
Noname manuscript No.
(will be inserted by the editor)

Patterns of Multi-Container Composition for Service
Orchestration with Docker Compose

Kalvin Eng · Abram Hindle · Eleni
Stroulia

Received: date / Accepted: date

Abstract Software design patterns present general code solutions to common
software design problems. Modern software systems rely heavily on containers
for running their constituent service components. Yet, despite the prevalence
of ready-to-use Docker service images ready to participate in multi-container
service compositions of applications, developers do not have much guidance on
how to compose their own Docker service orchestrations. Thus in this work,
we curate a dataset of successful projects that employ Docker Compose as
an orchestration tool to run multiple service containers; then, we engage in
qualitative and quantitative analysis of Docker Compose configurations. The
collection of data and analysis enables the identification and naming of repeat-
ing multi-container composition patterns that are used in numerous success-
ful open-source projects, much like software design patterns. These patterns
highlight how software systems are orchestrated in the real-world and can give
examples to anybody wishing to compose their own service orchestrations.
These contributions also advance empirical research in software engineering
patterns as evidence is provided about how Docker Compose is used.

Keywords Docker · Docker Compose · Containerization

1 Introduction

Following the successful adoption of software design patterns (Gamma et al.
1994), we analyze the patterns of successful self-deployed open-source projects
employing Docker Compose as an orchestration tool to run multiple service
containers. Software design patterns (Gamma et al. 1994) provide solutions to

Kalvin Eng · Abram Hindle · Eleni Stroulia
University of Alberta
Edmonton, Alberta, Canada
E-mail: {kalvin.eng, abram.hindle, stroulia}@ualberta.ca

ar
X

iv
:2

30
5.

11
29

3v
2

 [
cs

.S
E

]
 8

 M
ay

 2
02

4

2 Eng et al.

recurring problems in software development, often at the class level, sometimes
intersecting with architecture.

Software systems have become more diverse over time as monolithic ar-
chitectures and n-tier/n-layered projects transition to containerized deploy-
ments. now require developers to be familiar with many tools and services of a
software system that are often rapidly changing (Carey 2021). This diversity
motivates the need to identify common composition patterns of services that
could be reused by projects to improve simplicity. Since many projects use
off-the-shelf container images to orchestrate services with different configura-
tion parameters, we can identify composition patterns, such as using a reverse
proxy service to route to services hosted internally.

In this work, we curate a dataset of successful projects that employ Docker
Compose as a service orchestration tool from the self-hosted GitHub com-
munity; then, we engage in qualitative and quantitative analysis of Docker
Compose configurations. Successful projects are those that have captured the
attention and interest of a wider community, thus being recognized as valuable
and significant. The collection of data and analysis enables the identification
and naming of repeated composition patterns orchestrated by numerous suc-
cessful open-source projects, much like software design patterns.

Our work derives patterns from the open coding of Docker Compose multi-
container compositions in projects of the self-hosted GitHub community. We
identify three dimensions of Docker Compose usage from open coding: the ser-
vice level, the orchestration level, and the repository level. The service level
consists of the images and instructions used in each service of a Docker Com-
pose file. The orchestration level refers to how the services interact among
each other in a Docker Compose file when they are orchestrated together.
The repository level examines how Docker Compose files are executed among
other files in a repository. These dimensions categorize the observed patterns
of Docker Compose usage. Patterns are considered to be commonly observed
solutions that can address specific problems when using Docker Compose.

By observing these patterns, developers can use them as a point of ref-
erence when deciding how to compose their services for orchestration. These
patterns are beneficial as Docker Compose’s versatility can make configura-
tions unnecessarily complex (Podviaznikov 2017). Furthermore, previous re-
search (Ibrahim et al. 2021) fails to capture the essence of usage for Docker
Compose as data is analyzed at a macro level without considering the minute
details of service orchestration usage, such as how developers can use Docker
Compose in different contexts like development and testing.

Our work is driven by the desire to allow practitioners to see real-world
examples of Docker Compose patterns that encompass multi-container com-
position. Therefore, this work contributes the following:

• An open-coded dataset of concepts in Docker Compose files;
• A set of Docker Compose patterns for software systems.

These contributions are helpful for anybody who uses Docker Compose to
define their multi-container compositions for service orchestration and needs

Patterns of Multi-Container Composition 3

examples of . Furthermore, these contributions advance empirical research in
software engineering patterns based on how Docker Compose is used.

2 Background and Related Work

In this section, we outline what multi-container composition and service or-
chestration is, how service containers are composed and orchestrated in the
Docker ecosystem, and introduce related work motivating why we wish to
investigate patterns in Docker Compose files.

2.1 Multi-Container Composition and Service Orchestration

Our use of the words: composition and orchestration stems from their usage
in service-oriented architectures (SoA) in the past. Composition refers to a
“composite relationship between a collection of services” (Erl 2005). While
orchestration refers to “a centrally controlled set of workflow logic facilitates
interoperability between two or more different applications” (Erl 2005).

Using the definition of composition from SoA, we define multi-container
composition as a collection of service containers that are associated with each
other.

Orchestration has evolved from its SoA definition to be a term that is
inferred as container orchestration at the time of this paper writing in . Con-
tainer orchestration is a term that has been widely attributed to Kubernetes
where multiple application containers are managed across different host ma-
chines (The Kubernetes Authors 2022). The common definition for “container
orchestration” has appeared in survey literature as the deployment of con-
tainerized applications across computer clusters (Rodriguez and Buyya 2019;
Truyen et al. 2019). The Docker alternative to Kubernetes is Docker Swarm,
which uses the Docker Compose file format to define the services, networks,
and volumes of the containers (Webb 2022).

Docker Compose falls short of being a complete container orchestration
solution as it solely manages and deploys containers on a single host instead
of a cluster of host machines (Webb 2022). However, Docker Compose encom-
passes the aspect of managing multiple containers and is considered to be an
intermediate solution between running a single container and running multiple
containers across multiple hosts (Webb 2022; Miell and Sayers 2019; Kane and
Matthias 2023). Docker Compose has been referred to as container orchestra-
tion by Raj et al. (2015) and Miell and Sayers (2019). However, for the sake of
clarity, we use in this paper the term service orchestration to describe Docker
Compose which manages and deploys multiple service containers locally on a
host machine.

4 Eng et al.

2.2 The Docker Ecosystem

Docker is a suite of Infrastructure as Code (IaC) tools that can orchestrate
containers for deployment on varying environments from a local machine to the
cloud (Guerriero et al. 2019). To orchestrate containers on a local machine, one
would use the Docker Compose tool. While one would use the Docker Swarm
tool to orchestrate containers across multiple machines in the cloud.

Docker is designed to create images and run instances of these images
called containers which are defined in a Dockerfile. A Dockerfile is a set
of instructions that are defined to create a containerized environment for
running an application. In order to orchestrate multiple containers at once,
Docker Compose or Docker Swarm can be used to facilitate the orchestration
through the use of configurations defined via a YAML based Docker Compose
file (Ibrahim et al. 2021). The Docker Compose file describes a composition
of services which can span multiple containers. An example can be seen in
Figure 1.

1 services:

2 web:

3 image: ubuntu

4 ports:

5 - "80:8000"

6 volumes:

7 - web-logs:/var/log/web

8 deploy:

9 replicas: 2

10 placement:

11 constraints:

12 - "node.role==worker"

13

14 db:

15 image: postgres:13

16 hostname: db

17 deploy:

18 placement:

19 constraints:

20 - "node.role==manager"

Fig. 1: Example of a Docker Compose file

Figure 1 is an example of a simple Docker Compose file where the services
“web”, that is an Ubuntu container, and “db”, that is a pre-built container
image, are defined. At a minimum a Docker Compose file will always have
at least one service defined with the option to give additional instructions
such as mounting volumes, exposing ports, passing environment variables, and
what to do in a swarm configuration. A swarm configuration allows for repli-

Patterns of Multi-Container Composition 5

cas of services to be deployed to a cluster which also uses Docker Compose
configurations. As of , a Docker Compose file has 194 different keywords for
configuration available , making it highly configurable for different use cases.

In 2020, the Docker Compose file format was released as open source under
the name “Compose Specification” (Docker Inc. 2020, 2022a). The “Compose
Specification” is used by alternative Docker Compose service orchestration
tools such as nerdctl (nerdctl Authors 2023), Okteto (Okteto, Inc. 2023), Pod-
man (Podman Compose Authors 2023), and Rancher (Rancher Labs 2023).
The specification has also been used to help translate Docker Compose files
to Kubernetes deployments with Kompose (Kompose Authors 2022).

Using Docker Compose files, a developer is quickly able to set up mul-
tiple containers for use cases such as development and testing. This makes
the use of Docker a versatile choice in a software stack. However, the wide
swath of instructions available in Docker Compose makes deployment com-
plex as developers who use Docker may not be aware of possible features or
configurations to use or to avoid. The flexibility of instructions makes learning
Docker Compose more challenging as there are many options to solve a prob-
lem. Therefore, this work seeks to identify patterns of configuration to better
support the usage of Docker Compose in terms of simplicity, readability, and
reproducibility.

2.3 Previous Docker Studies and Prior Patterns Research

Since we wish to investigate patterns in Docker Compose files of the Docker
ecosystem, we review prior work on understanding the Docker ecosystem.
Zhang et al. (2018, 2019) look at the evolution of Dockerfiles to understand
container build time and how images change in projects. They find that dif-
ferent Dockerfile architecture attributes, such as the number of image layers,
the size of each layer, and the diversity of instructions, can affect the qual-
ity of Dockerfiles with regard to linter (static code analysis) errors and build
time. Furthermore, studies have thoroughly investigated Dockerfiles on public
repository services and found that developers who build and maintain contain-
ers would benefit from utilizing tools for container creation (Eng and Hindle
2021; Lin et al. 2020; Cito et al. 2017). The empirical evidence observed in these
studies supports the motivation for developing tools to improve the developer
Docker experience, such as: DockerSlim 1 which helps to optimize container im-
ages, dive 2 which helps to analyze container images, Buildpacks 3 which helps
to build images, and Binci 4 which helps containerize a development workflow.
Despite the existence of tools aimed at enhancing the Docker experience, there
still needs to be empirical research on patterns that can streamline the orches-

1 https://github.com/docker-slim/docker-slim
2 https://github.com/wagoodman/dive
3 https://buildpacks.io/
4 https://github.com/binci/binci

https://github.com/docker-slim/docker-slim
https://github.com/wagoodman/dive
https://buildpacks.io/
https://github.com/binci/binci

6 Eng et al.

tration of various container contexts. This need motivates our exploration into
Docker Compose configuration patterns.

Prior research has seen the potential in investigating service orchestra-
tion tools like Docker Compose. Xu and Marinov (2018) suggest that Docker
Compose configurations can offer invaluable insights as multiple containers
are “glued” together to form a service highlighting why Docker Compose is
important to investigate. Ibrahim et al. (2021) investigate the usage of Docker
Compose and find that Docker Compose files are infrequently updated, ad-
vance Docker Compose operations are infrequently used, and that applications
rarely adopt new versions of Docker Compose. Furthermore, they also find that
over a quarter of Docker Compose configurations use a single container. This
prior research motivates our work as it suggests that there is an interest into
how to develop software systems with Docker Compose.

Docker Compose can also be classified under Infrastructure as Code (IaC),
motivating the review of studies on IaC. In terms of related work for patterns
in IaC, the most closely related work is by Rahman et al. (2019) where they
qualitatively identify security smells in 1,726 Puppet scripts using descriptive
coding. From the descriptive coding, they describe and identify with qualita-
tive analysis seven security smells that developers should be aware about. In
a similar vein, Ksontini et al. (2021) identify the refactoring types in Dock-
erfiles and Docker Compose configurations using manual analysis to suggest
best practices in Docker. Guerriero et al. (2019) perform 44 semi-structured
interviews with the findings that developers should find patterns for IaC that
can be used across different IaC tools. This previous research suggest that a
manual analysis of Docker Compose files could offer invaluable insights.

Patterns have also been discovered by analyzing the commits and devel-
opers of repositories. Rahman et al. (2020a) look at Puppet file commits in
repositories qualitatively to determine a taxonomy of defects. Furthermore,
Rahman et al. (2020b) also look at developers and their development activi-
ties and how some activities can be anti-patterns towards developing defect-
free Puppet code. The discovery of patterns through analyses of development
activity suggests that it can help promote more robust codebases.

Patterns on other platforms have been investigated. Shamim et al. (2020)
perform a grey literature review of the best security practices for Kubernetes
configurations. Burns and Oppenheimer (2016) present cloud patterns ob-
served in distributed systems using containers from anecdotal experiences.
However, Burns and Oppenheimer (2016) do not provide any empirical evi-
dence of the cloud patterns used. The presentation of these patterns suggests
that there is interest in understanding what patterns other developers are
using.

From the Pattern Languages of Programs workshops, numerous general
cloud patterns have been derived by the same group of authors: Sousa et al.
(2018a,b,c, 2017, 2015). These patterns are further investigated by the au-
thors by performing a survey on 100 practitioners finding that practitioners
use at least one of the patterns (Sousa et al. 2021). Sousa et al. (2021) also
find that 67% of practitioners use containerization and 69% of practitioners

Patterns of Multi-Container Composition 7

use container orchestration, and that the “ease of use and security [are] main
drivers for adoption” to the cloud which motivates the need for more pat-
terns. Notably, none of the patterns by Sousa et al. (2018a,b,c, 2017, 2015),
to the best of our knowledge, have been presented in literature with empirical
observations in real-world code.

Prior works on the Docker ecosystem have mainly focused on Dockerfile
usage (Zhang et al. 2018, 2019; Eng and Hindle 2021; Lin et al. 2020; Cito
et al. 2017). Research into patterns of IaC and development activities have
not specifically addressed Docker Compose (Rahman et al. 2019; Ksontini
et al. 2021; Rahman et al. 2020a,b). Therefore, our work focuses more on
deriving the orchestration patterns of containers using Docker Compose similar
to previous research for patterns in Infrastructure as Code. We elaborate on
how the patterns we discover relate to the prior IaC works in Section 5.4.

3 Methodology

Our methodology consists of three steps, separated into the subsections below.
First, we select projects that use Docker Compose in the self-hosted GitHub
community (nodiscc et al. 2022) and extract 527 files for analysis from 218
projects. Next, we use open coding to identify categories of Docker Compose
file characteristics at a service level, orchestration level, and repository level.
Finally, we describe patterns based on the categories extracted from open
coding. The results of our analysis can be replicated using our replication
package (Eng et al. 2024).

3.1 Project Selection

The data curated for this work was obtained by extracting GitHub repository
URLs from the README of the Awesome-Selfhosted (nodiscc et al. 2022)
GitHub repository. The software projects of the self-hosted community often
replace Software as a service (SaaS) provider services with a diverse set of
self-hosted solutions ranging from analytics software to wiki software.

We choose the list of self-hosted repositories to ensure we are studying
projects that people use and deploy as the list is manually curated by the self-
hosted community. The intended purpose of a repository — which surrounds
many of the perils of mining GitHub (Kalliamvakou et al. 2014) — might
introduce noise into an analysis as repositories may not necessarily be used
for the purposes of maintaining and writing code. A representative sample of
typical Docker Compose usage in software systems can be shown by selecting
a list curated by the self-hosted community, which frequently uses Docker
Compose to launch software systems. This is beneficial because we are looking
for deployable and real examples of patterns in Docker Compose files.

Our project selection process visualized in Figure 2. Initially, 848 GitHub
projects were extracted from the README pushed in the “1726a40” commit.

8 Eng et al.

Identification of Docker Compose files via Self-hosted Community on GIthub

Id
en

tif
ic

at
io

n
In

cl
ud

ed
Sc

re
en

in
g

Projects Identified from README.md of
Awesome-Selfhosted project on Github
(n = 848)

Projects removed before screening:

Projects no longer
existing on Github
(n = 91)

Projects do not contain
"docker-compose.yml"
(n = 510)

Projects cloned
(n = 247)

Projects excluded because "docker-
compose.yml" is no longer in their main
branch
(n = 29)

Projects selected for Open Coding
(n = 218)

Population of Docker Compose files from
selected projects
(n = 527)

Fig. 2: Project Selection Process

To determine if projects contain at least 1 Docker Compose file, we clone each
of the repositories using the mirror option and the git history was queried
across all refs and the HEAD for filenames containing “docker-compose” (case-
insensitive). From cloning, we obtain the actual commits and blob contents
relating to the repositories for each of the repositories. The metadata was
extracted using the PyDriller library (Spadini et al. 2018). were able to obtain
247 successfully cloned projects as of May 9, 2022.

Using the 247 cloned repositories, we find the latest main branch com-
mit that has modified a file containing the name “docker-compose”. We find
that 29 projects have removed file(s) containing the name “docker-compose”
in their latest main branch commit. This indicates that Docker Compose
may have been deprecated or moved elsewhere. Furthermore, we find that
99 projects have multiple files with the name “docker-compose”. We remove
the projects that no longer have “docker-compose” in their latest main branch
commit resulting in . To gain a better understanding of the diversity in the
218 projects, we outline in Table 1 their respective categories as they appear

Patterns of Multi-Container Composition 9

Table 1: Project Categories and Counts. Categories that have a count of 1 or
2 have been merged into Other 5,6.

Category Count

Communication - Social Networks and Forums 12
Communication - Custom Communication Systems 11
Automation 10
E-commerce 9
Bookmarks and Link Sharing 8
Feed Readers 8
Money, Budgeting & Management 8
Content Management Systems (CMS) 7
Miscellaneous 7
Media Streaming - Video Streaming 6
Task Management & To-do Lists 6
Communication - Email - Complete Solutions 5
File Transfer - Single-click & Drag-n-drop Upload 5
Note-taking & Editors 5
Pastebins 5
Personal Dashboards 5
Software Development - IDE & Tools 5
Software Development - Project Management 5
Archiving and Digital Preservation (DP) 4
Password Managers 4
Photo and Video Galleries 4
Software Development - API Management 4
Wikis 4
Conference Management 3
File Transfer - Web-based File Managers 3
Internet of Things (IoT) 3
Learning and Courses 3
Media Streaming - Audio Streaming 3
Polls and Events 3
Proxy 3
Ticketing 3
URL Shorteners 3
Other 28

in the Awesome-Selfhosted (nodiscc et al. 2022) GitHub repository. In Table 1
we combine categories with a count of 1 and a count of 2 into “Other” 5,6.

5 Projects with count of 1: Booking and Scheduling, Office Suites, Search Engines, Re-
source Planning, Communication - SIP, Human Resources Management (HRM), Maps and
Global Positioning System (GPS), Document Management - Integrated Library Systems
(ILS), Calendar & Contacts - CalDAV or CardDAV Servers, Read-it-later Lists

6 Projects with count of 2: Resource Planning - Enterprise Resource Planning, Group-
ware, Software Development - FaaS & Serverless, Gateways and Terminal Sharing, File
Transfer - Peer-to-peer Filesharing, File Transfer - Object Storage & File Servers, Doc-
ument Management, Community-Supported Agriculture (CSA), Document Management -
E-books, Document Management - Institutional Repository and Digital Library Software,
Communication - Email - Mailing Lists and Newsletters, Communication - Email - Web-
mail Clients, Software Development - Localization, Self-hosting Solutions, Games, Commu-
nication - XMPP - Servers, File Transfer & Synchronization

10 Eng et al.

From the 218 projects, we extract 527 Docker Compose-like files. The files
are “Docker Compose-like” because they might resemble a Docker Compose
file, i.e., the file is YAML and is named “docker-compose.yml” or co-exists
with a file named “docker-compose.yml”. 404 Docker Compose-like files are
parts of projects that have more than one Docker Compose-like file, while 123
Docker Compose-like files belong to projects that have only a single Docker
Compose-like file. We use these files for open coding as described in Section 3.2
below.

All the projects were cloned with considerations of the perils when curat-
ing git repositories highlighted by Bird et al. (2009) such as: being aware of
commits across branches; tracing changes that occur not only in the main-
line branch; determining the branches of commits; and tracing the sources of
merges. Therefore, in order to gain as much information is possible, all projects
were cloned using the mirror option which is a total copy of the repository in-
cluding all refs to track as many changes as possible.

We also try to verify if these self-hosted projects represent products that
developers might use by measuring the GitHub stars of each project. The
measure of GitHub stars has been used in previous studies to measure the
popularity of a project (Brisson et al. 2020; Blincoe et al. 2016; Borges et al.
2016) — a project is assumed to be more popular if it has more stars, and as
a result, by association, it should be used and important.

To support why we should care about the selected self-hosted projects
that we analyze, we count the GitHub stars — the proxy for popularity — of
each project as of December 20, 2022, as seen in the boxplot of Figure 3a. We
compare the count of the stars in the self-hosted projects with the distribution
of GitHub stars of Docker Compose projects selected by Ibrahim et al. (2021)
from GitHub data in Google BigQuery seen in Figure 3b. .

We use the Mann-Whitney U test, which indicates that the stars in the
self-hosted projects are greater than the stars of projects selected by Ibrahim
et al. (2021) with p = 1.08e-94 < 0.05. To ensure that the difference between
the distributions are not only statistically significant but also practically sig-
nificant, we get a large effect size from Cliff’s Delta being 0.82 > 0.474, which
indicates that the greater stars in the selected self-hosted projects are practi-
cally significant. The greater number of stars demonstrates why the selected
self-hosted projects are considered to be successful.

Overall, the star distributions are quite different as seen in Figure 3.
The self-hosted projects’ distribution has larger values, while Ibrahim et al.’s
(2021) distribution has smaller values suggesting that the sample of self-hosted
projects With a median of 1,512 and 25% of the projects falling between 14
stars and 382 stars and 25% having at least 4,674 stars, the self-hosted projects’
have more stars overall. In comparison, Ibrahim et al.’s (2021) distribution has
a smaller number of stars overall, with a median of 9 and 25% of the projects
falling between 0 and 1 stars and 25% of projects having at least 86 stars.
Therefore, the higher number of stars in our chosen self-hosted projects is in-
dicative of projects being used in practical applications compared to the prior
Docker Compose usage study (Ibrahim et al. 2021).

Patterns of Multi-Container Composition 11

0 2000 4000 6000 8000 10000
Github Stars

Distribution of Stars Among SelfHosted Projects

(a) Self-Hosted projects

0 50 100 150 200
Github Stars

Distribution of Stars Among Ibrahim et al. Projects

(b) Ibrahim et al. (2021) Projects

Fig. 3: Distribution of Stars

ThinkCodes
(Objectivist/heuristic)

Notice
and

Collect

Docker
Compose Files

CollectInteresting
Observations

Repeat and Iterate

Discoveries
(Categories and

Patterns)

Fig. 4: Open Coding Process Outline Inspired by Seidel (1998)

Notably, in the previous Docker Compose study (Ibrahim et al. 2021)

3.2 Open Coding

Open coding is the process of finding concepts through manual inspection to
gain deeper insights within data. Seidel (1998) describes it as a qualitative data
analysis process where we notice, collect and think about interesting things.
The process is non-linear as observations can be re-iterated through many
times. Qualitative methods are useful for coming up with observations that
are difficult to derive with quantitative analysis. This process can be visualized
in Figure 4.

With the collected Docker Compose files, a rater analyzes the files for what
they consider to be “interesting” observations and “important” observations.
“Interesting” observations catch the attention of the rater and may appear in-
frequently while “important” observations emerge from the repeated analysis
of files from noticing common characteristics among the different files. Inter-
esting observations within the files are noticed and collected. Any important
observations are also noticed and collected separately with a label.

Seidel (1998) says that labels of important observations can be thought
about and abstracted into “in vivo codes” which are observations directly
from the data or “constructed codes” where observations are created by the

12 Eng et al.

annotator. From these codes a combination of objectivist and heuristic codes
can emerge. Objectivist codes occur when observations require some sort of
interpretation as opposed to heuristic codes which are rote observations. Codes
can also be a mixture of objectivist and heuristic codes (Seidel 1998).

From the codes and interesting thoughts, discoveries of “categories” and
“patterns” can emerge by thinking about relations, similarities, and dissimi-
larities among the codes in relation to the interesting thoughts. This process is
iterative and repeated until the annotator deems the categories and patterns
satisfactory.

We can define our open coding process in different levels of detail. We ex-
amine each Docker Compose file as part of our ad hoc process on three different
levels: (1) what and how services are defined, (2) how the services holistically
interact when orchestrated together, and (3) how the files function within a
repository context. From the coding, we have several codes that emerge and
are used to derive patterns as described in Section 3.3.

For each of the three levels, there are guiding questions that emerge for
our open coding such as:

1. Service - How are the services defined and what are the services?
2. Orchestration - How are the services similar and different among each

other and how do they interact with each other?
3. Repository - How does Docker Compose work in the repository with files

and folders?

The codes from these guiding questions help to develop the patterns that
we present in this paper. From 218 GitHub projects, we obtain 527 Docker
Compose-like files for open coding resulting in 80 codes with: 40 codes at the
service level, 35 codes at an orchestration level, and 5 codes at a repository
level.

3.2.1 Service Level

At a service level, we inspect each service configuration of a Docker Compose
file and create new service type codes when an existing service purpose cannot
be categorized under existing codes. To identify service types, we consider the
image of a service.

If the image is pulled from a registry, we look at the README in the
container registry and read the README to determine if there is a purpose
for the image that can be used to identify the type of a service. If the purpose
cannot be identified, then the repository containing the Docker Compose file
is inspected for READMEs to indicate which services may be present in the
software system and can help identify the service type. If the service type
cannot still be determined, then the string of the image (e.g. “webapp:tag” of
the line “image: webapp:tag” in a Docker Compose file) is searched in Google
to determine a purpose and identify a service type.

If the image is created from a Dockerfile rather than being pulled, we
attempt to determine the purpose of the service by examining the Dockerfile

Patterns of Multi-Container Composition 13

and README of the base image if it is present in the container registry.
We inspect the instructions following the base image to determine the service
container image. For example, a base image could be an operating system and
the following instructions in the Dockerfile are installing software packages
using the base image. Then the purpose of the service can be determined based
on the software packages installed and used to categorize the service under a
service type. Failing to identify a purpose, then the repository containing the
Docker Compose file is inspected for READMEs to indicate which services
may be present in the software system and can help identify the service type.
If the service type can still not be determined, then the string of the image (e.g.
“webapp:tag” of the line “FROM image: webapp:tag”) is searched in Google
to determine a purpose and identify a service type.

From the inspection of the service level, codes of service types emerge
which are used to identify the purpose of a service in a Docker Compose file.
We identify 40 different codes in total with 33 types with a count more than
1 as seen in Table 2 and organize the types into 7 higher categories (Core,
Networking, Reliability, Setup, Data, Scheduling, and Miscellaneous).

Core services refer to services that contain the central logic for a soft-
ware system. In this category, there are 2 services: the Frontend service which
are applications which connect with a database or backend; and the Backend
service which are APIs of applications that connect with a database.

While networking services refer to services that help network other services.
This includes: the Reverse proxy service which routes web traffic to different
servers with examples of services being as Nginx and Traefik; the Discovery
service which helps connect microservices together; the DNS service which
runs a DNS server; and the HTTP accelerator service refers to services that
can speed up HTTP requests with a cache such as Varnish.

Reliability services help maintain other services. There are numerous ser-
vices in this category including: the Testing service that aids in testing using
tools such as Selenium which automates tests; the Container management
service which polls image registries for updates and automatically update the
container image; the Tracing service which refers to services that help manage
logs of applications; and the Event monitoring service which monitors and
reports the performance of other services.

Setup services are services that help initialize other services such as: the
Database init service which helps initialize a database by running scripts for
a database such as loading data; and the Setup service which helps initialize
or set up an application.

Moreover, Data services refer to services that manage the data of a software
system. There are 5 services in this category including: the Database service
which are services that systematically store data in persistent storage such as
Postgres and Mongo; the Caching service that systematically stores data in
memory and may not be persistent; the Database administration service which
acts as a GUI interface to databases; the Object storage service that stores un-
structured data organized by files and folders; and the Data streaming service

14 Eng et al.

which refers to services that allow data to be delivered at high throughput
such as kafka.

Scheduling services are used to automatically perform tasks which include:
the Job scheduling service that schedules tasks to do on a server; the Cron
service that schedules tasks that are run on the bash command line using
cron; and the Workflow service that can help with automation of services.

Finally, Miscellaneous services encompass a diverse range of offerings that
do not fit into the above categories, including but not limited to: the Mail
service which are mail servers that receive emails via protocols like SMTP;
the Search service utilizing software such as Solr to build large indexes for
improved search speed; the Identity service managing multiple identities across
services with software such as KeyCloak; the Visualization service for data
visualization with tools like Kibana; the Certificate service for generating SSL
certificates; the Zipping service for compressing files into a zipped format; the
Message broker service for passing messages from one service to another; the
Image recognition service providing image recognition through API; the Chat
service with platforms such as Mattermost; the Office service offering tools
for text, spreadsheets, and presentations; the Linux utilities service running
Linux utilities like busybox; the Secrets service for storing application secrets;
and the Hello world service, demonstrating the proper functioning of Docker.

3.2.2 Orchestration Level

When looking at Docker Compose files with multiple services, it is essential to
consider individual services in isolation while also examining the relationships
between them. We can gain insights into how services interact when deployed
during orchestration by taking a holistic view of services within a Docker
Compose file. To perform this examination, we develop some guiding questions,
which includes:

• Do any of the services share the same Docker Compose options? (e.g. using
the same ENV file)

• How do the services share the same Docker Compose options? (e.g. using
YAML aliases)

• Do any of the services use the “links” or “depends on” instructions to
connect each other?

• Does one service expose a port and another service connects to that port
with an environment variable?

• Does a service extend from another service? Does a service extend from
another file?

It should be noted that the “links” we refer to is the one used in Docker
Compose files and is different from the legacy container links used by the
Docker Engine. To acquire more insights into the service relationships within
a Docker Compose file, we iteratively refine these questions depending on
interesting discoveries that emerge during our analysis.

Patterns of Multi-Container Composition 15

Table 2: Counts of Service Type Codes

Service Type Code Count

Database service 365
Frontend service 343
Backend service 276
Caching service 111
Testing service 98
Reverse proxy service 92
Mail service 62
Search service 37
Database administration service 26
Object storage service 23
Identity service 17
Visualization service 17
Job scheduling service 15
Container management service 14
Event monitoring service 14
Certificate service 11
Database init service 11
Zipping service 11
Message broker service 8
DNS service 8
Tracing service 8
Image recognition service 6
Cron service 5
Chat service 4
Office service 4
Setup service 3
Workflow service 3
Linux utilities service 3
Secrets service 2
HTTP accelerator service 2
Hello world service 2
Discovery service 2
Data streaming service 2

Based on the holistic view of services, codes of service relationships emerge
and can form patterns of Docker Compose options that can be reused. We
identify 35 codes at the orchestration level that can be seen in Table 3. The
table explicitly lists services instead of defining connections at a meta-level as
we wish to determine empirically how different kinds of services are commonly
configured and related.

3.2.3 Repository Level

In a repository context, we look at how Docker Compose files coexist among
other files and folders in the repository. In addition to the Docker Compose files
themselves, we carefully examine other relevant files to gain a more complete
understanding of how they are used in practice. These files include READMEs,
which often provide valuable information on the intended usage and context of
a Docker Compose file. Moreover, we also analyze the configurations associated

16 Eng et al.

Table 3: Counts of Codes at a Orchestration Level

Code Count

Frontend service connects to database service with environment vars 28
Duplicate image reuse with different commands 17
Frontend environment variables map to database service environment variables 17
Uses yaml aliases 15
Service labels are configuration for reverse proxy 15
Backend service connects to database service with env variable 12
Uses extends for additional instructions 11
Frontend service connects to caching service with environment var 11
Reverse proxy service shares volume with frontend service 8
Backend service connects to caching service with env variable 8
Frontend shares volumes with backend service 4
Certificate service shares volume with reverse proxy service 3
Backend services shares the same env file with the database service 3
Database management service connects to database service with env variables 3
Duplicate image reuse 2
Frontend connects to mail service with env var 2
Frontend service shares variable with caching service 2
Frontend service connects to backend service with environment var 2
Cluster environment variables 1
Duplicate image reuse with different env vars 1
Frontend services shares the same env file with the caching service 1
Frontend services shares the same env file with the database service 1
Reverse proxy service shares volume with backend service 1
Container management service shares volume with frontend service 1
Frontend service shares variable with secrets service 1
Frontend service connects to message broker service with env variable 1
Frontend service connects to object storage service with env variable 1
Backend service connects to object storage service with env variable 1
Backend service connects to search service with env variable 1
Reverse proxy maps to frontend service with env variable 1
Testing service connects to database service via env 1
Frontend service connects to search service with environment var 1
Docker swarm instructions 1
Backend service shows relationship to identity service with env var 1
Job scheduling service connects to database service with env war 1

with these files, such as ENV files which can indicate that a Docker Compose
file is used for development when the debug flag is set. Execution details of
Docker Compose can also be found by looking at Makefiles and bash scripts.
In addition to looking at the contents of files, the filenames and file paths are
also inspected, i.e., we look for keywords such as “development” and “testing”
to indicate a Docker Compose file purpose.

The repository context helps identify the codes of use cases for Docker
Compose files and codes of how Docker Compose files are executed. At a
repository context level, we identify 5 codes as seen in Table 4.

The codes in Table 4 can be described as follows:

• “Override file” refers to Docker Compose files that contain service configu-
rations that can override other configurations when executed with another
Docker Compose file.

Patterns of Multi-Container Composition 17

Table 4: Counts of Codes at a Repository Level

Code Count

Override file 53
Auto-generated file 29
Not an actual docker compose file, configuration 21
Not an actual docker compose file, template for generating 2
Development use case from comment 2

• “Auto-generated file” are Docker Compose files that have been automati-
cally generated using a tool.

• “Not an actual docker compose file, configuration” means that files appear
to be Docker Compose-like but are actually meant to configure services.

• “Not an actual docker compose file, template for generating” are files that
are a template for generating Docker Compose files.

• “Development use case from comment” refers to the use case of a Docker
Compose file that is determined to be for the development environment
and testing based on comments in the Docker Compose file.

• “Cluster environment variables” are environment variables that define how
to connect to other instances of a service.

3.3 Data for Pattern Discovery

Through the open coding, we identify patterns that are common or interesting
to developers and report ones that occur more than once in Section 4. These
patterns stem from interesting observations that we note down and describe in
Section 3.3.1. We also quantitatively identify patterns by doing the following
among the levels of open coding:

• Frequent itemset mining of the service type codes as described in Sec-
tion 3.3.2.

• Considering the counts of orchestration level codes as described in Sec-
tion 3.3.3.

3.3.1 Interesting Observations

Observations are considered “interesting” when certain attributes of a Docker
Compose file are considered by the reviewer to be unusual among all other
Docker Compose files. For our interesting observations we note the following:

• The mailu 7 project generates Docker Compose from templates (they could
have possibly used overrides) and there’s other kinds of Docker Compose
files in its repo;

7 https://github.com/Mailu/Mailu/tree/e8641245

18 Eng et al.

• Many projects (e.g. httplaceholder 8) host multiple example Docker
Compose files to demonstrate how to run their application with different
service stacks;

• Projects using override files are usually highly configurable and are com-
patible with different service stacks;

• The lardbit/nefarious 9 project could have used YAML aliases instead
of extends;

• There is an override file to change from pulling an image to building an
image in the mailcow project;

• YAML aliases are used to repeat services with the same images but different
commands;

• The piqueserver 10 project “reverses” override usage where an image is
defined in the override file, and the base template is empty;

• Docker Compose has services that do not pertain to project stack directly
(e.g. Using letsencrypt pebble);

• In a Docker Compose file, sometimes the “extends” configuration filename
does not contain the string “docker-compose” when it typically does —
this can be seen in the rero-ils 11 project;

• Docker Compose files for each microservice are automatically generated in
the overleaf 12 project.

3.3.2 Frequent Itemset Mining

Frequent itemset mining of the service types helps find sets of services that
frequently co-occur together. We only consider service type codes as they are
easily understood to be defined together as opposed to the other orchestration
and repository codes that may not intuitively co-occur. These frequent itemsets
can signify a pattern of interest. To filter the amount of itemsets of interest, we
consider itemsets that have support of at least 0.05 meaning that at least five
percent of the Docker Compose files contain these services and are considered
to be frequent itemsets. The results of our mining can be seen in Table 5.

In Table 5, we can see that there is high support for services connecting to a
database service which are highlighted in bold. This motivates the patterns in
Section 4.11 and Section 4.12 . Also in Table 5, we can note that reverse proxy
services are also very common which motivates the “HTTP Reverse Proxy
Service” pattern in Section 4.13. Noting that there are some very frequent
items within itemsets is a good indicator as to what patterns can be derived.

8 https://github.com/dukeofharen/httplaceholder/tree/74d0b34/docker
9 https://github.com/lardbit/nefarious/tree/a6f49a1

10 https://github.com/piqueserver/piqueserver/tree/b30dab7d
11 https://github.com/rero/rero-ils/tree/9fcf2e9e
12 https://github.com/overleaf/overleaf/tree/ed66b43/services

https://github.com/dukeofharen/httplaceholder/tree/74d0b34/docker
https://github.com/lardbit/nefarious/tree/a6f49a1
https://github.com/piqueserver/piqueserver/tree/b30dab7d
https://github.com/rero/rero-ils/tree/9fcf2e9e
https://github.com/overleaf/overleaf/tree/ed66b43/services

Patterns of Multi-Container Composition 19

Table 5: Frequent Itemsets of Service Types

Support Itemsets

0.051233 (testing service, database service)
0.053131 (caching service, reverse proxy service)
0.055028 (backend service, caching service, database service)
0.056926 (reverse proxy service, frontend service, database service)
0.060721 (mail service)
0.062619 (backend service, reverse proxy service, database service)
0.064516 (search service)
0.072106 (backend service, caching service)
0.075901 (backend service, frontend service, database service)
0.079696 (caching service, frontend service, database service)
0.085389 (backend service, reverse proxy service)
0.092979 (testing service)
0.096774 (reverse proxy service, frontend service)
0.102467 (reverse proxy service, database service)
0.121442 (backend service, frontend service)
0.125237 (caching service, database service)
0.129032 (caching service, frontend service)
0.161290 (reverse proxy service)
0.178368 (backend service, database service)
0.197343 (caching service)
0.278937 (backend service)
0.309298 (frontend service, database service)
0.529412 (database service)
0.571157 (frontend service)

3.3.3 Observation Counts

At the orchestration level and repository level we use the counts of combi-
nations of observations as seen in Table 3 and Table 4. These counts help
corroborate some of our interesting observations in Section 3.3.1.

An example where we used counts to motivate a pattern is the observation
“Auto-generated file” found in Table 4 with a count of 29 for identifying the
“Automatic Docker Compose File Generation” pattern in Section 4.1.

4 Patterns

In this section, we present 14 interesting patterns of Docker Compose usage
discovered from interesting observations, frequent itemset mining, and observa-
tion counts as described in Section 3.3. Although a pattern may come across
as common to some readers, there has been no empirical evidence or prior
work to support these claims. More details of how the presented patterns were
identified and its supporting evidence is described in this section using

• Motivation. Why developers might use this pattern.
• Context/Applicability. The situations where using the pattern might
be appropriate.

20 Eng et al.

• Description. An explanation of how the pattern works.
• Advantages. Description of the benefits of using this pattern compared
to other patterns.

• Disadvantages. Description of the possible negative impacts of using this
pattern.

• Potential Issues. Issues to be aware of when using this pattern.
• Real-world Examples. Examples identified from the Docker Compose
configuration files within self-hosted software projects.

• Supporting Evidence. How the pattern and counts of the real-world
examples were discovered.

Along with the template, we also include a visualization of the pattern to
better help understand how the pattern works at a high-level.

4.1 Automatic Docker Compose File Generation

Defines Software
System Condiguration

User

Docker Compose File
Generator Tool

Docker
Compose FileGenerates

Fig. 5: Pattern of Automatic Docker Compose File Generation.

• Motivation. Software systems can be orchestrated in many different ways
with different configurations and services. Due to the complexity of creating
Docker Compose files with different configurations and services, tools have
been created to automatically generate Docker Compose files as opposed
to manually creating and editing Docker Compose files.

• Context/Applicability. Developers of software systems who wish to sim-
plify their deployments for their software systems may wish to develop au-
tomatic Docker Compose generation tools. This leaves less ambiguity as to
how their software system should be run and configured.

• Description. Docker Compose files are automatically generated using a
tool that allows for the setting of the application specific variables and
services that are needed to run the software system. The Docker Compose
files generated can be run using one command without any other further
configuration.

• Advantages. As a user of the software system, the setup of the software
systems is simplified as you can create the orchestration files with a guided
tool. Docker Compose files are also consistent because of the automatic
generation.

Patterns of Multi-Container Composition 21

• Potential Issues. To recreate Docker Compose files, you will have to
reuse the tool again to avoid any misconfigurations. Hand edits could lead
to errors in deployment if modified incorrectly. The tool for automatic
generation requires maintenance which can increase the dependencies and
technical debt of a project.

• Real-world Examples. We found 29 Docker Compose files evidencing
automatic Docker Compose file generation from web tools and build scripts.
For example, the mail server project Mailu has created a web tool13 to
generate Docker Compose files that can be run using Docker Compose or
in a Docker Swarm. The Overleaf project14 also automatically generates
continuous integration, development, and testing configurations for each of
their microservices using build scripts.

• Supporting Evidence. These examples were found by counting the obser-
vations at a repository context level as seen in Table 4 denoted as “Auto-
generated file”. It is motivated by the interesting observation, “Docker
Compose files for each microservice are automatically generated in the
overleaf project”.

4.2 YAML Anchor and Alias

1 services:
2 first:
3 image: my-image:latest
4 environment: &env
5 - CONFIG_KEY
6 - EXAMPLE_KEY
7 - DEMO_VAR
8 second:
9 image: another-image:latest

10 environment: *env

Fig. 6: Example of how the YAML Anchor and Alias pattern is implemented
from Docker Inc. (2023e).

• Motivation. The use of YAML anchors and aliases allow for the option
of defining common sections of code in YAML files once so that it can be
used repeatedly. This allows for Docker Compose file configurations to be
neater and more efficient (Docker Inc. 2023e).

13 https://web.archive.org/web/20220915164516/https://setup.mailu.io/1.9/
14 https://github.com/overleaf/overleaf/tree/ed66b43/services

https://web.archive.org/web/20220915164516/https://setup.mailu.io/1.9/
https://github.com/overleaf/overleaf/tree/ed66b43/services

22 Eng et al.

• Context/Applicability. When services are re-used multiple times with
similar configurations in the same Docker Compose file, YAML anchors
and aliases can be used.

• Description. Docker Compose uses a YAML parser at its core, and there-
fore can use YAML and anchors aliases as defined in the YAML spec. An
anchor “&” can be denoted for a section in a YAML file, where it is placed
after a colon with a keyword as such “&keyword”. The section can then
be repeated with an alias “*” by specifying after a colon “*keyword”. The
repeated section can also be overwritten with “<<” by specifying “<<:
*keyword” under a section.

• Advantages. The use of YAML aliases prevents duplicate configuration
code.

• Potential Issues. The use of YAML aliases may appear non-intuitive
at first due to the syntax. Furthermore, although it simplifies the Docker
Compose file by less repetition, readability may still become an issue when
there are many anchors and aliases to trace through.

• Real-world Examples.We found 15 Docker Compose files using this pat-
tern. For example, the chasiq project15 uses YAML anchors and aliases
with overrides to configure their Docker Compose file. The canvas-lms
project16 uses YAML anchors and aliases with an override to allow their
main application to be run as a job scheduler. The minio project also uses
this pattern to repeat configurations17.

• Supporting Evidence. The examples were found by counting the obser-
vations among services as seen in Table 3 under “Uses yaml aliases”.

• Category.
• Related Patterns.

4.3 Docker Compose Service Inheritance

1 services:
2 web:
3 extends:
4 file: common-services.yml
5 service: webapp

 docker-compose.yml
1 services:
2 webapp:
3 build:.
4 ports:
5 - "8000:8000"
6 volumes:
7 - "/data"

 common-services.yml

Fig. 7: Example of how the Docker Compose Service Inheritance pattern is
implemented from Docker Inc. (2022b).

15 https://github.com/chaskiq/chaskiq/blob/8fb33b/docker-compose.yml
16 https://github.com/instructure/canvas-lms/blob/d4ee7b/docker-compose.yml
17 https://github.com/minio/minio/blob/95d1a1/docs/orchestration/

docker-compose/docker-compose.yaml

https://github.com/chaskiq/chaskiq/blob/8fb33b/docker-compose.yml
https://github.com/instructure/canvas-lms/blob/d4ee7b/docker-compose.yml
https://github.com/minio/minio/blob/95d1a1/docs/orchestration/docker-compose/docker-compose.yaml
https://github.com/minio/minio/blob/95d1a1/docs/orchestration/docker-compose/docker-compose.yaml

Patterns of Multi-Container Composition 23

• Motivation. Docker Compose service configurations are often similar with
slight modifications. Therefore, the inheritance of configurations from other
similar services can help simplify configurations by repeating services that
are similar. As a feature, Docker Compose offers the “extends” option
which allows the inheritance of service configurations from other Docker
Compose files at a service level or from services already within a Docker
Compose file.

• Context/Applicability. When services are re-used multiple times with
similar configurations, the “extends” option can be used to import ser-
vice configurations from another Docker Compose file or existing services
already in the Docker Compose file. This can allow for specialization of
services within a Docker Compose file.

• Description. Under a defined service in a Docker Compose file, a service
configuration can be imported by specifying the Docker Compose file path
and the service that is to be extended. A service can also be extended by
specifying a service name of the current file . The imported configuration
can be overridden by re-specifying Docker Compose options.

• Advantages. Prevents duplication of code.
• Potential Issues. Readability may become an issue as developers have to
trace through Docker Compose files to find the imported configurations.
Using extends on an existing service is not ideal when you do not want the
base service to be orchestrated, to avoid orchestrating the base service the
command line Docker Compose orchestration command needs to change.

• Real-world Examples. This pattern was discovered in 11 Docker Com-
pose files. The hawkpost project18 extends their services from a common
configuration file and overwrites the common service configuration with ser-
vice specific options. The nefarious project extends a service from within
the same file19 and from an external file20. The mattermost project21 also
extends from an external file.

• Supporting Evidence. This pattern is found by counting the observation
“Uses extends for additional instructions” as seen in Table 4 among the
repository context.

• Related Patterns.

4.4 Docker Compose Override Use Case

• Motivation. A service may have different use cases whereby only small
parts of a service configuration need to be changed.

18 https://github.com/whitesmith/hawkpost/blob/5d4f017/docker-compose.yml
19 https://github.com/lardbit/nefarious/blob/e8aa423/docker-compose.base.yml
20 https://github.com/lardbit/nefarious/blob/e8aa423/docker-compose.

transmission-vpn.yml
21 https://github.com/mattermost/mattermost-server/blob/38d0c2/docker-compose.

yaml

https://github.com/whitesmith/hawkpost/blob/5d4f017/docker-compose.yml
https://github.com/lardbit/nefarious/blob/e8aa423/docker-compose.base.yml
https://github.com/lardbit/nefarious/blob/e8aa423/docker-compose.transmission-vpn.yml
https://github.com/lardbit/nefarious/blob/e8aa423/docker-compose.transmission-vpn.yml
https://github.com/mattermost/mattermost-server/blob/38d0c2/docker-compose.yaml
https://github.com/mattermost/mattermost-server/blob/38d0c2/docker-compose.yaml

24 Eng et al.

docker-compose.yml docker-compose.override.yml

Run command: docker-compose up -f "docker-compose.yml" "docker-compose.override.yml"

Fig. 8: Example of how docker compose can override files in the command line.

• Context/Applicability. When you need to run services in another mode
such as testing and the Docker Compose file is designed for production
deployment.

• Description. A different override Docker Compose file is created with the
same services and configurations that they wish to override. This override
Docker Compose file is called during Docker Compose orchestration in the
command line with the “-f” flag along with the main Docker Compose file.
The result is that containers can be started up with overridden configura-
tions of the main Docker Compose file.

• Advantages. It separates use case scenarios of how Docker Compose is
used.

• Potential Issues. The command to run override configurations is not
evident in the code base and requires explicit or inferred instructions of
what to run. Override files may not also meet the minimum specifications
for a Docker Compose to run, and will not run by itself.

• Real-world Examples. We found 53 examples of override files. The
share project22 uses an override file to orchestrate a dev mode. The board
project23 also uses an override file for development. The otobo project uses
override files to change the ports of services with one being “http.yml”24.

• Supporting Evidence. These examples of the pattern were found by
counting the observations among repository context as seen in Table 4
under “Override file”.

• Related Patterns.

Patterns of Multi-Container Composition 25

Certificate Service Reverse Proxy
Service

Volume

Fig. 9: High-level overview of services in the Certificate Generation and Map-
ping pattern.

4.5 Certificate Generation and Mapping

• Motivation. Developers wishing to provide secure transport (SSL/TLS)
to their services may generate a certificate that is used through a reverse
proxy.

• Context/Applicability. Certificates help enable encrypted communica-
tions between machines and also contain identification information about
chains of authority and trust. Generating and managing these certificates
can be cumbersome, hence the creation of container services to generate
certificates for reverse proxy services.

• Description. A service container that generates certificates is used. The
volumes containing the certificates of the certificate service are mapped
to the same volumes of the reverse proxy service. The reverse proxy is
configured to use the mapped volume certificates of the certificate service.

• Advantages. The certificate issuance and management process is simpli-
fied via service orchestration as no certificate files need to be transferred
and no command line operations need to be manually executed.

• Potential Issues. It can be more difficult to debug between containers.
• Real-world Examples. This pattern was discovered in 9 Docker Compose
files. The PeerTube project uses certbot to issue a certificate and map
it to the reverse proxy service with a volume.25 The sish project uses
dnsrobocert to generate a certificate for its main application container.26

22 https://github.com/MrDemonWolf/share/blob/b231c/docker-compose.override.

yml.example
23 https://github.com/RestyaPlatform/board/blob/5804f/docker-compose.override.

yml.example
24 https://github.com/RotherOSS/otobo/blob/24d49/scripts/docker-compose/http.

yml
25 https://github.com/Chocobozzz/PeerTube/blob/1606ac2/support/docker/

production/docker-compose.yml
26 https://github.com/antoniomika/sish/blob/62035/deploy/docker-compose.yml

https://github.com/MrDemonWolf/share/blob/b231c/docker-compose.override.yml.example
https://github.com/MrDemonWolf/share/blob/b231c/docker-compose.override.yml.example
https://github.com/RestyaPlatform/board/blob/5804f/docker-compose.override.yml.example
https://github.com/RestyaPlatform/board/blob/5804f/docker-compose.override.yml.example
https://github.com/RotherOSS/otobo/blob/24d49/scripts/docker-compose/http.yml
https://github.com/RotherOSS/otobo/blob/24d49/scripts/docker-compose/http.yml
https://github.com/Chocobozzz/PeerTube/blob/1606ac2/support/docker/production/docker-compose.yml
https://github.com/Chocobozzz/PeerTube/blob/1606ac2/support/docker/production/docker-compose.yml
https://github.com/antoniomika/sish/blob/62035/deploy/docker-compose.yml

26 Eng et al.

The azuracast project generates a certificate and maps it to its reverse
proxy service via a volume.27

• Supporting Evidence. These examples were found by counting the Docker
Compose file service types that both contained certificate service and re-
verse proxy service as seen in Table 2.

• Related Patterns.

4.6 Container Management Services

Docker
Socket

Service A

Service B

Service C

Container Management
Service

Fig. 10: High-level overview of the Container Management Services pattern.

• Motivation. To improve the deployment workflow, container management
services are used to maintain the latest image versions of services in a
container registry.

• Context/Applicability. Instead of re-pulling images and rebuilding the
containers of your Docker Compose orchestration, a service can be started
to poll a Docker Container registry for container image updates.

• Description. A container management service is set up to connect directly
with the Docker socket and is configured to watch specific containers for
updates in container registries. For example, the watchtower service polls
the container registry for any updated to the associated image of a con-
tainer and automatically updates the container if the associated image is
updated.

• Advantages. Using a container management service helps reduce main-
tenance costs as service containers can be upgraded to the latest version
without any user intervention.

• Potential Issues. There is overhead to manage the management service.
As well, since the container management service pulls automatically from

27 https://github.com/AzuraCast/AzuraCast/blob/97aaa/docker-compose.multisite.

yml

https://github.com/AzuraCast/AzuraCast/blob/97aaa/docker-compose.multisite.yml
https://github.com/AzuraCast/AzuraCast/blob/97aaa/docker-compose.multisite.yml

Patterns of Multi-Container Composition 27

a container registry, breaking changes to the container registry could break
the current software system.

• Real-world Examples. We count 14 Docker Compose files using this
pattern. The budibase project uses watchtower to manage container up-
dates.28 The egroupware project also manages container updates with
watchtower.29 While the appsmith project uses watchtower to update con-
tainers.30

• Supporting Evidence. The examples were found by counting the service
types as seen in Table 2 under Container management service.

4.7 Database Initialization Service with Database Service

Database Service Database Initialization
Service

Fig. 11: High-level overview of the Database Initialization Service with
Database Service pattern.

• Motivation. Databases are initialized via an external service that shuts
down after the task is run.

• Context/Applicability. To import data into an existing database, a
database initialization service can be created. This is often seen in de-
velopment and testing service orchestrations.

• Description. The database initialization service is mapped to the database
service via environment variables. The database initialization service runs
scripts to initialize the database in the database service.

• Advantages. Short running initialization container that is separate from
the main application service allows for separation of concerns in the soft-
ware system.

• Potential Issues. There is an overhead cost for setting up the initializa-
tion service where data must be dumped and scripts need to be created to
import the data.

• Real-world Examples. We count 9 Docker Compose files using this pat-
tern. The budibase project31 initializes couchdb with an initialization ser-
vice. The CKAN project creates their own customer container that loads

28 https://github.com/Budibase/budibase/blob/56147/hosting/docker-compose.yaml
29 https://github.com/EGroupware/egroupware/blob/1c053/doc/docker/

docker-compose.yml
30 https://github.com/appsmithorg/appsmith/blob/382ea53/app/server/

appsmith-server/src/main/resources/docker-compose.yml
31 https://github.com/Budibase/budibase/blob/56147/hosting/docker-compose.yaml

https://github.com/Budibase/budibase/blob/56147/hosting/docker-compose.yaml
https://github.com/EGroupware/egroupware/blob/1c053/doc/docker/docker-compose.yml
https://github.com/EGroupware/egroupware/blob/1c053/doc/docker/docker-compose.yml
https://github.com/appsmithorg/appsmith/blob/382ea53/app/server/appsmith-server/src/main/resources/docker-compose.yml
https://github.com/appsmithorg/appsmith/blob/382ea53/app/server/appsmith-server/src/main/resources/docker-compose.yml
https://github.com/Budibase/budibase/blob/56147/hosting/docker-compose.yaml

28 Eng et al.

their database from a tabular file like CSV.32 The graphql engine project
initializes their example project using a migration container.33

• Supporting Evidence. These examples were found by counting the Docker
Compose file that contained database service and database init service ser-
vice types together as seen in Table 2.

4.8 Database Administration Service with Database Service

Database Service
Database

Administration
Service

Fig. 12: High-level overview of the Database Administration Service with
Database Service pattern.

• Motivation. Databases are often easier to manage with a graphical user
interface (GUI).

• Context/Applicability. Developers wishing to access the database visu-
ally without installing any tools on their local machine and without using
any external online web services.

• Description. A database administration service such as adminer or php-
myadmin are orchestrated into the same network as the database service.
Users can then browse the database via the database administration service
through a web browser.

• Advantages. An orchestrated database can be managed with a graphical
interface without any external concerns such as security.

• Potential Issues. The database administration service provides an inter-
face into the database that can be exploited if the service is exposed.

• Real-world Examples. This pattern was discovered in 22 Docker Com-
pose files. The libretime project uses adminer to manage a postgres
instance.34 The personal management system project uses adminer to
manage a mariadb instance.35 The unmark project uses adminer to man-
age a mysql instance.36

• Supporting Evidence. These examples were found by counting the ser-
vice type combination of database service and database administration ser-
vice present in Docker Compose files as seen in Table 2.

32 https://github.com/ckan/ckan/blob/e1568fd/contrib/docker/docker-compose.yml
33 https://github.com/hasura/graphql-engine/blob/2325755/community/

sample-apps/tic-tac-toe-react/docker-compose.yaml
34 https://github.com/LibreTime/libretime/blob/05342/docker-compose.yml
35 https://github.com/Volmarg/personal-management-system/blob/8b377/

docker-compose.yml
36 https://github.com/cdevroe/unmark/blob/da271/docker-compose.yml

https://github.com/ckan/ckan/blob/e1568fd/contrib/docker/docker-compose.yml
https://github.com/hasura/graphql-engine/blob/2325755/community/sample-apps/tic-tac-toe-react/docker-compose.yaml
https://github.com/hasura/graphql-engine/blob/2325755/community/sample-apps/tic-tac-toe-react/docker-compose.yaml
https://github.com/LibreTime/libretime/blob/05342/docker-compose.yml
https://github.com/Volmarg/personal-management-system/blob/8b377/docker-compose.yml
https://github.com/Volmarg/personal-management-system/blob/8b377/docker-compose.yml
https://github.com/cdevroe/unmark/blob/da271/docker-compose.yml

Patterns of Multi-Container Composition 29

4.9 Service Labels are used to Configure Reverse Proxy

Docker
Socket

Service A

Service B

Service C

Reverse Proxy Service

Fig. 13: High-level overview of the Service Labels are used to Configure Reverse
Proxy pattern.

• Motivation. Reverse proxies such as nginx require a configuration file on
how to route its proxy to different servers. Instead of using a configura-
tion file, a reverse proxy can be configured with the Docker service labels.
Docker service labels are labels that can be given to services in a Docker
Compose file. The use of a reverse proxy as a pattern has been described
by Sousa et al. (2018a, 2015).

• Context/Applicability. To simplify reverse proxy configuration, all re-
verse proxy configuration can be centralized to a Docker Compose file.

• Description. Services such as the traefik reverse proxy uses the Docker
API (via the Docker Socket) to obtain the configuration of routing to ser-
vices via their service labels. The traefik reverse proxy routes requests to
the relevant containers.

• Advantages. Instead of managing configuration files that need to be
mounted to a reverse proxy service, the configuration can be centralized
into a Docker Compose file.

• Potential Issues. It can be difficult to debug if the configuration for
traefik does not work. There is an issue with Docker API security as
the host may be able to be accessed via traefik’s access to the Docker
API (Traefik 2022).

• Real-world Examples. We count 15 Docker Compose files using this
pattern. The isotope mail client project uses labels to configure their

30 Eng et al.

traefik proxy.37 The shaarli bookmarking project uses labels to config-
ure traefik.38 The zenbot project has a Docker Compose file that uses
traefik with services that have traefik service labels.39

• Supporting Evidence. These examples were found by counting the ob-
servations among services in Table 3 under “Service labels are configuration
for reverse proxy”.

4.10 Mail Service Testing

Application Service Mail Testing Service

Fig. 14: High-level overview of the Mail Service Testing pattern.

• Motivation. To test the email functionalities of an app, an SMTP service
needs to be created. The creation of SMTP services can be complex hence
the existence of SaaS providers like Mailtrap, SendGrid, Amazon SES, and
Mailgun.

• Context/Applicability. Developers wishing to keep development local
may wish to orchestrate their own SMTP services.

• Description. When the mail service is orchestrated, the mail service may
connect with the application service with environment variables explicitly.
Otherwise the mail service is connected internally by being hard-coded into
the application source code.

• Advantages. There is no reliance on external services that require internet
connections and mail can be retrieved locally as opposed to email providers
that may block adhoc SMTP services that attempt to deliver to a provider’s
inbox.

• Potential Issues. Mail services are an additional service in the software
system that have configuration and debugging costs. The alternative are
SaaS providers which reduce these costs by providing SMTP credentials
that are guaranteed to work with an Internet connection.

• Real-world Examples. This pattern was discovered in 62 Docker Com-
pose files. The roadiz project uses mailhog to test emails.40 The shopware

37 https://github.com/manusa/isotope-mail/blob/37722/deployment-examples/

docker-compose.yml
38 https://github.com/shaarli/Shaarli/blob/b7c50a5/docker-compose.yml
39 https://github.com/DeviaVir/zenbot/blob/0cb3541/docker-compose-traefik.yml
40 https://github.com/roadiz/roadiz/blob/ac370b0/docker-compose.yml

https://github.com/manusa/isotope-mail/blob/37722/deployment-examples/docker-compose.yml
https://github.com/manusa/isotope-mail/blob/37722/deployment-examples/docker-compose.yml
https://github.com/shaarli/Shaarli/blob/b7c50a5/docker-compose.yml
https://github.com/DeviaVir/zenbot/blob/0cb3541/docker-compose-traefik.yml
https://github.com/roadiz/roadiz/blob/ac370b0/docker-compose.yml

Patterns of Multi-Container Composition 31

project also uses mailhog to test emails in development.41 The umbraco

CMS project uses smtp4dev to test emails in development.42

• Supporting Evidence. These examples were found by counting the ser-
vice types in Table 2 under mail service.

4.11 Application Service with Database

Application Service Database Service

Fig. 15: High-level overview of the Application Service with Database pattern.

• Motivation.Most software systems contain some sort of backend database
service. Therefore, it would be beneficial to know how these backend database
services are orchestrated.

• Context/Applicability. For any software system that does not store data
in memory and stores data in a backend database service such as: MySQL,
MariaDB, Postgres, or MongoDB. The backend service is not part of the
main application container.

• Description. A main application uses the “depends on” instruction to
define a relationship between the main application and backend database
service. This signifies that the main application will not start up until
the backend database service has started. The backend database service
mounts a volume for persistent storage, so that the data in the database
is not destroyed when the “docker compose down” command is run. The
backend database service might also bind to a port on the host machine,
the bound port can be used to directly access the database from the host
machine.

• Advantages. This pattern is useful when needing to orchestrate a backend
service within your software system especially when testing and developing
applications as containers are quite flexible. Spinning up and destroying
databases simply requires the definition of a database service in a Docker
Compose file.

• Disadvantages. If the backend database service is hosted on the same host
machine, it can lead to catastrophic failures in a production environment
when the host machine is down.

• Potential Issues. Using “depends on” does not guarantee that your ap-
plication will connect to the backend database service on the first try. This

41 https://github.com/shopware/platform/blob/d93ca0f/docker-compose.yaml
42 https://github.com/umbraco/Umbraco-CMS/blob/a73c7bb/.devcontainer/

docker-compose.yml

https://github.com/shopware/platform/blob/d93ca0f/docker-compose.yaml
https://github.com/umbraco/Umbraco-CMS/blob/a73c7bb/.devcontainer/docker-compose.yml
https://github.com/umbraco/Umbraco-CMS/blob/a73c7bb/.devcontainer/docker-compose.yml

32 Eng et al.

is because although a container may have started, the service application
might not be ready to accept applications. Therefore, Docker Inc. (2022c)
recommends that a check is built into your application container to ensure
the database service is ready to accept connections.

• Real-world Examples. We found 121 Docker Compose files using this
pattern. For example, we can see this in the accent project43, anchr

project44, and stringer project45.
• Supporting Evidence. This was found by counting the Docker Compose
files that had the service types: frontend service and database service but
not caching service as seen in Table 2.

4.12 Application Service with Database and Caching

Application Service

Database Service

Caching Service

Fig. 16: High-level overview of the Application Service with Database and
Caching pattern.

• Motivation. To better support backend database services, often caching
layers are used to improve performance when retrieving data from backend
database services.

• Context/Applicability. This pattern is useful when looking to develop
and debug software systems that have a caching mechanism. The most
common caching service found is Redis.

• Description. The main application uses the “depends on” instruction to
define a relationship between the main application and backend database
service. It uses another “depends on” instruction to define a relationship
between the caching service. The backend database service mounts a vol-
ume, so that the data in the database is not destroyed when the “docker
compose down” command is run. The caching service also mounts a vol-
ume too, to avoid data being ephemeral. The backend database service
might also bind to a port on the host machine, the binded port can be
used to directly access the database from the host machine. The caching

43 https://github.com/mirego/accent/blob/22d5847/docker-compose.yml
44 https://github.com/muety/anchr/blob/320ecb5/docker-compose.yml
45 https://github.com/swanson/stringer/blob/0b64dc0/docker-compose.yml

https://github.com/mirego/accent/blob/22d5847/docker-compose.yml
https://github.com/muety/anchr/blob/320ecb5/docker-compose.yml
https://github.com/swanson/stringer/blob/0b64dc0/docker-compose.yml

Patterns of Multi-Container Composition 33

service might also bind to a port on the host machine for direct access to
the caching service.

• Advantages. The pattern is useful for developing and testing software
systems that wish to cache data. Since all the services are orchestrated
locally, services can be easily accessed without any connectivity issues.

• Disadvantages. Orchestrating all the services on the same host machine
can lead to downtime as if any one service fails then the application may
fail to run.

• Potential Issues. The backend database service and caching service con-
tainers may start up, but the services may not be ready to accept connec-
tions. As a result, Docker Inc. (2022c) recommends that the main appli-
cation should implement a check to ensure that the database and caching
services are online.

• Real-world Examples. This pattern was discovered in 42 Docker Com-
pose files. For example, we can see this in the miaou project46, wildduck
project47, and overleaf project48.

• Supporting Evidence. This was found by counting the Docker Compose
files that had the service types: frontend service and database service and
caching service as seen in Table 2.

4.13 HTTP Reverse Proxy Service

Service A

Service B

Service C

Reverse Proxy Service

Fig. 17: High-level overview of the HTTP Reverse Proxy Service pattern.

• Motivation. Services wishing to be exposed over a single port are com-
bined using a reverse proxy service. Burns and Oppenheimer (2016); Sousa

46 https://github.com/Canop/miaou/blob/7b251dc/docker-compose.yml
47 https://github.com/nodemailer/wildduck/blob/ca3a365/docker-compose.yml
48 https://github.com/overleaf/overleaf/blob/fd36c4136/docker-compose.yml

https://github.com/Canop/miaou/blob/7b251dc/docker-compose.yml
https://github.com/nodemailer/wildduck/blob/ca3a365/docker-compose.yml
https://github.com/overleaf/overleaf/blob/fd36c4136/docker-compose.yml

34 Eng et al.

et al. (2018a, 2015) has described the use of a reverse proxy as a pattern.
While Fehling et al. (2014) describes a similar “Application Component
Proxy” pattern.

• Context/Applicability. This pattern can be used when you wish to ex-
pose your service over default ports such as port 80 for HTTP and port
443 for HTTPS. Reverse proxy services such as Caddy and Nginx are often
used as reverse proxies.

• Description. This pattern works as follows:
• A reverse proxy service binds to ports such as 80 and 443. A volume
is also mounted to the reverse proxy service to keep the configuration
files persistent. The folder containing the log files can also be mounted
to a volume.

• The reverse proxy service may use a “depends on” instruction to define
a relationship to the application(s) that it proxies. However, this is not
necessary and can impede the startup time of accepting connections for
the software system.

• Advantages. Managing the reverse proxy over a container reduces the
need to install software on the host machine.

• Disadvantages. Since the reverse proxy is hosted within a container, there
is additional overhead and complexity to running the reverse proxy software
as the container needs to be managed.

• Potential Issues. Using a reverse proxy over a container can be more
difficult to debug when log files are not mounted to a volume.

• Real-world Examples. There are 92 Docker Compose files using this
pattern. For example, we can see this in the goodwork project49, linkace
project50, and PatrowlManager project51.

• Supporting Evidence. These examples were found by counting the ser-
vice types in Table 2 under reverse proxy service.

4.14 Duplicate Service Reuse

• Motivation. There are two motivations for duplicate service reuse. First,
applications sometimes bundle their functions into one image but would like
their functions to be executed on separate instances. Second, application
instances can be duplicated and isolated to test software systems that run
multiple instances of the same kind of application in a “dev” or “test”
mode.

• Context/Applicability. This pattern is useful when you wish to run
multiple instances of your application to perform different functionalities
of your application and to isolate these instances.

• Description. Services containing the same base image are defined in one
of two ways. First, the service can be defined with multiple of the same

49 https://github.com/iluminar/goodwork/blob/f452b7d5/docker-compose.yml
50 https://github.com/Kovah/LinkAce/blob/6589c92/docker-compose.yml
51 https://github.com/Patrowl/PatrowlManager/blob/7567c27/docker-compose.yml

https://github.com/iluminar/goodwork/blob/f452b7d5/docker-compose.yml
https://github.com/Kovah/LinkAce/blob/6589c92/docker-compose.yml
https://github.com/Patrowl/PatrowlManager/blob/7567c27/docker-compose.yml

Patterns of Multi-Container Composition 35

Application Service

Database Service

Duplicate Application
Service

Fig. 18: High-level example of the Duplicate Service Reuse pattern.

image instances or be built from the same Dockerfile. Or the service can
be duplicated using the “YAML Anchor and Alias” pattern (Section 4.2)
or “Docker Compose Service Inheritance” pattern (Section 4.3). Next, the
services are configured for their specific use cases, this might include chang-
ing the “command” option or having different volumes and ports for the
service.

• Advantages. Multiple processes of the application can be easily managed.
To update versions of containers only a single image needs to be pulled.
There is reduced complexity in the amount of Docker images that need to
be maintained.

• Disadvantages. Since the duplicated application can contain all function-
alities of a software system, the codebase can be quite large making increas-
ing the time to pull or build the Docker image of the duplicate application.
Instead the application image could be separated into microservices.

• Potential Issues. If one part of the codebase is vulnerable in the applica-
tion, the whole application could be compromised since they are all using
the same image without separation of functionalities.

• Real-world Examples. We found 17 Docker Compose files using this
pattern. For example, we can see this in the mastodon project52, chaskiq
project53, and Black Candy project54.

• Supporting Evidence. These examples were found by counting the ser-
vice types in Table 2 under “duplicate service reuse”.

5 Discussion

Our research is motivated by the popular usage of Docker Compose to deploy
and manage software systems. We find that among configurations there are
common kinds of service images used such as reverse proxies and databases.

52 https://github.com/tootsuite/mastodon/blob/8f7308da8/docker-compose.yml
53 https://github.com/chaskiq/chaskiq/blob/8fb33b/docker-compose.yml
54 https://github.com/blackcandy-org/black_candy/blob/1d14fb9/docker-compose.

yml

https://github.com/tootsuite/mastodon/blob/8f7308da8/docker-compose.yml
https://github.com/chaskiq/chaskiq/blob/8fb33b/docker-compose.yml
https://github.com/blackcandy-org/black_candy/blob/1d14fb9/docker-compose.yml
https://github.com/blackcandy-org/black_candy/blob/1d14fb9/docker-compose.yml

36 Eng et al.

Furthermore, there is a common set of Docker Compose options used as well.
This motivates us to investigate the patterns of configuration for the service
images used to better understand their implications in self-hosted projects and
wider applications.

5.1 Identifying Common Patterns

To identify common patterns we use an open coding process where we manu-
ally inspect each Docker Compose file and project to determine any interesting
observations. As opposed to using strictly quantitative methods to discover
patterns, we also use qualitative methods to perform an analysis. Using qual-
itative methods is beneficial as we can notice patterns that are not easily
discoverable by statistics. For example, automatic Docker Compose file gen-
eration (Section 4.1) is a pattern that would not have been found from a
quantitative analysis due to its low count. As well, the observation cannot be
easily discovered by looking at Docker Compose files only because the project
repository has to be inspected to understand how the files were created.

5.2 Patterns in Self-hosted Projects

Our patterns emerge from open coding software systems that are meant to
be self-hosted on any infrastructure that one chooses. The patterns that we
present in Section 4 are representative of Docker Compose usage in software
systems run by a diverse user base making it beneficial for developers wishing
to use Docker Compose for their own projects. We find patterns that can help
improve the developer experience such as using container management services
described in Section 4.6. The patterns that we discover in self-hosted projects
can be used as examples of how to orchestrate containers in future software
systems.

5.3 Patterns and Wider Applications

Docker Compose users can benefit from these findings by better understanding
patterns of what options to use when designing their software systems.

This study helps to empirically validate what common patterns are al-
ready being used. Researchers of Docker can use the empirical observations of
patterns of Docker Compose usage to motivate further studies on container
orchestration in other development communities. The empirical observations
of this paper also suggest that there is merit to recovering architecture traces
from Docker Compose files since containers that run services are often the
building blocks of architecture (e.g. databases).

Patterns of Multi-Container Composition 37

5.4 Comparison with Other Infrastructure as Code Patterns

We compare the patterns we discover with prior work discussed in Section 2.3
and outline how our patterns are similar and different to demonstrate the
practicality of our work.

Prior research in Infrastructure as Code (IaC), patterns of usage have been
investigated by (Fehling et al. 2014; Rahman et al. 2019; Ksontini et al. 2021;
Shamim et al. 2020; Burns and Oppenheimer 2016). Rahman et al. (2019) in-
vestigates security patterns in Puppet that deal with specific instructions that
are used such as using hard-coded passwords. In comparison, our patterns focus
on how to orchestrate services at a higher level. Shamim et al. (2020) identify
implementation practices that can better secure Kubernetes deployments such
as implementing role-based access control authorization, continuously applying
security patches, and implementing security policies for Kubernetes pods and
networks. By contrast, our work focuses explicitly on how developers might
deploy software services such as databases to solve typical software application
deployments.

Burns and Oppenheimer (2016) identify patterns for container-based dis-
tributed systems. In our paper, we identify the “HTTP Reverse Proxy Service”
pattern (Section 4.13) which resembles the ambassador pattern described by
Burns and Oppenheimer (2016) — a proxy is used to route to different ser-
vices from a single server. We also identify the “Duplicate Service Reuse”
(Section 4.14) that can be used for the multi-node application patterns de-
scribed by Burns and Oppenheimer (2016). Therefore, certain patterns we use
bear similarities to the patterns found in container-based distributed systems
as described in (Burns and Oppenheimer 2016).

Ksontini et al. (2021) identify refactoring types for Dockerfiles and Docker
Compose that suggest some best practices. Our patterns support many of their
best practices identified from refactoring types. Our “Docker Compose Over-
ride Use Case” pattern in Section 4.4 correspond with the refactoring types
in (Ksontini et al. 2021): “Extract ports attribute into an override Docker-
compose file”; “Extract volume attribute into an override Docker-compose
file”; “Extract ENV attribute into an override Docker-compose file or use
.env file”; “Extract service into an override Docker-compose file”. While our
“Docker Compose Service Inheritance” pattern in Section 4.3 corresponds with
the “Add Extends attribute to inherit configuration from an existing service
thus avoiding duplication” refactoring type in (Ksontini et al. 2021).

While we do not identify patterns that explicitly set names for services,
containers, and volumes, or adding tags to images like the refactoring types
identified in (Ksontini et al. 2021), we do identify the “Container Management
Services” pattern that can be used to maintain the latest images of services
which negates the need for refactoring. We outline in our “Application Ser-
vice with Database” pattern in Section 4.11 and “Application Service with
Database and Caching” in Section 4.12 how dependencies can be an issue
in service orchestration which corresponds to the “Order services based on
their dependency order” refactoring type in (Ksontini et al. 2021). Finally,

38 Eng et al.

Ksontini et al. (2021) identify the “Add ENV variables to store useful system-
wide values” refactoring type, where we make suggestions in the “Database
Initialization Service with Database Service” pattern (Section 4.7) and “Mail
Service Testing” pattern (Section 4.10) to use environment variables to con-
nect to these services. As a result, our patterns identified with our qualitative
analysis align with many of the refactoring types identified by Ksontini et al.
(2021).

Sousa et al. (2018a, 2015) presents the idea of a reverse proxy pattern
where services are routed to their appropriate network addresses. The most
closely related pattern we find is the “Service Labels are used to Configure
Reverse Proxy” pattern described in Section 4.9 where service routing can
automatically be determined through service labels. Also related is using a
reverse proxy in the “HTTP Reverse Proxy Service” pattern (Section 4.13).

6 Threats to Validity

In terms of construct validity, the projects that we analyze may not be rep-
resentative of all real world usage of Docker Compose. As such, the empirical
observations seen cannot be assumed to be applied to all projects using Docker
Compose. Even so, the projects of the self-hosted community that we do an-
alyze provides some nuance to usage that may not be obtained by analyzing
large datasets with unknown contexts. Furthermore, we also assume that the
git history of projects has not been rewritten. We also assume that the data
is accurately retrieved and that the filtering process for identifying Docker
Compose usage is accurate.

With regards to internal validity, we construct our patterns through an
open coding process whereby patterns of usage are collected through an it-
erative process. Since we use an open coding process, some patterns may be
overlooked due to the manual nature of the analysis. As well, there may be
preconceived notions as to what patterns might be expected when performing
the open coding process. To reduce the risk of preconceived notions and over-
looking patterns, we review our data with an open mind in three dimensions:
(1) at a service level in Docker Compose files, (2) at an orchestration level
with how services in a Docker Compose configuration work together, and (3)
at a repository level with how Docker Compose files operate within a project
repository.

Finally, in consideration of external validity, our dataset is not compre-
hensive and may not generalize to all projects. Since we only analyze publicly
available projects, private projects such as internal company projects may
use Docker Compose differently. Furthermore, full architectures may not be
reflected since services can run on a single container (e.g., a database and
application run in the same container). However, this is unlikely among most
projects as it would defeat the purpose of using Docker Compose. We provide
a replication package (Eng et al. 2024) outlining our process and scripts for
those wishing to analyze more projects.

Patterns of Multi-Container Composition 39

7 Conclusions and Future Work

This paper qualitatively and quantitatively explored a set of successful self-
hosted software-based service projects that employ Docker Compose to or-
chestrate and deploy various software services using Docker containers. Based
on these analyses, typical patterns of service architecture, orchestration, and
deployment were identified, counted, characterized, and named. Naming and
characterizing the patterns allows others to discuss their architectures using
the pattern names as shortcuts rapidly. These patterns also describe to de-
velopers patterns that have been successfully deployed. We demonstrate these
projects are successful based on having more GitHub stars than prior studies
like (Ibrahim et al. 2021). The greater number of GitHub stars indicates a
project’s attention from a wider community and shows the value and signifi-
cance of the project.

To encourage further patterns research and replicability, we contribute a
replication package (Eng et al. 2024) that includes an open-coded dataset of
concepts in Docker Compose files, as well as scripts for analysis and extracting
our selected Docker Compose projects.

We find many common patterns one would expect from self-hosted software
services such as the use of an “HTTP Reverse Proxy Service” (Section 4.13),
or “Application Service with Database and Caching” (Section 4.12). We found
interesting patterns that have to do with deploying databases, especially ini-
tializing databases before the application can use them, as described by the
“Database Initialization Service with Database Service” pattern in Section 4.7.
The “Service Labels are used to Configure Reverse Proxy” pattern described
in Section 4.9 is also interesting, as it shows how reverse proxies can be dynam-
ically configured by Docker Compose leveraging service labels in the Docker
Compose files used to deploy and orchestrate the app.

Data Availability

The datasets generated and analyzed during this study are available as part
of our replication package on https://zenodo.org/records/10648448.

References

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison Wesley, Boston, MA, October
1994.

Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional, 2004.

Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter Arbitter.
Cloud computing patterns: fundamentals to design, build, and manage cloud applica-
tions. Springer, 2014.

Christian Endres, Uwe Breitenbücher, Michael Falkenthal, Oliver Kopp, Frank Leymann,
and Johannes Wettinger. Declarative vs. imperative: two modeling patterns for the au-
tomated deployment of applications. In Proceedings of the 9th International Conference

https://zenodo.org/records/10648448

40 Eng et al.

on Pervasive Patterns and Applications, pages 22–27. Xpert Publishing Services (XPS),
2017.

Scott McCarty. Container tidbits: When should i break my appli-
cation into multiple containers?, March 2016. URL https://web.

archive.org/web/20230820154241/https://www.redhat.com/en/blog/

container-tidbits-when-should-i-break-my-application-multiple-containers.
Microsoft. Containerizing monolithic applications, April 2022. URL

https://github.com/dotnet/docs/blob/0ceaa6b/docs/architecture/

microservices/architect-microservice-container-applications/

containerize-monolithic-applications.md.
Scott Carey. Complexity is killing software developers, Nov 2021. URL https://www.

infoworld.com/article/3639050/complexity-is-killing-software-developers.

html.
Anton Podviaznikov. The versatility of docker compose, March 2017. URL

https://web.archive.org/web/20220808200330/https://runnable.com/blog/

the-versatility-of-docker-compose.
Md Hasan Ibrahim, Mohammed Sayagh, and Ahmed E Hassan. A study of how docker

compose is used to compose multi-component systems. Empirical Software Engineering,
26(6):1–27, 2021.

Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, 2005.

The Kubernetes Authors. Kubernetes, June 2022. URL https://web.archive.org/web/

20220601000133/https://kubernetes.io/.
Maria A Rodriguez and Rajkumar Buyya. Container-based cluster orchestration systems:

A taxonomy and future directions. Software: Practice and Experience, 49(5):698–719,
2019.

Eddy Truyen, Dimitri Van Landuyt, Davy Preuveneers, Bert Lagaisse, and Wouter Joosen.
A comprehensive feature comparison study of open-source container orchestration frame-
works. Applied Sciences, 9(5):931, 2019.

Jordan Webb. The container orchestrator landscape, August 2022. URL https://lwn.net/

Articles/905164/.
Ian Miell and Aidan Sayers. Docker in practice. Simon and Schuster, New York, NY, 2019.
Sean P Kane and Karl Matthias. Docker: Up & Running. ”O’Reilly Media, Inc.”, Sebastopol,

California, 2023.
Pethuru Raj, Jeeva S Chelladhurai, and Vinod Singh. Learning Docker. Packt Publishing

Ltd, Birmingham, UK, 2015.
Michele Guerriero, Martin Garriga, Damian A Tamburri, and Fabio Palomba. Adoption,

support, and challenges of infrastructure-as-code: Insights from industry. In 2019 IEEE
International conference on software maintenance and evolution (ICSME), pages 580–
589. IEEE, 2019.

Sebastiaan Van Stijn et al. Code of JSON Schema Compose Specification Found in
Docker Compose Source Code, November 2023. URL https://web.archive.org/web/

20231207060306/https://raw.githubusercontent.com/compose-spec/compose-spec/

ec342b4/schema/compose-spec.json.
Docker Inc. Announcing the compose specification, April 2020. URL

https://web.archive.org/web/20200407131941/https://www.docker.com/blog/

announcing-the-compose-specification/.
Docker Inc. Docker compose specification, March 2022a. URL https://web.archive.org/

web/20220322124537/https://compose-spec.io/.
nerdctl Authors. nerdctl: Docker-compatible cli for containerd, July 2023. URL https:

//web.archive.org/web/20230712211127/https://github.com/containerd/nerdctl.
Okteto, Inc. Docker compose reference — okteto documentation, June 2023.

URL https://web.archive.org/web/20230605123922/https://www.okteto.com/docs/

reference/compose/.
Podman Compose Authors. Podman compose, July 2023. URL https://web.archive.org/

web/20230713103640/https://github.com/containers/podman-compose.
Rancher Labs. Rancher docs: Rancher compose, August 2023. URL https:

//web.archive.org/web/20220826040438/https://rancher.com/docs/rancher/v1.6/

https://web.archive.org/web/20230820154241/https://www.redhat.com/en/blog/container-tidbits-when-should-i-break-my-application-multiple-containers
https://web.archive.org/web/20230820154241/https://www.redhat.com/en/blog/container-tidbits-when-should-i-break-my-application-multiple-containers
https://web.archive.org/web/20230820154241/https://www.redhat.com/en/blog/container-tidbits-when-should-i-break-my-application-multiple-containers
https://github.com/dotnet/docs/blob/0ceaa6b/docs/architecture/microservices/architect-microservice-container-applications/containerize-monolithic-applications.md
https://github.com/dotnet/docs/blob/0ceaa6b/docs/architecture/microservices/architect-microservice-container-applications/containerize-monolithic-applications.md
https://github.com/dotnet/docs/blob/0ceaa6b/docs/architecture/microservices/architect-microservice-container-applications/containerize-monolithic-applications.md
https://www.infoworld.com/article/3639050/complexity-is-killing-software-developers.html
https://www.infoworld.com/article/3639050/complexity-is-killing-software-developers.html
https://www.infoworld.com/article/3639050/complexity-is-killing-software-developers.html
https://web.archive.org/web/20220808200330/https://runnable.com/blog/the-versatility-of-docker-compose
https://web.archive.org/web/20220808200330/https://runnable.com/blog/the-versatility-of-docker-compose
https://web.archive.org/web/20220601000133/https://kubernetes.io/
https://web.archive.org/web/20220601000133/https://kubernetes.io/
https://lwn.net/Articles/905164/
https://lwn.net/Articles/905164/
https://web.archive.org/web/20231207060306/https://raw.githubusercontent.com/compose-spec/compose-spec/ec342b4/schema/compose-spec.json
https://web.archive.org/web/20231207060306/https://raw.githubusercontent.com/compose-spec/compose-spec/ec342b4/schema/compose-spec.json
https://web.archive.org/web/20231207060306/https://raw.githubusercontent.com/compose-spec/compose-spec/ec342b4/schema/compose-spec.json
https://web.archive.org/web/20200407131941/https://www.docker.com/blog/announcing-the-compose-specification/
https://web.archive.org/web/20200407131941/https://www.docker.com/blog/announcing-the-compose-specification/
https://web.archive.org/web/20220322124537/https://compose-spec.io/
https://web.archive.org/web/20220322124537/https://compose-spec.io/
https://web.archive.org/web/20230712211127/https://github.com/containerd/nerdctl
https://web.archive.org/web/20230712211127/https://github.com/containerd/nerdctl
https://web.archive.org/web/20230605123922/https://www.okteto.com/docs/reference/compose/
https://web.archive.org/web/20230605123922/https://www.okteto.com/docs/reference/compose/
https://web.archive.org/web/20230713103640/https://github.com/containers/podman-compose
https://web.archive.org/web/20230713103640/https://github.com/containers/podman-compose
https://web.archive.org/web/20220826040438/https://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/
https://web.archive.org/web/20220826040438/https://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/

Patterns of Multi-Container Composition 41

en/cattle/rancher-compose/.
Kompose Authors. Kompose - convert your docker compose file to kubernetes or open-

shift, January 2022. URL https://web.archive.org/web/20220119234120/https://

kompose.io/.
Docker Inc. Ways to set environment variables with compose, October 2023a.

URL https://github.com/docker/docs/blob/6e199de/content/compose/

environment-variables/set-environment-variables.md.
Docker Inc. Using profiles with compose, October 2023b. URL https://github.com/docker/

docs/blob/e86716e/content/compose/profiles.md.
Docker Inc. Extend your compose file, August 2022b. URL https://github.com/docker/

docs/blob/15e9e1e/content/compose/multiple-compose-files/extends.md.
Docker Inc. Merge compose files, August 2023c. URL https://github.com/docker/docs/

blob/15e9e1e/content/compose/multiple-compose-files/merge.md.
Docker Inc. How to use secrets in docker compose, August 2023d. URL https://github.

com/docker/docs/blob/15e9e1e/content/compose/use-secrets.md.
Docker Inc. Control startup and shutdown order in compose, October 2022c. URL https:

//github.com/docker/docs/blob/88b4505/compose/startup-order.md.
Yang Zhang, Gang Yin, Tao Wang, Yue Yu, and Huaimin Wang. An insight into the impact

of dockerfile evolutionary trajectories on quality and latency. In 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), volume 1, pages 138–
143. IEEE, 2018.

Yang Zhang, Huaimin Wang, and Vladimir Filkov. A clustering-based approach for mining
dockerfile evolutionary trajectories. Science China Information Sciences, 62(1):1–3,
2019.

Kalvin Eng and Abram Hindle. Revisiting dockerfiles in open source software over time.
arXiv preprint arXiv:2103.12298, 2021.

Changyuan Lin, Sarah Nadi, and Hamzeh Khazaei. A large-scale data set and an empirical
study of docker images hosted on docker hub. In 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 371–381. IEEE, 2020.

Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi, and
Harald C Gall. An empirical analysis of the docker container ecosystem on github.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), pages 323–333. IEEE, 2017.

Tianyin Xu and Darko Marinov. Mining container image repositories for software config-
uration and beyond. In Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, pages 49–52, 2018.

Akond Rahman, Chris Parnin, and Laurie Williams. The seven sins: Security smells in
infrastructure as code scripts. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 164–175. IEEE, 2019.

Emna Ksontini, Marouane Kessentini, Thiago do N Ferreira, and Foyzul Hassan. Refactor-
ings and technical debt in docker projects: An empirical study. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 781–791.
IEEE, 2021.

Akond Rahman, Effat Farhana, Chris Parnin, and Laurie Williams. Gang of eight: A defect
taxonomy for infrastructure as code scripts. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pages 752–764. IEEE, 2020a.

Akond Rahman, Effat Farhana, and Laurie Williams. The ‘as code’activities: development
anti-patterns for infrastructure as code. Empirical Software Engineering, 25(5):3430–
3467, 2020b.

Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rahman. Xi command-
ments of kubernetes security: A systematization of knowledge related to kubernetes
security practices. In 2020 IEEE Secure Development (SecDev), pages 58–64. IEEE,
2020.

Brendan Burns and David Oppenheimer. Design patterns for container-based distributed
systems. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16),
2016.

Tiago Boldt Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo Correia. Overview of a
pattern language for engineering software for the cloud. In Proceedings of the 25th

https://web.archive.org/web/20220826040438/https://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/
https://web.archive.org/web/20220826040438/https://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/
https://web.archive.org/web/20220119234120/https://kompose.io/
https://web.archive.org/web/20220119234120/https://kompose.io/
https://github.com/docker/docs/blob/6e199de/content/compose/environment-variables/set-environment-variables.md
https://github.com/docker/docs/blob/6e199de/content/compose/environment-variables/set-environment-variables.md
https://github.com/docker/docs/blob/e86716e/content/compose/profiles.md
https://github.com/docker/docs/blob/e86716e/content/compose/profiles.md
https://github.com/docker/docs/blob/15e9e1e/content/compose/multiple-compose-files/extends.md
https://github.com/docker/docs/blob/15e9e1e/content/compose/multiple-compose-files/extends.md
https://github.com/docker/docs/blob/15e9e1e/content/compose/multiple-compose-files/merge.md
https://github.com/docker/docs/blob/15e9e1e/content/compose/multiple-compose-files/merge.md
https://github.com/docker/docs/blob/15e9e1e/content/compose/use-secrets.md
https://github.com/docker/docs/blob/15e9e1e/content/compose/use-secrets.md
https://github.com/docker/docs/blob/88b4505/compose/startup-order.md
https://github.com/docker/docs/blob/88b4505/compose/startup-order.md

42 Eng et al.

Conference on Pattern Languages of Programs, pages 1–9, 2018a.
Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.

Engineering software for the cloud: External monitoring and failure injection. In Pro-
ceedings of the 23rd European Conference on Pattern Languages of Programs, pages
1–8, 2018b.

Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: Automated recovery and scheduler. In Proceedings
of the 23rd European Conference on Pattern Languages of Programs, pages 1–8, 2018c.

Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering software for the cloud: Messaging systems and logging. In Proceedings of
the 22Nd European Conference on Pattern Languages of Programs, pages 1–14, 2017.

Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. Patterns for soft-
ware orchestration on the cloud. In Proceedings of the 22nd Conference on Pattern
Languages of Programs, pages 1–12, 2015.

Tiago Boldt Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo Correia. A survey on the
adoption of patterns for engineering software for the cloud. IEEE Transactions on
Software Engineering, 48(6):2128–2140, 2021.

Gregor Hohpe. Modern examples for enterprise integration patterns, Febru-
ary 2017. URL https://web.archive.org/web/20230815004255/https://www.

enterpriseintegrationpatterns.com/ramblings/eip1_examples_updated.html.
Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, Frank Ley-

mann, A Hadjakos, F Hentschel, and H Schulze. Leveraging pattern application via
pattern refinement. In Proceedings of the International Conference on Pursuit of Pat-
tern Languages for Societal Change (PURPLSOC), pages 38–61, 2016.

Beniamino Di Martino and Antonio Esposito. A rule-based procedure for automatic recog-
nition of design patterns in uml diagrams. Software: Practice and Experience, 46(7):
983–1007, 2016.

nodiscc et al. Awesome-selfhosted, May 2022. URL https://github.com/

awesome-selfhosted/awesome-selfhosted/tree/1726a40.
Kalvin Eng, Abram Hindle, and Eleni Stroulia. Replication Package of ”Patterns of Multi-

Container Composition for Service Orchestration with Docker Compose”, February
2024. URL https://zenodo.org/records/10648448.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and
Daniela Damian. The promises and perils of mining github. In Proceedings of the 11th
working conference on mining software repositories, pages 92–101, 2014.

Davide Spadini, Mauŕıcio Aniche, and Alberto Bacchelli. Pydriller: Python framework for
mining software repositories. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 908–911, 2018.

Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German, and
Prem Devanbu. The promises and perils of mining git. In 2009 6th IEEE International
Working Conference on Mining Software Repositories, pages 1–10. IEEE, 2009.

Scott Brisson, Ehsan Noei, and Kelly Lyons. We are family: analyzing communication in
github software repositories and their forks. In 2020 IEEE 27th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), pages 59–69. IEEE,
2020.

Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and Daniela Damian. Under-
standing the popular users: Following, affiliation influence and leadership on github.
Information and Software Technology, 70:30–39, 2016.

Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the factors that
impact the popularity of github repositories. In 2016 IEEE international conference on
software maintenance and evolution (ICSME), pages 334–344. IEEE, 2016.

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating Github
for Engineered Software Projects. Empirical Software Engineering, 22(6):3219–3253,
2017.

John V Seidel. Qualitative data analysis, 1998.
Docker Inc. Fragments, November 2023e. URL https://github.com/docker/docs/blob/

8d8014a/_vendor/github.com/compose-spec/compose-spec/10-fragments.md.

https://web.archive.org/web/20230815004255/https://www.enterpriseintegrationpatterns.com/ramblings/eip1_examples_updated.html
https://web.archive.org/web/20230815004255/https://www.enterpriseintegrationpatterns.com/ramblings/eip1_examples_updated.html
https://github.com/awesome-selfhosted/awesome-selfhosted/tree/1726a40
https://github.com/awesome-selfhosted/awesome-selfhosted/tree/1726a40
https://zenodo.org/records/10648448
https://github.com/docker/docs/blob/8d8014a/_vendor/github.com/compose-spec/compose-spec/10-fragments.md
https://github.com/docker/docs/blob/8d8014a/_vendor/github.com/compose-spec/compose-spec/10-fragments.md

Patterns of Multi-Container Composition 43

Traefik. Traefik docker documentation, December 2022. URL https://github.

com/traefik/traefik/blob/519ed8b/docs/content/providers/docker.md#

docker-api-access.

https://github.com/traefik/traefik/blob/519ed8b/docs/content/providers/docker.md#docker-api-access
https://github.com/traefik/traefik/blob/519ed8b/docs/content/providers/docker.md#docker-api-access
https://github.com/traefik/traefik/blob/519ed8b/docs/content/providers/docker.md#docker-api-access

	Introduction
	Background and Related Work
	Methodology
	Patterns
	Discussion
	Threats to Validity
	Conclusions and Future Work

