Travis CI. This graph shows the slight

bump in the otherwise normal curve (displayed cumulatively) that contributes to the statistically

significant result, however, is so minor as to render the conclusion of this chapter a null result.

This chapter is relevant to researchers mining commit log messages, and the interaction of

the commit metadata with continuous integration builds. The MSR paper [133] on which this

chapter is based on is already cited as basis to determine whether committers are following “best

practices” [125]; uses part of our approach to mine for commits [24]; learns from our negative

result [118]; or references this research as a discussion piece [73, 62] Applications of this research

include studying the introduction of faults into software projects; predicting when a change will

introduce a fault [118]; mining developer intent (why did the developer write this commit?); analyzing

patch acceptance [125]; studying the patterns between when and how developers commit [24]; and

determining the interplay between non-functional requirements and build statuses [123].

My personal contributions were writing the Boa, Python, Ruby, and R scripts 1 to collect, clean,

parse, and analyze data from GitHub and Travis CI; I came up with the original concept, devised

the experiment, wrote most of the write-up, and formed an educated conclusion.

This chapter is adapted from “Judging a commit by its cover: correlating commit message entropy

with build status on Travis CI”, published [133] at the 13th International Conference on Mining

Software Repositories (MSR), 2016, and has contributions from Dr. Abram Hindle with data analysis

and manuscript composition.

1 Available: https://github.com/eddieantonio/judging-commits/tree/msr2016/

https://github.com/eddieantonio/judging-commits/tree/msr2016/
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Abstract

Developers summarize their changes to code in commit messages. When a message seems “unusual” or

unnatural, however, this puts doubt into the quality of the code contained in the commit. We trained

n-gram language models and used cross-entropy as an indicator of commit message “unnaturalness”

of over 120,000 commits from open source projects. Build statuses collected from Travis CI were used

as a proxy for code quality. We then compared the distributions of failed and successful commits

with regards to the unnaturalness of their commit message. Our analysis yielded significant results

when correlating cross-entropy with build status.
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3.1 Introduction

Commit messages are summaries written by developers describing the changes they have made during

the development process. Our experience working within the open source community has given the

impression that developers tend to use a fairly limited vocabulary and restricted structure when

writing commit messages. Alali et al. [3] provide empirical evidence for this observation reporting

that over 36% of all commit messages contained the word “fix” and over 18% contained the word

“add”. Thus, developers may regard short, terse, and to-the-point messages such as “Add test for

visibility modifiers” [146] to be usual when browsing the commit log of a code repository.

When a developer reads an unusual commit message that defies their expectations, such as

“Cargo-cult maven” [48], they may ask themselves a number of questions. “Why did they write ‘cargo

cult maven’?” “What changes prompted this cryptic commit message?” “Should I trust the code

behind this commit message?” Such unusual (henceforth, unnatural) messages may induce suspicion;

a developer reading this message may question the commit’s quality.

Should developers trust their instinct? This chapter seeks to answer the question: Are unnatural

commits hiding bad code? We break this down into the following research questions:

RQ1: How can the unnaturalness of a commit message be measured?

RQ2: Is the unnaturalness of a commit message related to the quality of the code committed?

3.2 Methodology

In natural language processing, n-gram language models are used to answer questions about frequency,

surprise, and unnaturalness. We use the cross-entropy of a commit message with respect to a language

model in order to quantify its unnaturalness. To determine the quality of a commit, we use its build

status as provided by Travis CI [157], a continuous integration service popular among open source

projects. The build status of any commit can then be evaluated with respect to the unusualness of

its message as measured by cross-entropy.

To ensure that the commits indeed come from software development projects, we employed a

number of strategies described in Section 3.2.1. We describe how commit quality is determined

using data from Travis CI in Section 3.2.2. In Section 3.2.3, we describe how each commit message

was tokenized so that they could be used as input for the n-gram language models. Finally, in
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Section 3.2.4, we describe how the tokenized commit messages were used to train language models,

and how these language models were used to calculate each commit’s unnaturalness via cross-entropy.

3.2.1 How were commits chosen?

To obtain commit messages applicable for this study, we used Boa [44] to query the September 2015

GitHub dataset. The Boa query and its results are available online.2 This query used the following

criterion to establish if a given project was to be considered in the study.

1. Boa must have parsed abstract syntax trees of the projects. As of this writing, Boa only parses

Java code, meaning that only projects that contained parsable Java code were obtained. Thus,

repositories that are unlikely to be used for software development are pruned.

2. The project must have more than 200 abstract syntax tree nodes. This filters out stub projects.

3. The project must have more than 6 commits, to avoid personal and other stub projects, following

the recommendations given in “The Promises and Perils of Mining GitHub” [85].

4. Finally, the project must have a file named .travis.yml, indicating that project uses Travis

CI to track per-commit build status.

From each project that passed the above criteria, commits were chosen only if the commit had an

associated Travis CI status (described in Section 3.2.2), and if it was not a merge. Merge commits

were excluded due to their messages being automatically generated by Git by default. Auto-generated

merge commits are identifiable by their message starting with “Merge branch”, “Merge pull request”,

or “Merge remote.” The message text was used to detect merge commits since commit parent

information is not available in Boa. Were this data available, merges would be detectable if the

commit has more than one parent.

After filtering, 120,822 commits from 2,679 projects that fit the criteria described above and were

used in our analysis.

3.2.2 Establishing commit quality: Travis CI

To establish the quality of a commit, we mined Travis CI. travis-ci.org is an online continuous

integration service that is free for use by open source projects. When a commit is pushed to any

branch on GitHub—be it the main branch, a derivative branch, or a pull request—Travis CI will
2http://boa.cs.iastate.edu/boa/?q=boa/job/public/30188

https://travis-ci.org
http://boa.cs.iastate.edu/boa/?q=boa/job/public/30188
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clone, build, and test that project’s commit in a clean virtual machine or Linux container. The install

phases sets up the machine by installing the project’s dependencies, and populates test databases, if

any. The script phase follows, in which the project is built (compiled) and its test suites are run. A

Travis CI build may result in one of these statuses [156]:

errored An error occurred in the install phase. For example, a Java project using the Maven build

system [108] may error due to a mis-configured pom.xml file.

failed An error occurred in the script phase. This usually means the project either failed to build or

was successfully built, but failed its test suite.

passed The project built successfully and passed its tests.

A build may also be manually cancelled by a developer, but such commits were omitted from our

analysis.

3.2.3 Tokenization

We used n-gram language models which use tokens as input. A token is an indivisible unit of meaning

that makes up a message. The process of tokenization transforms raw text—a series of Unicode

code points—into a series of tokens which can then be used with a language model. To avoid undue

surprise, tokens fed to the language model must accurately represent the notion of “unnaturalness”

defined in this thesis. Thus, we performed the following steps to tokenize each commit message.3

1. First, the message text is normalized using Unicode normalization form C (NFC) [151] to

ensure that character sequences that “look the same” compare equal. That is, there exists

many character sequence that look visually indistinguishable to human eyes when rendered on

a screen, but are actually represented using different sequences Unicode code points are equal.

We normalized the text using NFC form to remove such inconsistencies.

2. The message text is transformed into lower-case.

3. The text is then split on whitespace and separating punctuation.

4. Tokens with similar meaning are substituted with generic tokens. Upon manually observing

over 2500 commit messages, a number of patterns were observed in their text. For example,

one commit would read “Update README.md”; another would read “Update pom.xml”. Such

messages are usual or natural, yet the amount of individual variety may be immense, due to the
3https://github.com/eddieantonio/judging-commits/blob/msr2016/tokenize_commit.py#L425

https://github.com/eddieantonio/judging-commits/blob/msr2016/tokenize_commit.py#L425
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NFC Normalized Updating Manifest.txt. Related to f75a283 (#495)
Lower-cased updating manifest.txt. related to f75a283 (#495).
Split updating manifest.txt related to f75a283 #495
Substitutions updating file-pattern related to git-sha issue-number

Table 3.1: Each step of the tokenization process.

Substitution Meaning Examples

issue-number GitHub issue numbers [54] #22 , #34
file-pattern Filenames and globs README.md , **/*.jpg

method-name Method names build_indexes()
version-number Version numbers4 2.2 , 2.1.0-rc.1 , 0.1-SNAPSHOT
git-sha SHA1 commit hashes d670460

Table 3.2: Examples of semantic substitutions.

amount of different filenames possible. To capture this and other regularities, tokens that were

similar were substituted with a generic token such as file-pattern . I defined and employed

many such semantic substitutions, as demonstrated in Table 3.2.

Table 3.1 shows the tokenization applied to the message, “Updating Manifest.txt. Related to

f75a283 (#495).” [38]

3.2.4 Training the n-gram language model

For each project in the dataset, I trained an n-gram language model on the commit messages of all

other projects in the dataset. This is called the “leave-one-out” method. Excluding each project from

its training set ensures that commit messages from the current project are not already “known” to

the language model, thus biasing their “unnaturalness” score. The order or n of the n-gram model

was set to three. n-gram models with an order of 3 are also known as trigram models. A trigram

model was chosen because predictive performance on English text does not significantly improve for

larger values of n [74].

The n-gram implementation used was MITLM [78], which implements modified Kneser-Ney

smoothing to interpolate probabilities in the very likely case of data sparsity. With Kneser-Ney

smoothing, the model is not “infinitely surprised” when it encounters a trigram it has never seen

before—a trigram that is actually composed of one or more bigrams (2-gram) or unigrams (a single
4According to Semantic Versioning [126]
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Figure 3.1: Empirical cumulative distribution function (ECDF) of the number of passed (in green),
failed (in purple), and errored (in orange) commits as cross-entropy (“unnaturalness”) increases.
Note that failed, initially grows slower than passed and errored; by 10 bits, however, failed is
indistinguishable from passed and errored.

token) that it has seen before. Instead, Kneser-Ney smoothing interpolates the probability with a

penalty—that is, the model is surprised, but not too surprised.

To quantify the “unnaturalness” of each commit message, the text of each message is tokenized

and evaluated using MITLM to calculate the mean cross-entropy of the commit message with respect

to a language model trained on all other projects. That is, the cross-entropy of each trigram in a

message is calculated with respect to the leave-one-out language model and averaged to produce the

cross-entropy of the entire message. Intuitively, cross-entropy measures how much information a

distribution—such as an n-gram language model—needs to explain an observation. The higher the

cross-entropy, the more difficult it is for the model to explain a given observation. The higher the

cross-entropy a commit message has, the more unnatural it is.

3.3 Results

Figure 3.2, left, is a histogram displaying the cross-entropies of all 120,822 commits. The width of the

bins in the histogram were chosen using the Freedman-Diaconis rule [50]. What is instantly notable
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Figure 3.2: Histograms of commit message cross-entropies. Note the tall bins (left), which contain a
large number of auto-generated commit messages that were not foreseen when training this model.
We recalculated the histogram (right), removing auto-generated commits, as well as many non-English
commit messages.

from this histogram are the four major “outlier” bins; in general, the distribution of cross-entropies

tends to follow a somewhat normal distribution; however, these bins (quite literally) stick out.

Examining the messages in these bins revealed that, despite the previous discipline in removing

merge commits due to their automatically generated commit messages, these automatic messages

still crept in. With the exception of the second largest bin, which contains the messages of the form

“Update file-pattern ”, the messages in these outliers are caused by tools which automatically

make commits. Specifically, the Maven release plug-in, and its clone, the Gradle release plug-in

both, of which generate messages of the form, “[maven-release-plugin] prepare for next development

iteration” [138]. The largest outlier bin was filled with 2,880 messages similar to “GS-803 Build version

advanced to 1150111 git-svn-id: svn://pc-lab14/SVN/xap/trunk/openspaces@170939 eb64e7373616-

4df089415ee2ae88103d” [121]. These commits were automatically generated by a bot that modifies

build configuration; most of these commits had a build status of errored.

Lesson: Not all commit messages are written by hand; even non-merge commits may be

automatically generated.

We were curious about “very unnatural” messages—those belonging to the rightmost bins in

Figure 3.2, left. Manual inspection of these bins revealed that the majority of the messages in the

right-tail were not written in English. Since most of the corpus is in English, the language models

would report commits in other languages as very unnatural indeed; additionally, this would affect
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our distribution and hypothesis, since a cursory glance of Spanish and Polish commits message show

that they have a similar terseness and grammatical structure as “usual” English commits.

Lesson: commit messages on GitHub cannot be assumed to be written in English.

To determine if the cross-entropies of passed, failed, and errored commits had different distributions,

we calculated pairwise comparisons using the Wilcoxon rank sum test. Letting α = 0.01, we obtained

a significant p-value near zero for all comparisons of passed vs. failed, passed vs. errored, and errored

vs. failed, meaning that the cross-entropy distributions differed depending on build status.

However, we were suspicious of the effects of the outlier bins; note that the tallest bin visually

seems to have a disproportionate amount of errored results. Thus, we repeated the pairwise Wilcoxon

rank sum test with all five outlier bins removed. Only passed vs. failed and passed vs. errored

distributions resulted as significantly different with a p-values near zero and 0.0021, respectively.

Errored vs. failed, were not significantly different (p = 0.2518). This means that the cross-entropy

distributions of passed vs. “broken” (either errored or failed) may be different. Still, since the bins

were merely removed from the significance tests after the models had already been trained, the

cross-entropies analyzed in these tests are still affected by commit messages in the outlier bins.

Given the significant effect of outliers and the fact that the tail had commits in languages other

than English, it became evident that the leave-one-out methodology must be recalculated without

such confounding factors.

We curated a list of auto-generated commits, and omitted such commits when constructing

the new corpus. To filter for English-language commits, we used langid.py [103] to estimate the

probability that a whole project’s commits are in English. We found that in isolated cases, langid.py

would misclassified English commit messages (often as German or Dutch). Hence, we assisted it

by manually verifying its results of over 100 projects, letting langid.py classify the rest using its

default configuration. The resultant corpus contained 108,989 commits from 2,529 projects.

The results are in Figure 3.2, right. One outlier remains, which (as in the previous histogram) is

filled with messages of the form “Update file-pattern ”. A portion of these may be auto-generated,

however we deemed these messages as plausibly hand-written; we did not discard them. Pairwise

Wilcoxon rank sum test was retried and we found that passed vs. failed are still different distributions

with a p-value near zero; similarly, failed vs. errored are different with a p-value of 0.0015. Given a

p-value of 0.7527, we fail to reject passed vs. errored as different distributions. We plotted the ECDF

of passed, errored, and failed commits (Figure 3.1). Strikingly, we found that failed is different, for
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lower values of cross-entropy. Additionally, it steadily closes the gap between itself and passed and

errored. This means that failure rate is lower given a more usual commit, and gradually increases.

Calculating Pearson’s product-moment linear correlation coefficient yields a 99% confidence interval

of (0.007, 0.468). Since zero is not in the interval (zero would indicate no correlation) we conclude

that build failure and “unnaturalness” may be positively correlated—but only marginally.

3.4 Discussion

Does this mean that developers can use commit messages to predict build failure? Can we cancel our

continuous integration subscriptions? In short, no.

Though the results are statistically significant, we conclude that they are not practically helpful

for the common developer. For example, which of the following commits failed its status check?

“added init.d test to travis config” [36] (cross-entropy = 5.08), or “I’m sloppy” [70] (cross-entropy

= 12.9)? The latter has a far more unnatural commit message than the former, yet it passed its

status check; the “usual” commit failed. Thus, as a heuristic for estimating the probability of build

failure, the unnaturalness of a commit message is not very useful.

For future work, we would like to investigate other features correlation with build status; are

there any non-code features that do predict build failure?

3.5 Conclusions

RQ1: How can the unnaturalness of a commit message be measured? Using n-gram

language models, one is able to use cross-entropy as an analogue for unnaturalness. Automatically-

generated messages and non-English commits become easy to spot.

RQ2: Is the unnaturalness of a commit message related to the quality of the code

committed? “Never judge a book by its cover.” Similarly, never judge a commit by its log message.

Despite some evidence to suggest that the “unnaturalness” of a commit message is positively correlated

with build failure, the slope is so gradual that it is infeasible for an average developer to judge a

commit by simply reading its log message.
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Chapter 4

PartyCrasher: scalable crash

report deduplication

In this chapter, I present naturalness as applied to crash report repositories, for the purpose of

grouping together individual crashes into clusters of similar crashes (“buckets”) that, ideally, are

caused by the same underlying fault. To perform such bucketing, we employed techniques borrowed

from information retrieval for unstructured, natural language text documents. In contrast to the

previous chapter, which tokenized embedded snippets of structured artificial languages from natural

language utterances, this chapter experiments with different tokenization strategies that best represent

the semi-structured crash reports for the purposes of grouping similar crash reports together.

What to takeaway from this chapter

• systems built for natural language information retrieval (e.g., ElasticSearch/Lucene) are well

suited for online deduplication of semi-structured data

• not all tokenization schemes compare equal, so experiment with tokenization

• the trade-off between precision and recall can be resolved at “runtime” rather than be an

intrinsic property of the deduplication algorithm

Readers should refer to Figure 4.2 as to how our solution will integrate in a development context.
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This chapter is relevant to anyone interested in large-scale clustering or deduplication of semi-

structured data. Due to fact that our implementation (PartyCrasher) is open source, future work can

freely use PartyCrasher as a baseline for future crash report deduplication software, as was done by

Moroo et al. [112]. However, I recommend our approach more broadly to any researchers clustering

or deduplicating artifacts that combine structured data from the world of software with unstructured

natural language text. This includes finding duplicates of bug reports, as well as duplicates of

StackOverflow [145] questions. PartyCrasher has been cited [31] as a pre-requisite step to crash

cluster analysis—finding the root cause of a cluster of crashes.

My personal contributions in this chapter include a hand in the implementation of the PartyCrasher;

a literature review which aggregated existing work from academia and industry alike; creation of

diagrams, and manuscript composition.

This chapter is adapted from “The unreasonable effectiveness of traditional information retrieval in

crash report deduplication”, published [29] at the 13th International Conference on Mining Software

Repositories (MSR), 2016, and has contributions from Hazel Campbell as an equal coauthor, and Dr.

Abram Hindle with manuscript composition.
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Abstract

Organizations like Mozilla, Microsoft, and Apple are flooded with thousands of automated crash

reports per day. Although crash reports contain valuable information for debugging, there are often

too many for developers to examine individually. Therefore, in industry, crash reports are often

automatically grouped together in buckets. Canonical’s repository contains crashes from hundreds of

software systems available in Ubuntu. A variety of crash report bucketing methods are evaluated

using data collected by Ubuntu’s Apport automated crash reporting system. We explore the trade-off

between precision and recall of numerous scalable crash deduplication techniques. We present a

set of criteria that a crash deduplication method must meet and we evaluate several methods that

meet these criteria on a new dataset. The evaluations presented in this chapter show that using

off-the-shelf information retrieval techniques, that were not designed to be used with crash reports,

outperform other techniques which are specifically designed for the task of crash bucketing at realistic

industrial scales. This research indicates that automated crash bucketing still has a lot of room for

improvement, especially in terms of identifier tokenization.
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4.1 Introduction

Ada is a senior software engineer at Lovelace Inc., a large software development company. Lovelace

has just shipped the latest version of their software to hundreds of thousands of users. A short while

later, as Ada is transitioning her team to other projects, she gets a call from the quality-assurance

team saying that the software she just shipped has a crashing bug affecting two-thirds of all users.

Worse yet, Ada and her team can’t replicate the crash. What would really be helpful is if every time

that crash was encountered by a user, Lovelace would automatically receive a crash report [135],

with some context information about what machine encountered the crash, and a stack trace [135]

from each thread. Developers consider stack traces to be an indispensable tool for debugging crashed

programs—a crash report with even one stack trace will help fix the bug significantly faster than if

there were no stack traces available at all [134].

Luckily for Ada, Lovelace Inc. has gone through the monumental effort of setting up an automated

crash reporting system, much like Mozilla’s Crash Error Reports [113], Microsoft’s Windows Error

Reporting (WER) [55], or Apple’s Crash Reporter [13]. Despite the cost associated with setting up

such a system, Ada and her team find the reports it provides are invaluable for collecting telemetric

crash data [1].

Unfortunately, for an organization as large as Lovelace Inc., with so many users, even a few small

bugs can result in an unfathomable amount of crash reports. As an example, in the first week of

2016 alone, Mozilla received 2,189,786 crash reports, or about 217 crashes every minute on average.1

How many crash reports are actually relevant to the bug Ada is trying to fix?

The sheer amount of crash reports present in Lovelace’s crash reporting system is simply too

much for one developer, or even a team of developers, to deal with by hand. Even if Ada spent only

one second evaluating a single crash report, she would still only be able to address 1/3 of Lovelace’s

crash reports received during one day of work. Obviously, an automated system is needed to associate

related crash reports together, relevant to this one bug, neatly in one place. All Ada would have to do

is to select a few stack traces from this crash bucket [55], and get on with debugging her application.

Since this hypothetical bucket has all crash stack traces caused by the same bug, Ada could analyze

any number of stack traces and pinpoint exactly where the fault is and how to fix it.
1https://crash-stats.mozilla.com/api/SuperSearch/?date=%3E%3D2016-01-01&date=%3C%3D2016-01-08 The

total number of crashes will slowly increase over time and then eventually drop to zero due to Mozilla’s data collection
and retention policies.

https://crash-stats.mozilla.com/api/SuperSearch/?date=%3E%3D2016-01-01&date=%3C%3D2016-01-08
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The questions that this chapter seeks to answer are:
RQ1: Do tf-idf-based methods make for effective, industrial-scale methods of crash report

bucketing?

RQ2: How can these methods be tuned to increase precision or recall?

This chapter will evaluate existing techniques relevant to crash report bucketing, and propose

a new technique that attempts to handle this fire hose of crash reports with industrially relevant

upper bounds (O (log n) per report, where n is number of crash reports). In order to validate new

techniques some of the many techniques described in the literature are evaluated and compared in

this chapter. The results of the evaluation shows that techniques based on the standard information

retrieval statistic, tf-idf, do better than others, despite the fact these techniques discard information

about what is on the top of the stack and the order of the frames on the stack.

4.1.1 Contributions

This chapter presents PartyCrasher, a technique that buckets crash reports. It extends the work

done by Lerch and Mezini [96] to the field of crash report deduplication and show that despite its

simplicity, it is quite effective. This chapter contributes:

1. a criterion for industrial-scale crash report deduplication techniques;

2. replication of some existing methods of deduplication (such as Wang et al. [160] and Lerch and

Mezini [96]) and evaluations of these methods on open source crash reports, providing evidence

of how well each technique performs at crash report bucketing;

3. implementation of these methods in an open source crash bucketing framework;

4. evaluation based on the automated crashes collected by the Ubuntu project’s Apport tool, the

only such evaluation at the time of writing;

5. a bug report deduplication method that outperforms other methods when contextual information

is included along with the stack trace.
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4.1.2 What makes a crash bucketing technique useful for industrial scale

crash reports?

The volume, velocity, variety, and veracity (uncertainty) of crash reports makes crash report bucketing

a big-data problem. Any solution needs to address concerns of big-data systems especially if it is to

provide developers and stakeholders with value [106]. Algorithms that run in O
(
n2) are infeasible

for the increasingly large amount of crash reports that need to be bucketed. Therefore, an absolute

upper-bound of O (n log n) is chosen for evaluated algorithms.

The methods evaluated in this chapter were methods found in the literature, or methods that the

authors felt possibly had promise. Methods that were evaluated in this chapter were restricted to

those that met the following criteria. The criteria were chosen to match the industrial scenario as

described in the introduction.

1. Each method must scale to industrial-scale crash report deduplication requirements. Therefore,

it must run in O (n log n) total time. Equivalently, each new, incoming crash must be able to

be assigned a bucket in O (log n) time or better.

2. No method may delay the bucketing of an incoming crash report significantly, so that up-to-date

near-real-time crash reports, summaries, and statistics are available to developers at all times.

This requires the method to be online.

3. No method may require developer intervention once it is in operation, or require developers to

manually categorize crashes into buckets. This requires the method to be unsupervised.

4. No method may require knowledge of the eventual total number of buckets or any of their

properties beforehand. Each method must be able to increase the number of buckets only when

crashes associated with new faults arrive due to changes in the software system for which crash

reports are being collected. This requires the method to be non-stationary.

Several deduplication methods are evaluated in this chapter. They can be categorized into two

major categories. First, several methods based on selecting pre-defined parts of a stack to generate

a signature were evaluated. The simplest of these methods is the 1Frame method, that selects the

name of the function on top of the stack as a signature. All crashes that have identical signatures

are then assigned to a single bucket, identified by the signature used to create it.
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#1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from /usr/lib/libpoppler-glib.so.1
#2 0x00002b344ae2cefc in TextSelectionPainter::TextSelectionPainter () from /usr/lib/libpoppler.so.1
#3 0x00002b344ae2cff0 in TextPage::drawSelection () from /usr/lib/libpoppler.so.1
#4 0x00002b344498684a in poppler_page_render_selection () from /usr/lib/libpoppler-glib.so.1

Figure 4.1: An example stack trace.

Method Signature
1Frame CairoOutputDevsetDefaultCTM
2Frame CairoOutputDev::setDefaultCTM TextSelectionPainter::TextSelectionPainter
3Frame CairoOutputDev::setDefaultCTM TextSelectionPainter::TextSelectionPainter

TextPage::drawSelection
1Addr 0x00002b344498a150
1File No Signature (no source file name given in the stack)
1Mod /usr/lib/libpoppler-glib.so.1

Table 4.1: Types of signatures.

Method Tokenization
No tokenization #1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from

/usr/lib/libpoppler-glib.so.1
Lerch 0x00002b344498a150 cairooutputdev setdefaultctm from libpoppler

glib

Space #1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from

/usr/lib/libpoppler-glib.so.1

Camel 1 0 x 00002 b 344498 a 150 in Cairo Output Dev set

Default CTM from usr lib libpoppler glib so 1

Table 4.2: Different ways of tokenizing the signature.
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Similarly, signature methods 2Frame and 3Frame concatenate the names of the two or three

functions on top of the stack to produce a signature. 1Addr selects the address of the function on top

of the stack to generate a signature rather than the function name. 1File selects the name of the

source file in which the function on top of the stack is defined to generate a signature, and 1Mod selects

either the name of the file or the name of the library, depending on which is available. Figure 4.1

shows an example stack trace; Table 4.1 demonstrates how the various signatures are extracted from

Figure 4.1 using the signature generation methods described; and Table 4.2 demonstrates the different

tokenization strategies applied to the first stack frame in Figure 4.1. All of the signature-based

methods, as implemented, run in O (n log n) total time or O (log n) amortized time per crash.

The second category of methods are those based on tf-idf [131] and inverted indices, as implemented

by the off-the-shelf information-retrieval software ElasticSearch 1.6 [46]. tf-idf is a way to normalize

a token based on both on its occurrence in a particular document (in our case, crash reports), and

inversely proportional to its appearance in all documents. That means that common tokens that

appear frequently in nearly all crash reports have little discriminative power compared to tokens

that appear quite frequently in a small set of crash reports.

4.2 Background

Of course, the idea of crash bucketing is not new; Mozilla’s system performs bucketing [42, 1], as does

WER [55]. Many approaches make the assumption that two crash reports are similar if their stack

traces are similar. Consequently, researchers [25, 99, 111, 19, 55, 42, 40, 160, 96, 163] have proposed

various methods of finding similar stack traces, crash report similarity, crash report deduplication,

and crash report bucketing. In order to motivate the evaluation and design choices, it is necessary to

look at what already has been proposed.

Empirical evidence suggests that a function responsible for crash is often at or near the top of

the crash stack trace [25, 134, 163]. As such, many bucketing heuristics employ higher weighting for

grouping functions near the top of the stack [111, 55, 160]. Many of these methods are similar to or

extensions of the 1Frame method, that assumes that the function name on the top of the stack is

the most (or only) important piece of information for crash bucketing. However, at least one study

refutes the effectiveness of truncating the stack trace [96]. The most influential discriminative factors

seem to be function name [96] and module name [19, 55].
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Lerch and Mezini [96] did not directly address crash report bucketing; they addressed bug report

deduplication through stack trace similarity. They deduplicated bug reports that included stack traces

by comparing the traces with tf-idf, which is usually applied to natural language text. Although crash

bucketing was implicit in this approach to bug-report-deduplication, the authors did not compare

this technique against the other crash report deduplication techniques. Unlike the signature-based

methods, tf-idf-based methods do not consider the order that frames appear on the stack. A function

at the top of the stack is treated identically to a function at the bottom of the stack.

This chapter applies and evaluates Lerch and Mezini [96]’s method of bug report deduplication

to crash report deduplication, both excluding contextual data from the crash report as suggested

by Lerch and Mezini [96] and including it. These methods are listed in the evaluation section as

the Lerch method and the LerchC method, respectively. The automated crash reporting tools

collected contextual data at the same time as the crash stack trace. This chapter also evaluates

variants of the Lerch and LerchC methods. Space, SpaceC, Camel, and CamelC were created for

this evaluation based on tokenization techniques described by [46] and by including or excluding

contextual information available in the crash reports. The variants replace the tokenization pattern

used in Lerch and LerchC with a different tokenization pattern. The name specifies the kind of

tokenization–Space splits on whitespace only; Camel splits intelligently on CamelCasedComponents.

If the name is followed by a C, the evaluation included the entire context of the stack trace along

with the stack trace itself. Table 4.2 shows how each method tokenizes a sample stack frame.

Modani et al. [111] provide two techniques to improve performance of the various other algorithms.

These techniques are inverted indexing and top-k indexing, both of which are evaluated in this

chapter. Inverted indexing is employed to improve the performance of all of the tf-idf-based methods

including Lerch and LerchC (however Modani et al. did not use tf-idf in their evaluation). The

implementation is provided by ElasticSearch 1.6 [46]’s indexing system. Top-k indexing is employed

to evaluate all of the methods that use the top portions of stacks, including 1Frame, 2Frame, 3Frame,

1File, etc.

4.2.1 Methods not appearing in this chapter

Mozilla’s deduplication technique, at the time of writing, as it is implemented in Socorro [114]

requires a large number of hand-written regular expressions to select, ignore, skip, or summarize

various parts of the crash report. These must be maintained over time by Mozilla developers and
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volunteers in order to stay relevant to crashes as versions of Firefox are released. This technique

typically uses one to three of the frames of the stack and likely has similar performance to 1Frame,

2Frame, and 3Frame. Furthermore, the techniques employed by Mozilla are extremely specific to

their major product, Firefox, while the evaluation dataset contains crashes from 616 other systems.

In 2005, Brodie et al. [25] presented an approach that normalizes the call stack to remove

non-discriminative functions as well as flattening recursive functions, and compares stacks using

weighted edit distance. Since pairwise stack matching would be infeasible on large data sets—having

a minimum worst case run-time of O
(
n2)–they index a hash of the top k function names at the top

of the stack and use a B+Tree look-up data structure. Several approaches since have used some stack

similarity metric, and found that the most discriminative power is in the top-most stack frames—i.e.,

the functions that are closer to the crash point.

Liu and Han [99] grouped crashes together if they suggest the same fault location. The fault

locations were found using a statistical debugging tool called SOBER [100], that, trained on failing

and passing execution traces (based on instrumenting Boolean predicates in code [98]), returns a

ranked list of possible fault locations. Methods involving full instrumentation [99] or static call graph

analysis [163] are also deemed unfeasible, as they are not easy to incorporate into already existing

software, and often incur pairwise comparisons to bucket regardless of instrumentation cost. Methods

that already assume buckets such as Kim et al. [88] and Wu et al. [163] are disregarded as well.

Modani et al. [111] propose several algorithms. The first algorithm employs edit distance,

requiring O
(
n2) total time. The second and third algorithms are similar, employing longest common

subsequences and longest common prefixes, respectively. The longest common subsequence problem

is, in general, NP-hard in the number of sequences (corresponding to crashes for the purposes of this

evaluation). The longest common prefix algorithm can be implemented efficiently for the purposes of

this evaluation, but was not evaluated here because it must produce at least as many buckets as the

1Frame algorithm, that already creates too many buckets. Thus no Modani et al. [111] comparison

algorithms were used.

In addition to comparison algorithms that might be used for deduplication directly, Modani et

al. [111] also provide several algorithms for identifying frames that may be less useful in each stack

and removing them from those stacks. These algorithms would then be combined with their other

algorithms and are not evaluated in this chapter. One such algorithm removes frequent frames, such

as main() that occur in many stacks. A similar effect is gained from tf-idf, because the inverse
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document frequency reduces the weight of terms that are found in many documents (crashes). These

filtering techniques were not evaluated.

Bartz et al. [19] also used edit distance on the stack trace, but a weighted variant with weights

learned from training data. Consequently, they were able to consider other data in the crash report

aside from the stack trace. The weights learned suggested some interesting findings: substituting

a module in a call stack resulted in a much higher distance; as well, the call stack edit distance

was found to be the highest-weighted factor, despite the consideration of other crash report data,

confirming the intuition in the literature of the stack trace’s importance.

The methods based on edit distance—viz., Brodie et al. [25], Modani et al. [111], Bartz et

al. [19]2—are disqualified due to their requirement of pairwise comparisons between stack traces,

with an upper-bound of O
(
n2).

Schröter et al. [134] empirically studied developers’ use of stack traces in debugging and found

that bugs are more likely to be fixed in the top 10 frames of their respective crash stack trace, further

confirming the surprising significance of the top-k stack frames in crash report bucketing, which is

also corroborated more recently by Wu et al. [163].

Glerum et al. [55] describe the methods used by Microsoft’s WER service. Although they tout

having over 500 heuristics for crash report bucketing—many derived empirically—a large bulk of the

bucketing is attributed to top-1 module offset; over 91% of bucketing is attributed to eight heuristics

alone.

To avoid the O(n2) pairwise comparisons common to many of the previous approaches, Dhaliwal

et al. [42] proposed a weighted edit distance technique that creates representative stack traces—a

probability distribution based on all stack traces seen within a bucket. Thus, instead of computing

similarity against all stack traces in a bucket, one would only use the weights derived from all stack

traces in the bucket simultaneously.

The method described in Dhaliwal et al. [42] is not included in the evaluation because it first

subdivides buckets produced by the 1Frame deduplication method, and requires O
(

|B|2
)

total time

to run, where |B| is the number of buckets. Its use of the 1Frame method already produces a factor of

1.67 too many buckets. Despite the optimization in Dhaliwal et al. [42] that attempts to avoid O
(
n2)

behaviour, it has O
(

|B|2
)

behaviour. Since the number of buckets increases over time, though

2They first use naïve methods for indexing as well, that is evaluated here
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at a slower rate, this method will eventually become computationally unfeasible if old data is not

discarded.

Kim et al. [88] constructed Crash Graphs, that are simply directed graphs using stack frames

as nodes and their adjacency to other stack frames as edges. This also proved to be a useful crash

visualization technique.

Dang et al. [40] created the position independent model that places more weight on stack frames

closer to the top of the stack; and favours stacks whose matched functions are similarly spaced from

each other. Purporting significantly higher accuracy than previous methods, this technique suffers

from a proposed O(n3) clustering algorithm.

Wang et al. [160] propose three different methods, that they refer to as rules. The first rule

requires an incoming crash to be compared to every existing crash, requiring O
(
n2) time. The

second rule compares only the top frame of every crash by considering two crashes related if the file

names in the top frame of the crash are the same. This method is listed in the evaluation as the

1File method. The third rule requires a set of common “frequent closed ordered sub-sets” of stack

frames to be extracted from known “crash types” that are pre-categorized groups of crashes that

have been bucketed using a separate method. The third rule requires O
(

|B|2
)

total time where |B|

is the number of buckets created by the other method. Specifically the authors use the method of

comparing the top frame from each stack, that is evaluated in this chapter as the 1Frame method.

This method appears to create a number of buckets roughly proportional to the number of seen

crashes, n. Thus, the third rule requires O
(
n2) total time, though with a low coefficient. The only

method from Wang et al. [160] directly evaluated in this chapter is the method of comparing file

names at the top of the stack.

Thus, there are many approaches for bucketing crash reports and crash report similarity, but

some are less realistic or industrially applicable than others. Any new work in the field must attempt

to compare itself against some of the prior techniques such as Lerch and Mezini [96].

4.3 Methodology

First, the requirements for an industrial-scale automated crash deduplication system were char-

acterized by looking at systems that are currently in use. Then, a variety of methods from the

existing literature were evaluated for applicability to the task of automated crash report deduplication.



4 PartyCrasher 43

Figure 4.2: PartyCrasher within a development context.

Several methods that met the requirements were selected. A general purpose Python framework in

which any of the selected deduplication methods could be supported and evaluated was developed,

and then used to evaluate all of the methods by simulating the process of automated crash reports

arriving over time. Additionally, a dataset that could be used as a gold set to judge the performance

of such methods was obtained. The dataset was then filtered to include only crash reports that had

been deduplicated by human developers and volunteers.

Various approaches of automatic crash report categorization (the exact problem that Ada is

tasked with solving) is simulated. First, a crash report arrives with no information other than what

was gathered by the automated reporting mechanisms on the user’s machine. This report might

include a description written by the user of what they were doing when the crash occurred. Figure 4.3
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Binary package hint: evolution-exchange

I just start Evolution, wait about 2 minutes, and then evolution-exchange crashed

ProblemType: Crash
Architecture: i386
CrashCounter: 1
Date: Tue Jul 17 10:09:50 2007
DistroRelease: Ubuntu 7.10
ExecutablePath: /usr/lib/evolution/2.12/evolution-exchange-storage
NonfreeKernelModules: vmnet vmmon
Package: evolution-exchange 2.11.5-0ubuntu1
PackageArchitecture: i386
ProcCmdline: /usr/lib/evolution/2.12/evolution-exchange-storage --oaf-activate-i
ProcCwd: /
ProcEnviron:
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
LANG=en_US.UTF-8
SHELL=/bin/bash

Signal: 11
SourcePackage: evolution-exchange
Title: evolution-exchange-storage crashed with SIGSEGV in soup_connection_discon
Uname: Linux encahl 2.6.20-15-generic #2 SMP Sun Apr 15 07:36:31 UTC 2007 i686 G
UserGroups: adm admin audio cdrom dialout dip floppy kqemu lpadmin netdev plugde

#0 0xb71e8d92 in soup_connection_disconnect () from /usr/lib/libsoup-2.2.so.8
#1 0xb71e8dfd in ?? () from /usr/lib/libsoup-2.2.so.8
#2 0x080e5a48 in ?? ()
#3 0xb6eaf678 in ?? () from /usr/lib/libgobject-2.0.so.0
#4 0xbfd613e8 in ?? ()
#5 0xb6e8b179 in g_cclosure_marshal_VOID__VOID ()

from /usr/lib/libgobject-2.0.so.0
Backtrace stopped: frame did not save the PC

Figure 4.3: An example crash report, including stack [11].

is an example of one of the crash reports used in the evaluation with a user-submitted description on

the second line, metadata in the middle, and a stack trace on the bottom.

4.3.1 Mining crash reports

The first step in the evaluation procedure is mining of crash reports from Ubuntu’s bug repository,

Launchpad [30]. This was done using a modified version of Bicho [130], a software repository mining

tool.3 Over the course of one month, Bicho was able to retrieve 126,609 issues from Launchpad,
3Available: https://github.com/orezpraw/Bicho/. The changes were to augment Bicho’s the Launchpad backend:

to download crashes only; to include fields relating to whether the crash was a duplicate of another one; and to store
the original Launchpad ID.

https://github.com/orezpraw/Bicho/
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including 80,478 stack traces in 44,465 issues. Some issues contain more than one stack trace. For

issues that contained more than one stack trace, the first stack trace posted to that issue was selected,

yielding 44,465 issues with crash reports and stack traces. The first stack trace is selected because it

is the one that arrives with the automated crash report, generated by the instrumentation on the

user’s machine.

Ubuntu crash reports were used for the evaluation because they are automatically generated and

submitted but many of them have been manually deduplicated by Ubuntu developers and volunteers.

Other data sources, such as Mozilla’s Crash Reports have already been deduplicated by Mozilla’s

own automated system, not by humans.

Next, the issues were put into groups based on whether they were marked as duplicates of another

issue, resulting in 30,664 groups of issues. These groups are referred to as “issue buckets” for the

remainder of this chapter, to prevent confounding with groups of crash reports, that will be referred

to as “crash buckets.” This dataset is available.4

4.3.1.1 Stack trace extraction

Each issue and stack trace obtained from Ubuntu is formatted as plain text, as shown in Figure 4.3.

They were then parsed into JSON-formatted data with individual fields for each item, such as address,

function name, and which library the function came from. Unfortunately, this formatting is not

always consistent and may be unusable. For example, some stack traces contain unintelligible binary

data in place of the function name. This could be caused by memory corruption when the stack trace

was captured. 2,216 crash reports and stack traces were thrown out because their formatting could

not be parsed, leaving 41,708 crash reports with stack traces.

4.3.1.2 Crash report and stack trace data

Issues were then filtered to only those that had been deduplicated by Ubuntu developers and other

volunteers, yielding 15,293 issues and stack traces in 3,824 issue buckets. These crash reports were

submitted to Launchpad by the Apport tool.5 They were collected over a one month period. Because

Launchpad places restrictions on how often the Launchpad API can be used to request data, and

each crash report required multiple requests, it required over 20 seconds to download each issue. The
4https://archive.org/details/bugkets-2016-01-30
5https://launchpad.net/apport

https://archive.org/details/bugkets-2016-01-30
https://launchpad.net/apport
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crash reports used in the evaluation span 617 different source packages, each of which represents a

software system. The only commonalities between them are that they are all written in C, C++, or

other languages that compile to binaries debuggable by a C debugger, and that they are installed and

used on Ubuntu. The most frequently reported software system is Gnome6, which has 2,154 crash

reports with stack traces. This dataset is large, comprehensive and covers a wide variety of projects.

4.3.2 Crash bucket brigade

In order to simulate the timely nature of the data, each report is added to a simulated crash report

repository one at a time. This is done so that no method can access data “from the future” to choose

a bucket to assign a crash report to. It is first assigned a bucket based on the crashes and buckets

already in the simulated repository, then it is added to the repository as a member of that bucket.

4.3.3 Deciding when a crash is not like the others

For methods based on Lerch and Mezini, there is a threshold value, T , that determines how often,

and when, an incoming crash report is assigned to a new bucket. A specific value for T was not

described by Lerch and Mezini, so a range of different values from 1.0 to 10.0 were evaluated. Higher

values of T will cause the algorithm to create new buckets more often.

The threshold value applies to the score produced by the Lucene search engine inside Elastic-

Search 1.6 [46]. Details of this tf-idf-based scoring method are described within the ElasticSearch

documentation [102]. The scoring algorithm is based on tf-idf, but contains a few minor adjustments

intended to make scores returned from different queries more comparable.

4.3.4 Implementation

The complete implementation of the evaluation presented in this chapter is available in the open-

source software PartyCrasher.7 The implementation includes every deduplication method we

claimed to evaluate above, a general-purpose deduplication framework, the programs used to mine

and filter the data used for the evaluation, the programs that produced the evaluation results, the

raw evaluation results, and the scripts used to plot them.
6https://www.gnome.org/
7https://github.com/naturalness/partycrasher

https://www.gnome.org/
https://github.com/naturalness/partycrasher
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4.3.5 Evaluation metrics

Two families of evaluation metrics were used. These are the BCubed precision, recall, and F1-score,

and the purity, inverse purity, and F1-score. Both are suitable for characterizing the performance

of online non-stationary clustering algorithms by comparing the clusters that evolve over time to

clusters created by hand. A comparison of BCubed and purity, along with several other metrics,

and an argument for the advantages of BCubed over purity is provided in Amigó et al. [9]. The

mathematical formulae for both metrics can be found in Amigó et al. [9]. However, purity also has an

advantage over BCubed: specifically that it does not require O
(
n2) total time to compute whereas

BCubed does during the evaluation.

If a method has a high BCubed precision, this means that there would be less chance of a

developer finding unrelated crashes in the same bucket. This is important to prevent crashes caused

by two unrelated bugs from sharing a bucket, possibly causing one bug to go unnoticed since usually

a developer would not examine all of the crashes in a single bucket.

If a method has a high BCubed recall, this means that there would be less chance of all the

crashes caused by a single bug to become separated into multiple buckets. Reducing the scattering

of a single bug across multiple buckets is important as scattering interferes with statistics about

frequently experienced bugs.

In contrast, purity and inverse purity focus on finding the bucket in the experimental results that

most closely matches the bucket in the gold set. Then the overlap between the two closest matching

buckets is used to compute the purity and inverse purity metrics, with high purity indicating that

most of the items in a bucket produced by one of the methods evaluated are also in the matching

bucket in the gold set. High recall indicates that most of the items in a bucket from the gold set are

found in the matching bucket produced by the method being evaluated.

The purity method does not, however, completely reflect the goals of the evaluation. Purity and

inverse purity do not capture anything besides the overlap between the two buckets that overlap the

most. Thus, if a method creates a bucket that is 51% composed of crashes from a single bug, the

other 49% doesn’t matter. That 49% could come from a different bug, or 200 different bugs, but the

purity would be the same value. It is included in this evaluation for completeness, since it was used

by Dang et al. [40].
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Figure 4.4: BCubed (top) and Purity-metric (bottom) scores for various methods of crash report
deduplication.

Both metrics can be combined into F-scores. In this evaluation, F1-scores were used, placing

equal weight on precision and recall (or purity and inverse purity.)

BCubed and purity can be used with the gold set, hand-made buckets that are available from

Ubuntu’s Launchpad [30] bug tracking system. Ubuntu developers and volunteers have manually

marked many of the bugs in their bug tracker as duplicates. Furthermore, many of the bugs in the

bug tracker are automatically filed by Ubuntu’s automated crash reporting system, Apport. This

evaluation uses only bugs that were both automatically filed by Apport and manually marked as

duplicates of at least one other bug. The dataset is biased to the distribution of crashes that are

bucketed, which might be different than crashes that are not. Conversely, this prevents the evaluation

dataset from containing any crashes that have not yet evaluated by an Ubuntu developer or volunteer.

4.4 Results

After extracting crash reports from Launchpad, and implementing various crash report bucketing

algorithms, the performance of these algorithms on the Launchpad gold set was evaluated. Evaluation

is multifaceted as in most information retrieval studies since the importance of either precision or

recall are tunable.

4.4.1 BCubed and purity

Evaluation of the performance of bucketing algorithms is performed with BCubed and purity metrics.

Figure 4.4 shows the performance of a variety of deduplication methods evaluated against the entire
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Figure 4.5: Number of buckets created as a function of number of crashes seen. The line labelled
Ubuntu indicates the number of groups of crashes that were marked as duplicates of each other by
Ubuntu developers or volunteers.

gold set of deduplicated crash reports. The 1File and 1Addr methods have the most precision, while

LerchC has the most recall. F1-score is dominated by CamelC and Lerch. As in the results of Lerch

and Mezini [96], using only the stacks outperforms using the stack plus its metadata and contextual

information in terms of F1-score. For the CamelC, Lerch, and LerchC simulations, a threshold of

T = 4.0 was used.

Amigó et al. [9] observed differences in BCubed and purity metrics. Their observation was tested

empirically by the evaluation. In Figure 4.4, BCubed and purity produce similar results. The best

and worst methods in terms of BCubed precision are the same as the best and worst methods in

terms of purity; the same holds true for BCubed recall and inverse purity, and BCubed F1-score

and purity F1-score. However, some of the methods with intermediate performance are much closer

together in purity F1-score than they are in BCubed F1-score.

Figure 4.4 also shows that in general, if a method has a higher precision or purity, it also has a

lower recall and inverse purity. For example, 3Frame has a higher precision than 2Frame, having a

higher precision than 1Frame, but 1Frame has a higher recall than 2Frame and 3Frame.

The CamelC crash bucketing method employs tf-idf; a tokenizer that attempts to break up

identifiers such as variable names into their component words; and the entire context of the crash

report including all fields reported in addition to the stack. It outperforms other bucketing methods

evaluated.
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4.4.2 Bucketing effectiveness

Figure 4.5 shows the number of buckets created by a variety of deduplication methods. The number

of issue buckets extracted from the Ubuntu Launchpad gold set is plotted as the line labelled Ubuntu.

The method that creates a number of buckets most similar to the number mined from the Ubuntu

Launchpad gold set is LerchC. For the Lerch and LerchC simulations, a threshold of T = 4.0 was

used.

Figure 4.6: BCubed scores for the Lerch method of crash report deduplication at various new-bucket
thresholds T .

Figure 4.6 shows the performance of the Lerch method when used with a variety of different

new-bucket thresholds, T . Figure 4.7 shows the number of buckets created by the same method

with those same thresholds. Since Lerch and Mezini [96] did not specify what threshold they used,

this evaluation explored a range of thresholds. It can be seen from the plots that the relative

performance of T thresholds, in terms of BCubed precision, BCubed recall, and BCubed F1-score,

becomes apparent after only 5,000 crash reports. In practice, the authors of this chapter suggest

that developers using this system start with a middle F1-score of around T = 4.0 and adjust it as

they use the system, rather than systematically examining thousands of crash reports.

It is possible for developers using this system to create multiple sets of buckets with different

thresholds. This can be done efficiently as the crash reports are received, and would allow developers

to choose a threshold at any time without re-bucketing. The implementation only requires a single

query and can produce multiple buckets for each incoming crash report, since the threshold is applied

after results from ElasticSearch are retrieved.
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Figure 4.7: Number of buckets created as a function of number of crashes seen for the Lerch method
of crash report deduplication at various new-bucket thresholds T . The line labelled Ubuntu indicates
the number of groups crashes that were marked as duplicates of each other by Ubuntu developers or
volunteers.

For all the results that do not specify a value for T , T = 4.0 was used. The highest F1-score

was observed at T = 4.0 after only processing 5,000 bugs with a variety of different thresholds. For

Lerch, a threshold of 3.5 < T < 4.5 had the highest performance.

As shown in figure 4.8, T = 4.0 still has the highest F1-score after every crash was processed.

Furthermore, other values of T near 4.0 have the same F1-score, including the range 3.5 ≤ T ≤ 4.5.

Figure 4.8 also shows how the threshold can be tuned to create a trade-off between precision and

recall. Setting a threshold of 0.0 is similar to instructing the system to put all of the crashes into a

single bucket. This would be the correct choice if developers were satisfied with the explanation that

all of those crashes were created by a single bug. The fact that setting the threshold to 0.0 does

not result in recall quite at 1.0 is an artifact of optimizations employed in ElasticSearch, specifically

ElasticSearch’s inverted index.

Conversely, setting the threshold to 10.0 results in every crash being assigned to its own bucket,

and therefore a perfect precision of 1.0. This would be the correct choice if developers considered

every individual crash to be a distinct bug because the exact state of the computer was at least

somewhat different during each crash. It might be more desirable to tune the value of T by using

direct developer feedback rather than the technique employed here, comparing against an existing

dataset. Instead of using data, one could ask developers if they had seen too many crashes caused by

unrelated bugs in a single bucket recently. If they had, then T should be increased. Or, T should
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Figure 4.8: Precision/Recall plot showing the trade-off between BCubed precision and recall as the
new-bucket threshold T is adjusted. BCubed F1-score is also listed in the plot.

be decreased if developers see multiple buckets that seemed to be focused on crashes caused by the

same bug.

Figure 4.9: Purity-metric scores for the Lerch method of crash report deduplication at various
new-bucket thresholds T .
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Figure 4.10: BCubed scores for the Lerch method of crash report deduplication with Lerch’s
tokenization technique replaced by a variety of other techniques.

4.4.3 Tokenization

Threshold is not the only way that a trade-off between precision and recall can be made. A variety of

methods were tested that use the ElasticSearch/Lucene tf-idf-based search from Lerch and Mezini [96],

but do not follow their tokenization strategy. The performance of several tokenization strategies is

shown in Figure 4.10. As in other cases, the methods with high precision had low recall, and the

methods with high recall had low precision. All methods shown in Figure 4.10 used a threshold of

T = 4.0.

The Space method is obtained by replacing the tokenization strategy in Lerch with one that

splits words on whitespace only, such that it does not discard any tokens regardless of how short they

are, and does not lowercase every letter in the input. The Space method performs worse than Lerch.

However, when both stack traces and context are used, the SpaceC method, performance improves

slightly. This is the opposite behaviour of Lerch. Adding context (LerchC) causes performance

to decrease slightly. A third tokenization strategy, Camel was evaluated. Camel attempts to break

words that are written in CamelCase into their component words, using a method provided in the

ElasticSearch documentation [47]. This strategy had the worst performance of the three, until it was

used with context included, called CamelC. The addition of context allowed CamelC to outperform

every other method evaluated in this chapter.

The worst-performing tokenization evaluated, 1Addr, was also the method that produced the

largest number of buckets. However, tuning methods to match the number of buckets in the gold

set without concern for performance did not result in higher performance. Lerch with T = 3.0 and
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SpaceC with T = 4.0 were not the best-performing threshold or method, but both produced almost

the same number of buckets as the gold set.

4.4.4 Runtime performance

The current implementation of PartyCrasher requires only 45 minutes to bucket and ingest 15,293

crashes, using the slowest algorithm, CamelC, on a Intel® Core™ i7–3770K CPU @ 3.50GHz machine

with 32GiB of RAM and a Hitachi HDS723020BLE640 7200 RPM hard drive. Performance depends

mainly on disk throughput, latency and RAM available for caching; ElasticSearch recommends using

only solid-state drives. This works out to 335 crashes per minute, meeting the performance goal of

217 crashes per minute based on crash-stats from Mozilla. The performance of ElasticSearch is highly

dependent on ElasticSearch’s configuration settings. The settings used during these evaluations is

available in the PartyCrasher repository.

4.5 Discussion

4.5.1 Threats to validity

Results are dependent on the gold set—a manual classification of crash report by Ubuntu volunteers.

The results may be biased due to the exclusive use of known duplicate crashes; the known and

classified duplicates may not be representative of all crash reports. If any of these methods with

tunable parameters are deployed, the parameters should be tuned based on feedback from people

working with the crash buckets, not just the gold set.

Since the evaluation only used data from open source software, it is unknown if our results are

applicable to closed-source domains. Only stacks that originate from C and C++ projects have

been evaluated; it is possible that other languages, compilers, and their runtimes have different

characteristics in how they form stack traces. However, these results are corroborated by studies

that examined Java exclusively [160, 96].

4.5.2 Related work

Although crash bucketing facilitates manual debugging of individual faults, crash buckets are much

more beneficial as the input to other methods in software engineering. Lerch and Mezini [96] originally
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applied their technique to the field of deduplicating bug, not crash, reports; Khomh et al. [86] used

crash buckets to triage bugs: prioritizing developer effort on the most crucial bugs. Seo and Kim [135]

leveraged crash buckets to predict “recurring crashes”—i.e., bugs that were “fixed” but had to be fixed

again in a later revision. Crash buckets may also serve as input to crash localization [99, 160, 163]

and crash visualization [88, 40].

4.5.3 Future work

The results in this chapter indicate that there may be a large number of improvements that could be

made to the relatively high-performance tf-idf-based crash deduplication methods.

Many stack comparison methods [111, 55, 42, 160], take into account the position that each

frame is on the stack, giving more weight to the frames near the top of the stack and less weight to

frames on the bottom of the stack, or consider stacks that have similar frames in a similar order.

The best-performing method of crash deduplication presented in this chapter completely disregards

information about the order of the stack. It is likely that a technique based on tf-idf that also

incorporates information about the order of frames on the stack would outperform all of the methods

evaluated in this chapter, since several previous works indicate that the top of the stack contains the

most important information [25, 134, 163]. This could be achieved by giving words that appear in

the top of the stack more weight when computing tf-idf or by re-ranking the top results produced

by tf-idf according to stack similarity before choosing a bucket to place a crash in. Neither of these

extensions would cause the method to be unable to scale.

The tokenization techniques evaluated in this chapter are extremely primitive. They are merely

regular expressions that break up words based on certain types of characters such as spaces, symbols,

uppercase letters, lowercase letters and numbers. Advanced tokenization techniques, such as the ones

found in Guerrouj et al. [63] and Hill et al. [72], would likely outperform the basic techniques that

have been evaluated in this chapter.

As shown in Figure 4.3, crash reports often contain a multitude of data apart from the stack

trace itself. This chapter only measured the performance of tf-idf when using only the stack trace

or the entire crash report. Some fields in the crash report may be more important to obtaining a

high performance than others. For example, Architecture (the computer architecture on which

the crash occurred) might be more valuable for deduplication than CrashCounter (the number of
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times that a crash has occurred on that computer) or vice-versa, but this has not been studied in the

context of information retrieval.

We would like to extend information retrieval techniques with more sophisticated normalization.

We want to investigate any effects that stack normalization, as first proposed by Brodie et al. [25],

would have on our tf-idf approach.

It would be valuable to measure the effectiveness of using the buckets produced by the CamelC

technique as input to other methods, such as those that perform bug triaging [86] and crash

localization [163]. We also wish to investigate whether post-processing can be applied to the buckets

produced by our method to minimize the “second bucket problem” as discussed by Glerum et al. [55]

and Dang et al. [40].

4.6 Conclusion

The results in this chapter indicate that off-the-shelf tf-idf-based information retrieval tools can

bucket crash reports in a completely unsupervised, large-scale setting when compared to a variety

of other previously proposed algorithms. Based on these results, a developer, such as Ada, should

choose a tf-idf-based crash deduplication method with tokenization that fits their dataset, and

intermediate new-bucket threshold. They should update this threshold based on feedback from

developers, volunteers, or employees that work with the stack traces directly. A tf-idf approach

that used the entire crash report and stack trace, tokenized using camel-case had the best F1-score

on the Ubuntu Launchpad crash reports used in this work. In addition, there is a lot of room

for improvements to these techniques. This conclusion is surprising in light of the fact that the

tf-idf-based techniques evaluated disregard information that is often considered to be essential to

stack traces, such as the order of the frames in the stack.

Finally the research questions can be answered:

RQ1: tf-idf-based methods are effective, industrial-scale methods of crash report bucketing.

RQ2: Thresholds and tokenization strategies can be tuned to increase precision and recall.
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Chapter 5

Syntax and Sensibility

In this chapter, we apply the concept of naturalness to the problem of source code syntax error

correction in two ways: we flag quantifiably unlikely utterances in source code (“unnatural” code) as

potential syntax errors; and we use the naturalness of software to search for the appropriate edit

that will fix the error. As in Chapter 3 (“Judging a commit by its cover”), we investigate unnatural

utterances and apply application-specific tokenization to drastically reduce the amount of tokens

that only appear once in the corpus. Like Chapter 4 (“The unreasonable effectiveness of traditional

information retrieval in crash report deduplication”), we assume that new source code is similar

to previously seen source code, thus, we can apply traditional natural language processing (NLP)

techniques to find a suitable fix for the syntax error.

The takeaways from this chapter are:

• Syntax can be modeled by abstracting “open” tokens.

• Machine learning on “professional” code can be applied to novice code; there is no need to

constrain a technique to train and evaluate only on novice code.

• Forwards/backwards long short-term memory (LSTM) language models can outperform n-gram

models on the task of automatic syntax error correction.

• Given a search space of fixes, naturalness can be used to suggest a fixed number of possible

fixes, thus greatly reducing the search space when compared to more brute-force approach.
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Readers should pay particular attention to Figure 5.3. Looking at the results of “LSTM Impr.” on

creating a valid fix, we see that its number 1 suggestion will fix a syntax error over half of the time.

This is a testament to naturalness’s ability to bias search.

This chapter is relevant to people looking to support novice programmers by creating tools that

lower the barriers to learning how to code. This includes academics, but also developers of text editors

and integrated development environments (IDEs). For example, statistics derived from corpora of

correct code (in a manner described in this chapter) can be incorporated in the PSIElement interface

of the IntelliJ IDE platform [83]. This information can guide the parser when it has encountered a

syntax error to determine if there are more likely parses of the incorrect file, given a different series

of tokens in the parse tree. This chapter is also interesting to those comparing the effectiveness of

deep learning techniques (such as LSTM neural networks) compared to simpler machine learning

algorithms such as n-grams. This chapter helps provide evidence to answer the question: is it viable

to create a syntax error correction model that is general-purpose, and can be useful even when

deployed on code from a domain that it was not trained on?

My personal contributions to this chapter were creating the syntax fixing algorithm (Section 5.5.2);

devising the vocabulary abstraction technique (Section 5.3.2); training and experimenting with the

LSTM models (discussed in greater detail in Appendix A); writing code and tests to ensure a correct

implementation of all the algorithms mentioned in this chapter; gaining access to and mining the

Blackbox database (Section 5.6); and manuscript composition.

This chapter is adapted from “Syntax and Sensibility: Using language models to detect and

correct syntax errors”, published [132] at the 25th IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2018, and has contributions from Hazel Campbell

with concept formation, authoring the evaluation code, writing the n-gram implementation, and

manuscript composition; Dhvani Patel with research assistance; Dr. Abram Hindle, and Dr. J. Nelson

Amaral with concept formation and manuscript composition.
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Abstract

Syntax errors are made by novice and experienced programmers alike; however, novice programmers

lack the years of experience that help them quickly resolve these frustrating errors. Standard LR

parsers are of little help, typically resolving syntax errors and their precise location poorly. We

propose a methodology that locates where syntax errors occur, and suggests possible changes to the

token stream that can fix the error identified. This methodology finds syntax errors by using language

models trained on correct source code to find tokens that seem out of place. Fixes are synthesized

by consulting the language models to determine what tokens are more likely at the estimated error

location. We compare n-gram and LSTM language models for this task, each trained on a large

corpus of Java code collected from GitHub. Unlike prior work, our methodology does not require that

the problem source code comes from the same domain as the training data. We evaluated against

a repository of real student mistakes. Our tools are able to find a syntactically-valid fix within its

top-2 suggestions, often producing the exact fix that the student used to resolve the error. The

results show that this tool and methodology can locate and suggest corrections for syntax errors. Our

methodology is of practical use to all programmers, but will be especially useful to novices frustrated

with incomprehensible syntax errors.
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1 public class A {
2 public static void main( String args []) {
3 if (args. length < 2)
4 System .out. println ("Not enough args!");
5 System .exit (1);
6 }
7 System .out. println ("Hello , world !");
8 }
9 }

Listing 5.1: Syntactically invalid Java code. An open brace ({) is missing at the end of line 3.

5.1 Introduction

Computer program source code is often expressed in plain text files. Plain text is a simple, flexible

medium that has been preferred by programmers and their tools for decades. Yet, plain text can be

a major hurdle for novices learning how to code [147, 80, 148]. Not only do novices have to learn the

semantics of a programming language, but they also have to learn how to place arcane symbols in

the right order for the computer to understand their intent. The positioning of symbols in just the

right way is called syntax, and sometimes humans—especially novices—get it wrong [147].

The tools meant for interpreting the human-written source code, parsers, are often made such

that they excel in understanding well-structured input; however, if they are given an input with so

much as one mistake, they can fail catastrophically. What’s worse, the parser may come up with a

misleading conclusion as to where the actual error is. Consider the Java source code in Listing 5.1. A

single token—an open brace ({) at the end of line 3—in the input is different from that of the correct

file that the programmer intended to write. Give this input to a Java 8 compiler such as OpenJDK’s

javac [122], and it reports that there is an error with the source file, but it overwhelms the user

with misleading error messages to identify the location of the mistake made by the programmer.
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A.java:7: error: <identifier> expected

System.out.println("Hello, world!");

^

A.java:7: error: illegal start of type

System.out.println("Hello, world!");

^

A.java:9: error: class, interface, or enum expected

}

^

3 errors

Imagine a novice programmer writing this simple program for the first time, being greeted with

three error messages, all of which include strange jargon such as error: illegal start of type.

The compiler identified the problem as being at least on line 7 when the mistake is four lines up, on

line 3. However, an experienced programmer could look at the source code, ponder, and exclaim:

“Ah! There is a missing open brace ({) at the end of line 3!” Such mistakes involving unbalanced

braces are the most frequent errors among new programmers [26], yet the compiler offers little help

in resolving them.

In this chapter, we present Sensibility, which finds and fixes single token syntax errors. The

general problem we seek to solve is:
Given a source code file with a syntax error, how can one accurately pinpoint its location and

produce a single token suggestion that will fix it?

We compare the use of n-gram models and long short-term memory (LSTM) models for modelling

source code for the purposes of correcting syntax errors. All models were trained on a large corpus

of hand-written Java source code collected from GitHub. Whereas prior works offer solutions that

are limited to fixing syntax errors within the same domain as the training data—such as only

fixing errors within the same source repository [28], or within the same introductory programming

assignment [65, 22]—As such, we evaluated against a corpus of real syntax errors collected from the

Blackbox repository of novice programmers’ activity [27].

In this chapter, we focus on correcting syntax errors at the token level. We do not consider

semantic errors that can occur given a valid parse tree such as type mismatches, and—in our abstract

models (Section 5.3.2)—misspelled variable names. These errors are already handled by other tools

given a source file with valid syntax. For example, the Clang C++ compiler [35] can detect misspelled
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variable names and—since it has a valid parse tree—Clang can suggest which variable in scope may

be intended. As such, we focus our attention in this chapter to errors that occur before a compiler

can reach this stage—namely, errors that prevent a valid parse of a source code file. In particular, we

consider syntax errors that are non-trivial to detect using simple handwritten rules, as used in some

parsers [82, 150].

Our contributions include:

• Showing that language models can successfully locate and fix syntax errors in human-written

code in seconds without parsing.

• Comparing three different language models including two n-gram models and one deep neural

network.

• Evaluating how all three models perform on a corpus of real-world syntax errors with known

fixes provided by students.

5.2 Prior work

Prior work relevant to this research addresses repositories of source code and repositories of mistakes,

past attempts at locating and fixing syntax errors in and out of the parser, methods for preventing

syntax errors, deep learning, and applying deep learning to syntax error locating and fixing.

Data-sources and repositories are needed to train models and evaluate the effectiveness of

techniques on syntax errors. Brown et al. [27, 7] created the Blackbox repository of programmers’

activity collected from the BlueJ Java IDE [92], which is used internationally in introductory computer

science classes. Upon installation, BlueJ asks the user whether they consent to anonymized data

collection of editor events. The dataset—which is continually updated—enables a wealth of analyses

concerning how novices program Java. Our empirical evaluation, described in Section 5.6, is one

such analysis using the Blackbox data.

Syntax errors are errors whereby the developer wrote code that cannot be recognized by the

language rules of the parser. It can be as simple as missing a semi-colon at the end of a statement.

The long history of work on syntax error messages is often motivated by the need to better serve

novice programmers [147, 80, 148, 81, 79, 51, 110, 93, 77]. Denny et al. [41] categorized common

syntax errors that novices make by the error messages the compiler generates and how long it takes
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for the programmer to fix them. This research shows that novices and advanced programmers alike

struggle with syntax errors and their accompanying error messages. Dy and Rodrigo [43] developed

a system that detects compiler error messages that do not indicate the actual fault, which they name

“non-literal error messages”, and assists students in solving them. Nienaltowski et al. [119] found that

more detailed compiler error messages do not necessarily help students avoid being confused by error

messages. They also found that students presented with error messages only including the file, line

and a short message did better at identifying the actual error in the code more often for some types of

errors. Marceau et al. [105] developed a rubric for grading the error messages produced by compilers.

Becker’s dissertation [20] attempted to enhance compiler error messages in order to improve student

performance. Barik et al. [18] studied how developers visualize compilation errors. They motivate

their research with an example of a compiler misreporting the location of a fault. Pritchard [127]

shows that the most common type of errors novices make in Python are syntax errors. Brown et

al. [26] investigated the opinions of educators regarding what they believe are the most common Java

programming mistakes made by novices, and contrasted it with mistakes mined from the Blackbox

dataset. They found that educators share a weak consensus of what errors are most frequent, and

furthermore show that across 14,235,239 compilation events, educators’ opinion demonstrates a low

level of agreement against the actual data mined. The most common error witnessed was unbalanced

parenthesis and brackets, which was ranked the eleventh most common on average by educators. The

other most common errors were semantic and type errors.

Earlier research attempted to tackle errors at the parsing stage. In 1972, Aho [2] introduced

an algorithm to attempt to repair parse failures by minimizing the number of errors that were

generated. In 1976, Thompson [154] provided a theoretical basis for error-correcting probabilistic

compiler parsers. He also criticized the lack of probabilistic error correction in then-modern compilers.

However, this trend continues to this day.

Parr et al. [124] discusses the strategy used in ANTLR, a popular LL(*) parser-generator. This

strategy involves an increased look-ahead strategy to produce error messages that take into account

more of the surrounding code as context, and uses single-token insertion, deletion, substitution, and

predictive parsing to produce better error messages The parser attempts to repair the code when

it encounters an error using the context around the error so it can continue parsing. This strategy

allows ANTLR parsers to detect multiple problems instead of stopping on the first error. Jeffery [82]

created Merr, an extension of the Bison parser generator, which allows the grammar writer to provide
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examples of expected syntax errors that may occur in practice, accompanied with a custom error

message. Merr automatically generates a yyerror() function that recovers the parser state in an

error condition to determine if any of the given errors occurred, and displays the provided error

message appropriately. While the grammar writer could compose an error message that suggests the

fix to a syntax-error in Merr, our work is explicitly focused on providing the possible fix. In contrast

to Merr, our work does not require any hand-written rules in order to provide a suggestion for a

syntax error, and is not reliant on the parser state, which may be oblivious to the actual location of

the syntax error.

Recent research has applied language models to syntax error detection and correction. Campbell

et al. [28] created UnnaturalCode which leverages n-gram language models to locate syntax errors in

Java source code. UnnaturalCode wraps the invocation of the Java compiler. Every time a program

is syntactically-valid, it augments the existing n-gram model. When a syntax error is detected,

UnnaturalCode calculates the entropy of each token. The token sequence with the highest entropy

with respect to the language model would be the likely location of the true syntax error, in contrast

to the location where the parser may report the syntax error. Using code-mutation evaluation, the

authors were able to find that a combination of UnnaturalCode’s reported error location and the

Java compiler’s reported error locations would yield the best mean-reciprocal rank for the true error

location. Using a conceptually similar technique to UnnaturalCode, our work detects the location of

syntax errors; unlike UnnaturalCode, our work can also suggest the token that will fix the syntax

error.

Preventing syntax errors is the goal of research that wishes to reduce syntax errors or make

syntax errors impossible to make, even in text-based languages. This is often accomplished by

blurring the line between the program editor and the language itself and engaging in tree edits,

such as the tree edit states of Omar et al. [120]’s proposed Hazel, or Project Lambdu [94] where an

abstract syntax tree (AST) is modified within the editor instead of text.

Numerous compilers have placed a focus on more user-friendly error messages that explain the

error and provide solutions. Among these are Clang [35], Rust [159], Scala [116], and Elm [37].

Deep learning is a technique to model token distributions on software text [129, 162]. Recurrent

neural networks (RNNs), unlike feedforward neural networks, have links between layers that form

a directed cycle, effectively creating a temporal memory. RNNs have been successful in speech

recognition [66]. LSTM neural networks, extend RNNs by protecting its internal memory cells from
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being affected by the “squashing” effect of the logistic activation functions across recurrent links.

Typically neural networks’ weights and parameters are trained by some form of stochastic gradient

descent, a gradient descent that shuffles inputs each round. RNNs and LSTMs have shown value in

processing natural language texts and programming language texts. Hellendoorn and Devanbu [69]

discuss the effectiveness of deep learning—specifically RNNs and LSTMs—on the task of suggesting

the next token in a file. The authors compare deep learning against a n-gram/cache language model

that dynamically changes based on what file and packages are in scope in an editing session within a

IDE. They find that combining deep learning and the aforementioned cache language model achieves

very low entropy. The disadvantage is that deep learning often requires keeping a closed vocabulary,

making deep learning unsuitable for predicting novel identifiers and literals in ever-changing scopes.

The LSTM model we present in this chapter maintains a closed vocabulary; for the purpose of

detecting syntax errors, the exact value of identifiers and literals is irrelevant. Others have applied

RNNs to source code. White et al. [162] trained RNNs on source code and showed their practicality

in code completion. Similarly, Raychev et al. [129] used RNNs in code completion to synthesize

method call chains in Java code. Dam et al. [39] provides an overview of LSTMs instead of ordinary

RNNs as language models for code. Our work is similar to code completion, in that given a file with

one token missing, Sensibility may suggest how to complete it; however, our focus is on syntax errors,

rather than helping complete code as it is being written.

Deep learning and syntax error fixing has already been attempted by a few researchers

with different degrees of success and treatment. Bhatia and Singh [22] present SynFix, which uses

RNN and LSTM networks (collectively, RNNs) to automatically correct syntax errors in student

assignments. The RNNs are trained on syntactically-correct student submissions, one model per

programming assignment. RNNs takes a 9-token window from the input file and is trained to return

a 9-token window shifted one token to the right. In other words, it outputs the next overlapping

sliding window. Given an invalid file, SynFix naïvely generates a sequence of fixes at the error

location as returned by the parser. The LSTM approach described in this chapter is quite similar to

SynFix, however it varies in a few important ways: we use two LSTM models, whereas SynFix uses

only one; SynFix is trained on a corpus comprised entirely of syntactically-valid submissions of one

particular assignment, whereas our model is trained on a large corpus of syntactically-valid source

code collected from GitHub. SynFix uses a thresholding method to rename identifiers, whereas we

abstract identifiers (n-grams and LSTMs) and maintain all unique identifiers in the corpus (n-grams).
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Figure 5.1: Methodology for training language models of code.

Finally, our method of generating fixes does not rely on the parser’s conception of where the syntax

error is, as the parser can be quite unreliable in this regard [28]. SynFix was able to completely fix

31.69% of student submissions, and partially fix 6.39% more files.

Gupta et al. [65] describe DeepFix, which models C source code with “common programming

errors” (including syntax errors) as a noisy channel. The authors employed with a sequence-to-

sequence gated recurrent units (GRUs)—a type of recurrent neural network—to decode erroneous

C code to compilable C code. They trained their multilayer GRU models on 100–400 token long

student-submitted C source code for which they have mutated to introduce synthesised errors.

DeepFix is able to completely fix 27% of all erroneous student submissions, and partially fixed an

additional 19% of student submissions.

5.3 Methodology

In order to suggest a fix for a syntax error, first we must find the error. For both finding errors and

fixing syntax errors, it is useful to have a function that determines the likelihood of the adjacent

token in the token stream given some context from the incorrect source code file (Equation 5.1).

P (adjacent-token|context) (5.1)

We estimated smoothed n-gram models to approximate the function in Equation 5.1 (Section 5.4).

We also trained long short-term memory (LSTM) recurrent neural networks in a similar manner
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(Section 5.5). In order to train the models, we needed a vast corpus of positive examples. For

this, we mined over nine thousand of the most popular open source Java repositories from GitHub

(Section 5.3.1). This source code was tokenized (Section 5.3.2) such that it could be used to train

the Java language models. Finally, we used the approximated functions expressed in Equation 5.1

to detect a syntax error in a file and suggest a plausible fix. Figure 5.1 graphically describes this

process.

5.3.1 Mining GitHub for syntactically-valid training examples

To obtain the training data,1 we downloaded Java source code from GitHub. Since we required Java

tokens from each file, other GitHub mining resources such as Boa [44] and GHTorrent [60] were

insufficient. Thus, at the end of June 2017, we downloaded the top 10,000 Java repositories by stars

(as an analog of popularity). Since GitHub’s search application programming interface (API) outputs

a total of 1,000 search results per query, we had to perform 10 separate queries, each time using the

previous least popular repository as the upper bound of stars per repository for the next query. In

total, we successfully downloaded 9,993 Java repositories.

For each repository, we downloaded an archive containing the latest snapshot of the Git repository’s

default branch (usually named master). We extracted every file whose filename ended with .java,

storing a SHA-256 hash to avoid storing byte-for-byte duplicate files. We used javac’s scanner

(tokenizer) and parser as implemented in OpenJDK 8 [122] to tokenize and parse every Java file

downloaded. Parsing each source file allowed us to filter only Java source files that were syntactically

valid according to the Java Platform Standard Edition 8 [57], more commonly known as Java

8. In total, we tokenized 2,322,481 syntactically-valid Java files out of 2,346,323 total .java files

downloaded. All relevant data—repository metadata, source code, and repository licenses—were

stored in an SQLite3 database.2

5.3.2 Tokenization

A token is the smallest meaningful unit of source code, and usually consists of one or more characters.

For example, a semicolon is a token that indicates the end of a statement.
1Note: we used an unrelated corpus of syntactically-invalid Java code to evaluate our methods, described in

Section 5.6.
2Available: https://archive.org/details/sensibility-saner2018

https://archive.org/details/sensibility-saner2018
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The set of all possible unique tokens tracked by a language model is called the vocabulary. Each

new source file will likely contain novel variable names or string literals that have never been seen

before. This complicates the creation of language models [69], since every novel file presented to the

model will likely contain out-of-vocabulary tokens. For the purposes of learning the syntax of the

language, we deem these problematic tokens to be irrelevant to the task. Thus, to keep a generally

small, bounded vocabulary that has enough unique tokens to faithfully represent the syntax and

regularity of handwritten Java, we abstracted certain tokens.

Token kind Action Examples
Keyword Verbatim if, else, for, class, strictfp, int, char, const,

goto, . . .
Keyword literal Verbatim true, false, null
Separators Verbatim (, ),{, },[ ],;, ,, ., ..., @, ::
Operators Verbatim +, =, ::, >>>=, ->, . . .
Identifier Abstracted AbstractSingletonFactory, $ecret, buñuelo
Numeric literal Abstracted 4_2L, 0xC0FFEE, 0755 0b101010, .3e-02d,

0xFFp+12f, ’’
String literal Abstracted "hello, world"

Table 5.1: Token kinds according to the Java SE 8 Specification [58], and whether we abstracted
them or used them verbatim.

A key insight is that, in order to model the syntax of a programming language, it is unnecessary

to model precise variable names and literal values. Thus, when creating a fixed vocabulary, we

abstracted certain tokens that vary between files, and kept all other tokens verbatim (Table 5.1).

The result was 110 unique tokens for the Java 8 standard. In addition to these tokens, we added the

synthetic <unk> token to encode out-of-vocabulary tokens, and <s> and </s> tokens such that we

could encode beyond the start and end of a source file, respectively [104]. Thus, the total size of our

vocabulary was 113 unique tokens for the abstract models.

Although prior work [69] has found that limiting the size of the vocabulary is unhelpful for the

task of code completion, we hypothesize that having a closed vocabulary would improve performance

for the task of syntax error detection.
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Original source code greeting = "hello";
Tokenization Identifier("greeting"), Operator("="), String("hello"),

Separator(";")
Vocabulary abstraction Identifier = String ;
Vectorization [ 3 0 2 1 ]

Table 5.2: The series of token transformations from source code to vectors suitable for training the
n-gram and LSTM models. The simplified vocabulary indices are “=” = 0, “;” = 1, “String” = 2,
and “Identifier” = 3.

5.3.3 Tokenization Pipeline

To convert a source file to a form that is suitable for training the models, we performed a series of

transformations (Table 5.2). The raw source code was tokenized in a form that is suitable as input

for the Java parser. As mentioned in Section 5.3.1, this was done for each Java file using javac.

Then, we normalized the token stream such that each token is an entry of the abstracted

vocabulary. The exact text of tokens belonging to open classes was discarded for training, except in

the case of the 10-gram Concrete model (Section 5.4). Each token in the vocabulary is assigned a

non-negative integer index for the LSTM model or a text name for the 10-gram Abstract model.

5.4 Training n-gram models for syntax error correction

Inspired by the prior work by Campbell et al. [28], we implemented two separate 10-gram models

for syntax error correction. The models work by first estimating a Modified Kneser-Ney smoothed

10-gram model on the valid code in the training corpus. Since the 10-gram model expects a corpus of

space-separated words, each token in the training source code file was converted into a single “word”.

Unlike LSTMs, the n-gram model can easily handle arbitrary extensions to its vocabulary, so we

created both an abstract model—like the LSTM models—and a concrete model, where token text

was ingested verbatim for all tokens.

5.4.1 Detecting syntax errors with n-gram models

When presented with a syntactically invalid file which needs correction, the tool breaks the source

code into 21-token-long windows, which are compared against the model for their cross-entropy.

Equivalently, this is the negative logarithm of the probability of encountering that specific 21-token

window according to the Kneser-Ney smoothed 10-gram model. The model in this case is either the
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abstract model, containing token types, or the concrete model, containing the actual text of each

token.

Then, the cross-entropy is converted to a specific value for each token. Each token is assigned a

score equal to the average entropy of every window which it was a member of. Since the window

length is 21, each token is a member of 21 windows, and so its score is the mean entropy of those 21

windows.

The window length, 21 was chosen to match the LSTM window length in the next section and

so that there is at least one 10-gram before each token and one 10-gram after each token being

examined. This takes advantage of the fact that a single token can affect the entropy of a window

ending with that token, the entropy of a window beginning with that token, and windows at every

position in between.

The tool considers the token with the highest score to be the most likely location of a code

mistake, since it contributed the most entropy to the 21 windows it was in.

5.4.2 Fixing syntax errors with n-gram models

The top-10 scoring tokens are then considered in turn for correction. This is limited to 10 to limit

runtime. For each of the top-10 scoring tokens, the model attempts to delete, insert a token before,

or substitute that token.

For deletion, there is only one option for each of the top-10 scoring tokens: try deleting that

token. For insertion and substitution, the model has many options. It can insert any token it has

seen before at that location, or it can substitute the token at that location with any token it has

seen before. The tool tries any token it has seen in the training corpus with frequency ≥ 1000. This

lower limit on token frequency is also imposed to limit the runtime of the tool.

The above process produces many possible fixes. For each possible fix, the tool uses the model to

compute the entropy of the 21-token window with the deleted, inserted, or substituted token at the

center. This entropy is subtracted from the original entropy, before the suggestion was applied. The

resulting value is how much the cross-entropy of the erroneous file was decreased (or increased) by

applying a possible fix.

If the entropy has decreased, this means the probability of this code being observed before has

increased, which means, according to the model, the file (with the possible fix applied) is more likely

to be syntactically correct. The fixes are ranked based on how much the entropy decreased after
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the fix suggestion was applied. The suggestion which causes the greatest decrease in entropy when

applied is reported first.

The search process described above takes less than two seconds on a modern central processing

unit (CPU) (Intel® Core™ i7-3700K) to produce a list of fixes and check them for syntactic-validity.

5.5 Training LSTMs for syntax error correction

To train the LSTMs, each source file was converted into a vector, representing the tokens of an entire

file. The vector is constructed by substituting each token with its corresponding numeric index in

the abstracted vocabulary (Section 5.3.2). Finally, each vector was converted into a one-hot encoded

matrix (also known as one-of-k encoding). In a one-hot encoding, exactly one item in each column is

given the value one; the rest of the values in the column are zero. The one-hot bit in this encoding

represents the index in the vocabulary. Thus, the matrix has as many columns as tokens in the

file and has as many rows as entries in the abstracted vocabulary. Each column corresponds to a

token at that position in the file, and has a single one bit assigned to the row corresponding to its

(zero-indexed) entry in the vocabulary.

The modelling goal is to approximate a function that, given a context from source code, determines

the likelihood of the adjacent token. If this function judges the token as unlikely, it indicates a syntax

error. This function solves the first problem: finding the location of a syntax error, as demonstrated

by Campbell et al. [28]. However, to fix errors, it is also necessary to know what tokens actually are

likely for each given context. We rephrase Equation 5.1 such that, instead of predicting the likelihood

solely of the adjacent token, it returns the likelihood of every entry in the vocabulary. In other words,

we want a function that returns a categorical distribution (Equation 5.2).

adjacent [context] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (if|context)

P (else|context)

P (Identifer|context)

P (String|context)

. . .

P (}|context)

(5.2)
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1 if ( activity == null ) {
2 this . active = false ;
3 }

Listing 5.2: Syntactically-valid Java

forwards

backwards

n-gram

suffix (context)adjacent

{ Identifier. =this ;false

null )==Identifier(if {

adjacentprefix (context)

Figure 5.2: The relationship between an n-gram, the contexts, and the adjacent token. In this
diagram, n = 7, and the adjacent token is the { in both cases. Thus, the contexts (both prefix and
suffix) are n − 1 or 6 tokens long.

The categorical distribution can also be seen as a vector where each index corresponds to the

likelihood of an entry in the vocabulary being the adjacent token. Being a probability distribution,

the sum of the elements in this vector add up to 1.0. The probability distribution works double

duty—because it outputs probabilities, it can determine what the most probable adjacent token

should be; hence, it can be used to determine possible fixes (discussed in Section 5.5.2).

To approximate such a function, we used deep learning to map contexts to categorical distributions

of the adjacent token. For this task, we employed LSTM recurrent neural networks, as they were

successfully used by prior work in predicting tokens from source code [129, 162]. Unlike the prior

work, we have trained two models—the forwards model, given a prefix context and returning the

distribution of the next token; and the backwards model, given a suffix context and returning the

distribution of the previous token. Using recurrent neural networks in two different directions was

used successfully in speech recognition [66, 10], but has yet to be applied to source code.

Our insight is that models with opposite viewpoints (that is, different contexts for the same

adjacent token) may return different categorical distributions. That is, whilst the forwards model

may declare that the keyword this is likely for the next token, the backwards model may declare

that an open brace ({) is far more likely than the keyword this. With this formulation, we are able

to both detect the location of syntax errors and produce possible fixes.

As an example, consider the syntactically-valid Java snippet in Listing 5.2. Figure 5.2 illustrates

the contexts—both prefix and suffix—when estimating the likelihood of the open brace ({) on the

first line of Listing 5.2.
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Input One-hot matrix, dimensions = τ · |V |
Type Parameters Activation
LSTM 300 hidden units tanh; recur.: hard sigmoid
Dropout rate = 0.75
Dense softmax

Output Categorical distribution, size = |V |
Loss Categorical cross-entropy
Optimizer Adam, initial learning rate = 0.001

Table 5.3: Summary of the neural network hyperparameters we used. |V | = 113 is the size of the
vocabulary (Section 5.3.2) and τ = 20 is the length of each context in number of tokens.

As training input, we iterated over each token in each file, moving a sliding window over the

tokens of the source code file. Based on our experiments (Appendix A), we chose a context length τ

of 20 tokens. This corresponds to an n-gram length of 21 tokens, as an n-gram includes both the

context and the adjacent token. The prefix was provided as the example input to the forwards model,

and the suffix was provided to the backwards model. Both contexts were provided as a one-hot matrix

(alternatively, a sequence of one-hot vectors). As example output to both models, we provided the

adjacent token, as a one-hot vector. To handle tokens whose contexts extend beyond the start and

end of the file, we inserted synthetic <s> and </s> tokens, collectively called padding tokens [104].

This means that the first prefix context in the file is comprised entirely of 20 <s> tokens; likewise,

the last suffix context in the file is comprised of 20 </s> tokens.

We used Keras 2.0.8 [33], a Python deep neural network framework, to define our model ar-

chitecture, using the Theano 0.8.2 [153] backend to train the models proper. A summary of the

precise architecture and hyperparameters that we used is given in Table 5.3. We arrived at these

hyperparameters by performing a grid search over the course of one-and-a-half months; Appendix A

describes this process in detail. Our best performing models include an LSTM layer with 300 hidden

units, and a τ of 20 tokens. We used the Adam [89] gradient descent optimizer with an initial

learning rate of 0.001, optimizing to minimize categorical cross-entropy. We ran a variable number

of epochs—full iterations of the training examples—to train the models, using early stopping to

determine when to stop training. Early stopping was configured to stop upon detecting 10 consecutive

epochs (its patience parameter) that yield no improvement to the categorical cross-entropy with

respect to the validation examples.
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In order to train an model with a form of stochastic gradient descent, the training examples must

be presented in random order. Thus, for each epoch, we shuffled the training files. We concatenated

the windows from the list of shuffled files. We trained by presenting the optimizer with mini-batches

containing 32 examples each. We constructed the mini-batches by further shuffling the windows

within files. In our early experiments, we found that identifier abstraction caused many mini-batches

to contain over half of its windows’ targets be identifier; subsequently, many models “learned” the

syntax of the Java language by always outputting that the adjacent token is identifier. Shuffling

windows within files makes the creation of such imbalanced mini-batches less likely; thus the gradient

descent optimizer is less able to “cheat” by simply outputting the majority class (i.e., identifier) to

get a lower loss value.

Once each model was trained, it was serialized in Hierarchical Data Format, version 5 (HDF5).

In total, the weights and biases of each individual model resulted in 6.1 MiBs of data.3 Each model

individually took between 2½ and 11½ days to train; up to six models were trained simultaneously

on two Nvidia® GeForce® GTX 1070 graphical processing units (GPUs). Section 5.7.1 discusses how

files were chosen for the training, validation, and testing sets.

5.5.1 Detecting syntax errors with dual LSTM models

We used the output of the models trained in Sections 5.4 and 5.5 to find the likely location of the

syntax error. Given a file with one syntax error, we tokenized it using javac. javac’s tokenizer is

able to tolerate erroneous input in the tokenization stage, which produces a token stream (as opposed

to the parsing stage, which produces an abstract syntax tree).

Recall that each model outputs the probability of the adjacent token given a context from the

token stream, but each model differs in where the context is located relative to the adjacent token.

We used the two independent probability distributions to determine which tokens are quantifiably

unlikely (“unnatural” [28]).

To calculate “naturalness”, we summed the cross-entropy of each probability model with respect

to the erroneous source file. Once the naturalness of every single token in the file is calculated, we

return a sorted list of the least likely tokens, or, in other words, the locations that are most likely to

be a syntax error.
3Available: https://archive.org/details/sensibility-saner2018

https://archive.org/details/sensibility-saner2018
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For a discrete distribution p(x) and a distribution q̂(x) that models p(x), the cross-entropy is

computed as follows

H(p, q̂) = −
∑
x∈X

p(x) log2 q̂(x)

This returns a value in [0, ∞), where 0 indicates that q̂ models p perfectly; as the cross-entropy

increases, this increases the amount of information required to model p(x). Hence, a value closer to 0

is more “natural”, whereas larger values indicates a more “unnatural” event.

For each token position in the erroneous source file, we calculate the cross-entropy with respect

to the current token in the file, for both the forwards and backwards models. That is, we let p(x)

equal 1 iff x is equal to the token at the current position in the file.

p(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x = actual token

0, otherwise

This is equivalent to a one-hot encoding of the token at the current position.

We then use q̂f (x|prefix) and q̂b(x|suffix) obtained from consulting the forwards and backwards

models with their corresponding context, respectively. We then combine the two cross-entropies by

summing. Thus, the “unnaturalness” of a token t from the source file is:

unnaturalness = H(p, q̂f ) + H(p, q̂b)

To obtain a ranked list of possible syntax error locations, we sort the list of tokens in the file in

descending order of unnaturalness. That is, the positions with the highest summed cross-entropy are

the most likely location of the syntax error.

5.5.2 Fixing syntax errors with dual LSTM models

Given the top-k most likely syntax error locations (as calculated in Section 5.5.1), we use a naïve

“guess-and-check” heuristic to produce and test a small set of possible fixes. Using the categorical

distributions produced by the models, we obtain the top-j most likely adjacent tokens (according to

each model) which may be inserted or substituted at the estimated location of the fault. Each fix is

tested to see if, once applied, it produces a syntactically-valid file. Finally, we output the valid fixes.
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For a given syntax error location, we consult each model for the top-j most likely tokens at that

position. The models often produce similar suggestions, hence we take the union of the two sets.

suggestions = topj (q̂f ) ∪ topj (q̂b)

We then try the following edits, each time applying them to the syntactically-invalid file, and

parsing the result with javac to check if the edit produces a syntactically-valid file. If it does, we

consider the edit to be a valid fix. We use the following strategies to produce fixes:

1. Assume a token at this location was erroneously deleted. For each t in the set of suggestions,

insert t at this location.

2. Assume the token at this location was erroneously inserted. Delete this token.

3. Assume the token at this location was erroneously substituted for another token. Substitute

it with t, for each t in the set of suggestions.

We repeat this process for the top-k most likely syntax error locations. We let k = 3 to limit

runtime. j was calibrated according to the perplexity of the estimated probability distribution.

Perplexity is, roughly speaking, the expected number of choices that an estimated distribution q̂

requires to model events from the true distribution p. It is directly related to cross-entropy H(p, q̂)

by 2H(p,q̂). To determine j, we used the ceiling of the highest validation cross-entropy obtained while

training. The highest cross-entropy was 1.5608, or a perplexity of just under 3; therefore, we let

j = 3.

Finally, all valid fixes are output to the user. The LSTM model takes less than three seconds on

a modern CPU (Intel® Core™ i5-3230M) to produce a list of suggested fixes for a single file. Every

single fix suggested this way is guaranteed to produce a syntactically-valid file.

5.6 Mining Blackbox for novice mistakes

Both the n-gram and LSTM model presented in this chapter are trained on data from professional

code available on GitHub. In order to properly evaluate these models for their intended purpose—

detecting and correcting syntax errors in novices’ code—we would ideally have access to a repository

of syntax errors made by novices.
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Blackbox [27] is a continually-updated repository of events from the BlueJ Java IDE [92]—an

IDE aimed primarily at novices learning Java in introductory computer science classes. Blackbox

has been used to analyze novice programmers before [7, 26, 142, 8]. The data contains over four

years of IDE events collected from users around the world who have opted-in to anonymously share

edit events. The IDE events includes the start and end of an editing session, the invocation of the

compiler, whether a compilation succeeded or failed, and edits to lines of code. Importantly, one can

reconstruct the source code text at the time of any compilation event.

We mined Blackbox in order to find realistic data to evaluate our syntax-correction algorithms.

By using the IDE event data in Blackbox, we collected syntax mistakes “in the wild”, which are

accompanied by the true resolution to that mistake. The intended audience of Sensibility is novices,

thus it is important evaluate our syntax error correction methods against actual code that a novice

would write.

5.6.1 Retrieving invalid and fixed source code

For the purposes of the evaluation, we sought to retrieve pairs of revisions to a source code file: the

revision directly prior to a compilation that failed due to a syntax error, and the revision immediately

following which compiled successfully.

In order to collect such pairs of revisions, we iterated through every editing session from the

beginning of data collection up to midnight, July 1, 2017, UTC. For each session, we iterated through

each pair of compilation events and filtered the pairs wherein the former compilation had failed (the

“before” revision) and the compilation immediately following had succeeded (the “after” revision).

We retrieved the complete Java source code at each revision of the pair and kept only those pairs

wherein the source code of the “before” revision was syntactically-incorrect (verified using javac).

For the purposes of our analyses, we calculated the token-wise edit distance between the before-

and-after revisions of source code. We used Levenshtein distance [97], wherein two strings of tokens

are compared for the minimum amount of single token edits (insertions, deletions, or substitutions)

that are required to transform one string of tokens into the other. Thus, edit distance indicates how

many edits, at minimum, a syntax error correcter must suggest to transform an invalid source file to

a syntactically-valid source file.
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Table 5.4: Edit distance of collected syntax errors

Edit Distance Instances Percentage (%)
0 10,562 0.62
1 984,471 57.39
2 248,388 14.48
3 93,931 5.48
4 54,932 3.20
5 or more 323,028 18.83
Total 1,715,312

Table 5.5: Summary of single token syntax-errors

Edit Operation Instances Percentage (%)
Insertion 223,948 22.75
Substitution 77,846 7.91
Deletion 682,677 69.34

5.6.2 Findings

In total, we collected 1,715,312 before-and-after pairs matching our criteria. Of these pairs, 984,471

(57.39 %) were single-token syntax errors (Table 5.4)4; This means that, even if a tool accounts only

for single-token mistakes, the tool accounts for the majority of syntax errors.

The majority of syntax errors we found differed from the fixed source file by a single edit.

We further studied the single-token syntax errors. Table 5.5 breaks down the errors into each edit

operation. The majority of single-token syntax errors are deletions—such as when a programmer

misses a token such as a semi-colon, or a brace. Insertions account for almost one-quarter of errors,

while substitutions are the least common.

In Section 5.7, we describe how we used the single-token syntax errors we mined to evaluate

LSTM and n-gram methods for syntax error correction and detection.

5.7 Evaluation

To determine the practical usefulness of Sensibility, we ask the following questions:

1. How well does Sensibility find syntax errors?
4Syntax errors caused by invalid escape sequences within string literals were considered to have an edit distance of

zero, as only the contents of the string must change, but not the actual token type.
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Table 5.6: Number of tokens among partitions in the train and validation sets

Mean S.D. Median Min Max
Train 8.16 M 596,019.30 8.06 M 7.45 M 9.00 M

Validation 3.80 M 365,337.76 3.68 M 3.47 M 4.34 M

2. How often does Sensibility produce a syntactically-valid fix?

3. If a fix is produced, how often is it the same fix used by the student to fix their own code?

To answer these questions, we created three “qualifications” for a suggested fix. The first

qualification is that the fix suggestion must be at the exact location of the mistake in the code, down

to the individual token.

To judge how well Sensibility produces syntactically-valid fixes, we created a second qualification,

valid fix, which is stricter: the fix suggestion must be at the exact location of the mistake in the code,

and applying the fix suggestion must yield a syntactically valid source file.

The third qualification is the most strict: the fix suggestion must be exactly the same token

(abstracted or concrete, depending on the model) that the student used to fix their own code. A fix

suggestion that matches the student’s own fix is called a true fix. A true fix precisely reverses the

mistake that introduced the error.

Then we found the highest ranking fix suggestion produced by the tool using various models and

training partitions that met the above qualifications.

5.7.1 Partitioning the data

To empirically evaluate Sensibility, we repeated our experiments five times on mutually-exclusive

subsets of source code files called partitions. Each of the five partitions are subdivided further into

two mutually-exclusive sets: the train set, and the validation set, thus resulting in 10 sets total

(described in Table 5.6). The validation set was used exclusively for the LSTM training procedure

described in Section 5.5, but not used when estimating n-gram models.

We populated every set with Java source code from the corpus collected in Section 5.3.1. The

training and validation sets were used in the training phase (Section 5.4 and 5.5).

We split our evaluation into five partitions to demonstrate how the performance of Sensibility

changes when trained on completely different example source code. Keeping each corresponding
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partition the same size facilitates the comparison of results between partitions. This also represents

the expected use case of an end-user who will never retrain Sensibility.

When assigning source code files to partitions, we imposed the following constraint to ensure the

independence of training partitions: The source code files of a single repository cannot be distributed

over partitions; in other words, every source code file in a given repository must be assigned to one

and only one partition. The constraint’s purpose is to make the evaluation more realistic, considering

the expected use case of Sensibility. If a user is trying to figure out a syntax error in their own

hand-written source code, it is likely that their model was trained on whole projects at once.

The test files did not come from the GitHub corpus. Instead, they came from the Blackbox

repository of novice programmers’ activity [27]. The same set of test files were used to evaluate each

partition; Only the training and validation files changed between partitions.

5.7.2 Finding the syntax error

To quantify Sensibility’s accuracy in finding the error, we calculated the mean reciprocal rank (MRR)

of the ranked syntax error location suggestions. Reciprocal rank is the inverse of the rank of the first

correct location found in an ordered list of syntax error locations for a file q. Mean reciprocal rank is

the average of the reciprocal rank for every file q in the set of total solutions attempted Q:

MRR = 1
|Q|

∑
q∈Q

1
rankq

MRR is always a value in [0, 1], where an MRR of 1 is the best possible score, obtained when

the first suggestion is always the correct location of the error. Conversely, an MRR of 0 means that

the correct location number is never found in the ranked list of suggestions. For example, if for one

mistake, the correct token was given first, for another student mistake, the correct token was given

third, and for yet another mistake the correct token was never found, the token-based MRR would

be 1
3
( 1

1 + 1
3 + 0

)
= 0.44. MRR is quite conservative: in the case that the correct result is ranked

first half of the time and ranked second the rest of the time, the MRR is only 0.75. To quantify

Sensibility’s ability to find syntax errors, we determined how often it finds the exact location of the

erroneous token.
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Table 5.7: MRRs of n-gram and LSTM model performance

Model Qualification 1 2 3 4 5 All
10-gram Abstract Location .41 .42 .41 .40 .40 .41

Valid Fix .39 .39 .39 .38 .38 .39
True Fix .36 .36 .36 .35 .35 .36

10-gram Concrete Location .07 .07 .07 .08 .07 .07
Valid Fix .06 .06 .06 .07 .06 .06
True Fix .04 .04 .04 .04 .04 .04

LSTM Location .52 .53 .53 .50 .50 .52
Valid Fix .52 .53 .52 .49 .50 .51
True Fix .46 .46 .46 .44 .44 .46

5.7.3 Fixing the syntax error

To evaluate the effectiveness of Sensibility to fix syntax errors, we measured how often the models

produces an edit that, when applied, produces a syntactically-valid file. We report this as a valid fix.

A stricter measure of success is how often Sensibility produces the true fix. The true fix is defined

as the exact same fix that the student applied to their own code. For abstract tokens, the true fix

requires that the tool applied the correct operation (insertion, deletion, substitution) at the correct

location, and with the correct token type. For concrete tokens, the token must also match exactly,

not just its type, to count as a true fix. Thus, for the 10-gram Concrete to produce a true fix it must

produce the exact identifier, number literal, string, etc. that the student used to fix their code. So,

if the student’s fix was to insert the identifier a, the 10-gram Concrete model must also insert the

identifier a, while the abstract models must only suggest inserting identifier at that same location.

5.8 Results

Performance of finding syntax errors is measured by mean reciprocal rank. Table 5.7 lists

the MRR obtained when locating the exact token of the syntax error, generating a valid fix, and

generating the true fix for each tool. As can be seen from the table, results are very consistent across

partitions.

The values in Table 5.7 are all well above what would be expected from guessing by chance alone.

If a file had 100 lines and 10 tokens per line, location MRR would be 0.02 just by guessing. Since fix



5 Syntax and Sensibility 83

Location Valid Fix True Fix 10−
gram

 A
bs.

10−
gram

 C
on.

LS
T

M
 A

bs.
LS

T
M

 Im
pr.

0 20k 40k 0 20k 40k 0 20k 40k

5+
4
3
2
1

5+
4
3
2
1

5+
4
3
2
1

5+
4
3
2
1

Count

R
an

k

Figure 5.3: The mean reciprocal ranks of determining the exact location, a valid fix and the true fix
of student mistakes for all three models.

MRRs depend on determining the location first, just by guessing, they would be even lower than

0.002.

Figure 5.3 is a series of histograms visualizing the ranks of each qualification. The width of each

bar displays the number of observations that have a rank at that value. Figure 5.3 shows that the

MRR values in Table 5.7 are dominated by either rank 1 results, that is, the tools first result was

qualifying, or rank 5+ results, that is the qualifying result was far down the suggestion list, or the

tools were unable to produce a qualifying result. In this case, qualifying means the result is the

correct location, the result was the first valid fix, or the result that was the true fix.

5.8.1 Performance of fixing syntax errors

In all cases, there is a clustering of reciprocal ranks at 1.0, meaning that the 10-gram Abstract model

tool can suggest the true fix as its first suggestion 30.22% of the time. The 10-gram Concrete model
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tool can suggest the true fix as its first suggestion 3.52% of the time. The LSTM model tool can

suggest the true fix as its first suggestion 38.9% of the time.
A dual LSTM model can produce a fix for syntactically-invalid code by suggesting the true token

type, operation, and location over one-third of the time.

5.9 Discussion

While the improved LSTM model performed the best overall—producing a valid fix in its top-2

suggestions—it has a few disadvantages compared to n-grams. Namely, extending the models to

account for changes in the language specification is more costly, since n-gram models can be simply

appended to, whereas LSTM models must be retrained. Additionally, n-gram models are much

simpler to compute—being mostly look-ups in highly-optimized associative arrays; whereas LSTMs

require a large series of floating-point arithmetic, often requiring GPU acceleration.

Using Sensibility to correct multiple mistakes at once is theoretically possible but due to the fact

that, at best, its first fix suggestion is only the true fix approximately half of the time, more advanced

search strategies may be required that try fixes in different combinations. Alternatively more generic

forms of search can be exploited, such as SMT solvers or heuristic search to help produce more

parsable and safe outputs. In this work we only explore code as a one-dimensional token stream, but

hand-written code is often laid out in two dimensions on the user’s screen. Spatial relationships or

positioning could prove useful in future error locators and fixers.

Our work is complementary to other syntax error detection tools such as Merr [82] and Clang’s

“fix it” hints [35]. This work can be integrated with other tools to squash syntax errors. Sensibility is

only one step in the hunt for typos. It attempts to handle any typos that would produce a definite

syntax error. However, it does not address misspelled variable names, or type errors. Sensibility can

help other tools that require a valid abstract syntax tree—such as type checkers—that cannot work

on code with invalid syntax. Localness [158], online n-gram models, or other search-based models

might be feasible candidates to help resolve identifiers. Further investigation is required into applying

ensembles of learners to combine the strengths of deep learning, smoothed n-gram models, and other

probabilistic models to achieve high precision in detecting and fixing syntax errors.
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5.9.1 Threats to validity

Construct validity is threatened by the abstraction of identifiers. By suggesting that an identifier

be inserted or modified, the choice is still up to the programmer since the code may parse, but may

not necessarily be compilable.

Internal validity is threatened by our reliance on the Blackbox data set [27, 7]. There is

potential bias from the curators of the dataset, and a self selection bias as the syntax errors are

submitted with the consent of the students. Internal validity could be harmed by using directly

adjacent compilations: the first for erroneous code and the second for the fixed source code. This

could miss situations where a syntax error is made, doesn’t compile, and several fixes are attempted

by a human. In this case the erroneous source code we used wouldn’t match the original erroneous

source code a human had written, that is, their first attempt.

External validity is addressed by the use of a large number of Java source files; however these

source files were only collected from GitHub, thus are not necessarily representative of all Java code

or code of other languages.

5.10 Conclusions

We have described a method of exploiting n-gram and LSTM language models to locate syntax

errors and to suggest fixes for them. Typically a fix is found about half of the time. The fix is often

suggested based on abstract tokens, so often the end-user needs to fill in the appropriate identifier.

Abstract vocabularies overcomes two limitations of software engineering deep learning problems:

vocabulary size and unseen vocabulary, and cost of training for end-users. Both n-gram and LSTM

models require extensive training; we present a method for training on large corpora before deployment

such that end-users of the model never have to locally train.

This work demonstrates that search aided by naturalness—language models applied to source

code—can produce results with appropriate accuracy and runtime performance (two to three seconds

on a modern CPU).

In summary by training language models on error-free code, we enable them to locate errors

through measures of perplexity, cross-entropy, or confidence. We can then exploit the same language

models bi-directionally to suggest the appropriate fixes for the discovered syntax errors. This relatively
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simple method can be used to aide novice learners avoid syntax-driven pitfalls while learning how to

program.
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Chapter 6

Conclusion

In this thesis, I have demonstrated three separate applications of the naturalness of software.

I discussed how software engineering tasks can posed as search problems. I have provided

evidence that:

the naturalness of software is an effective tool for reducing the search space in software

engineering tasks posed as search problems

such as “What is the most appropriate bucket for this new crash report?” (Chapter 4); “Where is

the location of the true syntax error in this source code file?” (Chapter 5); “What action do I need

to perform in order to fix this syntax error?” (Chapter 5).

The main unit of meaning in natural language models and information retrieval systems is the

token; thus, in order to exploit the these tools for software engineering tasks, one must first create

a mapping from software artifacts to tokens in a process called tokenization. In this thesis, I

have shown there is no “one-size-fits-all” approach to tokenization; I have provided evidence that

choices made in tokenizing software artifacts may have drastic repercussions on the

effectiveness of search

such as when tokenizing jargon-heavy commit messages (Chapter 3), tokenizing crash reports the

task of deduplication (Chapter 4), and when locating a syntax error using n-gram language models

(Chapter 5).
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Finally, I have provided evidence that:

investigating unlikely events can be a useful tool in finding mistakes

in certain circumstances such as when pinpointing the location of a syntax error (Chapter 5). In

other circumstances, the results require care to interpret, such as when trying to predict when a

commit will break the build (Chapter 3).

6.1 Future research directions

The introduction (Chapter 1) and Chapter 3 touched upon how disparate software repositories are

interrelated (traceability). An interesting research direction is to learn how various software artifacts

are interrelated, and furthermore automatically mine these relationships. One could exploit the

naturalness of software to find implicit links between software artifacts. Since source code, commits,

issues, crash reports, and discussions are related, often created by software developers, one could

construct an ontology linking software artifact to each other across several projects source code

repositories, which one could query. This ontology could use Semantic Web [21] principles and

be queried using sparql [144] to answer questions such as “who has fixed an energy bug?”, “how

do developers fix UnicodeDecodeError crashes?”, and other queries that require the interaction of

several repositories of artifacts to answer.

Another direction to research is, rather than modeling source code as a one-dimensional series of

tokens, explore the ways in that source code is multi-dimensional. For example, source code is often

written in a two-dimensional text editor, where line breaks often carry meaning to the programmers

that maintain the code base. The line breaks and indentation serve a clue as to the intention of

the programmer. When the code is syntactically-correct, one could model the levels of declaration

(scope) as yet another dimension.

6.2 Summary

Previous results by Hindle et al. [74] have provided evidence that natural language modeling may

be an effective tool when applied to software source code. In this thesis, I have demonstrated some

applications of the naturalness of software. I have shown how to map software artifacts to language
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model and information retrieval systems through the process of application-specific tokenization. I

have demonstrated that naturalness can efficiently prune the search space when solving problems

such as, “what cluster does this crash belong to?” (Chapter 4) and “what is the correct token to insert

here?” (Chapter 5). I have shown that it is worth investigating events that are unnatural, such as

when trying to predict if a commit will break the build (Chapter 3) or when pinpointing the source

of a syntax error (Chapter 5). This thesis demonstrates early work exploiting the naturalness of

software. I suggest that future research may augment naturalness with multi-dimensional modeling

(such as using line numbers and indentation levels), and augmenting the field of software traceability

by exploring the explicit and implicit links between software repositories.
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Appendix A

Searching for LSTM

hyperparameters using grid search

In Chapter 5, we presented a long short-term memory (LSTM) model that aided in the task of

finding and suggesting fixes to syntax errors. In this appendix, we describe the process we used to

find its hyperparameters.

Neural networks, including LSTMs, are not trainable models in-and-of-themselves, but rather a

framework for creating trainable models. Thus, to train a neural network, one must first decide:

• What kind and how many neural network layers to use

• How many neurons in each hidden layer

• Whether to use any kind of regularization

• How many epochs—full iterations of the corpus—to train on

• How to update the weights given each batch of training data

These decisions and many others, made prior to training, are called hyperparameters—parameters

of the neural network framework itself. These are not to be confused with a neural network’s

parameters—the weights and biases that must be found once a network architecture is finalized.

Our initial models adapted hyperparameters pertaining to model architecture from the empirical

work of White et al. [162] on training recurrent neural networks on source code. This meant using
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one recurrent neural network layer with 300 nodes in the hidden layer and 20 time steps of context.

However, there are many difference between our modelling goals and those of White et al. The models

trained in the prior work were intended for the task of code completion. Consequently, the models

trained by White et al. kept all concrete tokens, whereas our approach abstracts certain tokens. How

our work and the prior work measure what is optimum also differs: White et al. reported the best

hyperparameters in terms of the minimizing the per-token perplexity of the models; our work is

interested in maximizing the amount of syntax errors fixed in erroneous files (described in greater

detail in Section 5.7). Another critical difference is that White et al. trained traditional recurrent

neural networks, whereas we opted for the more modern LSTMs. As a result of these differences, we

set off to find more appropriate hyperparameters.

A.1 Grid Search

Nodes in LSTM layer 50, 100, 200, 300, 400, 1000
Tokens of context 5, 10, 15, 20
Dropout None, 0.75
Patience 10, 20
Optimizer Adam, RMSprop

Table A.1: Hyperparameters and chosen values for the initial grid search

To search for potentially more optimal hyperparameters for our LSTM neural network, we

employed grid search. Grid search (also known as a parameter sweep) involves exhaustively evaluating

every possible combinations of hyperparameters out of a set of manually-specified values. Table A.1

lists all the hyperparameters we manipulated, along with the values we attempted. We wanted to

determine how many nodes were required to learn syntax in the hidden layer; we were also interested

in knowing how many tokens of context are required to reasonably learn the syntax of the language.

As for the training process itself, we were interesting in whether adding a dropout “layer” (for

regularization) improved results at all; as such, we tried adding a dropout after the LSTM layer

with a holding parameter of 0.75, and we tried training models without any form of regularization

at all. We were interested in how many training epochs were required before the models overfit to

the training data. For this, we adjusted the patience of early stopping—that is, how many epochs

to wait after a lull in training progress before terminating. Finally, we wanted to ascertain which

optimizer—the method of tweaking model parameters after each training batch—would find the best
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model parameters. The optimizers we evaluated were RMSprop [155]—which is commonly suggested

as the way to optimize recurrent neural network (RNN) weights—and Adam [89].

The Cartesian product of the manipulated variables in Table A.1 resulted in the evaluation of

192 configurations. For each configuration, we trained five different pairs of models for each partition

(Section 5.7.1) of the Java training corpus, to determine how well the results generalize given different

training data. Thus, we trained 960 distinct pairs of models in total.

We fixed the number of training files to 32 files per partition, the learning rate to 0.001, and the

batch size to 32. To rank models, we compared their ability to find the exact location of an error,

and their ability to find the true fix of a location (both metrics are further described in Section 5.7).

We chose to evaluate on fixing 32 files from the mistake corpus (Section 5.6).

A.2 Results

Hidden layer Context length Dropout Patience Optimizer Location MRR Valid fix MRR True fix MRR
200 5 None 20 Adam 0.35 0.35 0.34
50 20 0.75 10 Adam 0.37 0.37 0.34

300 20 None 20 Adam 0.36 0.36 0.34

Table A.2: The top two model configurations and the original configuration, ordered by true fix
MRR (higher is better)

The top two best performing model configurations according to highest valid fix mean reciprocal

rank (MRR) are listed in Table A.2. Interestingly, a configuration similar to that found by White et

al. with 300 nodes in the hidden layer and 20 tokens of context is the sixth best performer (the last

row of the table).

We fit a linear model to determine the effect that various factors had on the mean reciprocal

rank of finding the true fix and valid fix. In both cases, we found that the training partition was

a significant factor (p < 0.001 for all partitions, treated as a categorical variable). We concluded

that, with such a small data size, variations in the types of source code files in the five sets of 32

training files affected how models learned Java syntax. The other significant factors were the choice

of optimizer, and the presence of dropout.

We found the models trained with Adam performed better than the equivalent model trained

with RMSprop in 94 out of 96 configurations (97.9%), with a 95% confidence interval of the mean

improvement to true fix MRR in (0.091–0.11). We concluded that training with Adam unambiguously
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converges faster than RMSprop, hence, in all larger experiments, we used the Adam optimizer

exclusively.

Dropout is a commonly suggested way to perform regularization—a way to reduce overfitting when

training neural networks. However, prior work [164] has claimed that, without special consideration

with regards to recurrent connections, dropout is ineffective when training RNN or LSTM networks.

Our evaluation provides support for this claim: we found that models trained without any kind of

regularization outperformed equivalent models with 75% dropout, in 71 out of 96 configurations

(74.0%), with a 95% confidence interval of the mean improvement to true fix MRR in (0.017–0.032).

To understand the effect of training on a larger dataset, we graduated the models listed in

Table A.2 to a set with 512 training files. We also increased the amount of mistakes to evaluate on

to 512 to match. The results of these graduated models is listed in Table A.3.

Hidden layer Context length Location MRR Valid fix MRR True fix MRR
50 20 0.45 0.45 0.39

300 20 0.46 0.45 0.39
200 5 0.42 0.42 0.36

Table A.3: The model configurations trained on a 512 file training set, ordered by true fix MRR
(higher is better)

As expected, the effects of the partition were diminished: only one partition had a coefficient

p < 0.05 on valid fix MRR, and none had a significant coefficient for true fix MRR. In general, all

models performed better than their counterparts on smaller data.

We further graduated the top-two models from Table A.3 to the highest training set size of 11,000

files. In an effort to decrease training time, we decided to only graduate the models with the highest

mean true fix MRR and mean valid fix MRR; thus, we eliminated the 200, 5 configuration from

further experiments.

We evaluated the 300, 20 and 50, 20 configurations on a training set size of 11,000 files. Table A.4

shows the results for each partition; the results seem to suggest that the 300, 20 may yield a better

True Fix MRR. To provide evidence for this, we performed a paired, one-tailed t-test comparing the

true fix MRR of the two configurations. The null hypothesis is that the difference in MRR between

both configurations is zero. We obtained a p-value of 0.0046. Using a confidence level of 0.01, we have

to reject the null hypothesis, and conclude that the difference in true fix MRR is greater than zero,

with the 300, 20 configuration having a higher MRR. Thus, we chose to use the 300, 20 configuration
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Hidden layer Context length Partition Location MRR Valid fix MRR True fix MRR
300 20 2 0.53 0.53 0.47
300 20 1 0.52 0.52 0.46
300 20 3 0.53 0.52 0.46
50 20 2 0.51 0.51 0.45

300 20 5 0.50 0.50 0.44
300 20 4 0.50 0.49 0.44
50 20 3 0.49 0.49 0.44
50 20 1 0.48 0.47 0.42
50 20 4 0.46 0.46 0.41
50 20 5 0.44 0.43 0.39

Table A.4: The model configurations trained on the full 11,000 file training set. ordered by true fix
MRR (higher is better). Results are shown by partition.

as our final LSTM configuration. Interestingly, it is quite similar to the model described by White et

al., with a few exceptions:

• We used the LSTM instead of regular RNN networks

• We used the Adam optimizer, instead of RMSprop.

• We increased the patience to 20 epochs, of which only 13 epochs were typically required to

converge.

The evaluation of the chosen 300, 20 configuration is described in greater detail in Section 5.8.
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