
Under the Blueprints: Parsing Unreal Engine’s

Visual Scripting at Scale

Kalvin Eng

Department of Computing Science

University of Alberta

Edmonton, Canada

kalvin.eng@ualberta.ca

Abram Hindle

Department of Computing Science

University of Alberta

Edmonton, Canada

abram.hindle@ualberta.ca

Abstract—In Unreal Engine, a popular game engine for AAA
(high budget, high profile) title video games, Blueprint Visual
Scripting is a widely used tool for developing gameplay ele-
ments using visual node and edge-based source code. Despite
its widespread adoption, there is limited research on the in-
tersection of software engineering and Blueprint-based visual
programming. This dataset aims to address this gap by providing
parsed Blueprint graphs extracted from Unreal Engine’s binary
UAsset files. We developed extractors and a custom parser to
mine Blueprint graphs from 335,753 Blueprint UAsset files across
24,009 GitHub projects. By providing this dataset, we hope to
encourage future research on the structure and usage of Unreal
Engine Blueprints, and promote the development of tools—
such as code smell detectors and language models for code
completion—that can optimize visual programming practices
within Unreal Engine.

Index Terms—Unreal Engine, Blueprints, Visual Code

I. INTRODUCTION

Visual programming has become a transformative tool

in video game development. Unlike traditional text-based

programming, visual programming enables users to create

programs using graphical elements and connections. This

approach provides a more intuitive way of coding, making it

more accessible to individuals with design backgrounds [1, 2].

One commonly used visual programming system in video

games is the Unreal Engine Blueprint Visual Scripting sys-

tem [3], which facilitates the creation of gameplay elements

through node and edge-based source code. An example of a

Blueprint can be seen in Figure 1.

Visual programming is a widely used approach in video

game development and is notably used in AAA (high budget,

high profile) title video games [1, 2, 4]. Studying visual

programming is economically valuable as many game studios

rely on visual code for developing their AAA titles. Under-

standing visual programming patterns and structures is crucial

for developers and educators, as it reveals their effectiveness

in game development and highlights areas for improvement.

This paper presents a dataset of Unreal Engine Blueprint

graphs parsed from 335,753 asset files using a custom devel-

oped parser to help researchers studying visual programming.

II. UNREAL ENGINE AND BLUEPRINTS

Unreal Engine 4 (UE4) is a game engine for developing

video games, publicly released in March 2014 [5]. Among its

Fig. 1: An example of a Blueprint event graph where “Hello

World” is printed to the screen when the game begins playing.

features is Blueprints, a robust and accessible visual scripting

system enabling game designers and artists to create gameplay

logic/functionality without writing code line-by-line.

Unreal Engine allows for the creation of game worlds that

contain game objects and the objects can be built with com-

ponents. The game world and game objects can be controlled

via a GUI, and components can be defined via the Blueprint

visual scripting system. The game world, game objects, and

components can also be defined via C++ code.

While the Blueprints visual scripting system is mainly used

for defining gameplay elements, it should not be confused with

the graph editor for Blueprints, which is also used elsewhere

in the Unreal Engine Editor. Game developers and designers

are able to use nodes and edges: to define how objects should

be drawn on the screen in the Material Editor [6]; to control

character animations with the Animation Graph [7]; to develop

AI logic with Behavior Trees [8]; to create special effects with

the Niagara FX system [9]; to manage the logic of gameplay

widgets with Widget Blueprints [10]; to generate content for

worlds with the procedural content generation framework [11];

and to generate sounds with the MetaSounds system [12].

A. Blueprints Visual Scripting System

The Blueprints visual scripting system consists of a graph

containing nodes with pins. Each node represents an action or

logic, such as a variable, function, or flow control operation.

The connections made between nodes with pins represent the

flow of logic. Figure 1 illustrates a basic Blueprint in which



the “Event BeginPlay” node activates the “Print String” node

through connections established by “exec” pins, resulting in

the display of “Hello World” at the start of the game.

Blueprints are similar to Abstract Syntax Trees (ASTs)

because they illustrate the structure of a program without in-

cluding detailed lower-level information. Blueprints are visual

representations that focus on logical flow and function like an

AST by outlining key operations. During the runtime compila-

tion process, the Blueprint graph is transformed into bytecode

for execution by a virtual machine. Blueprints made with Un-

real Engine 4 can be converted into C++ code using Blueprint

Nativization [4], which reduces runtime overhead. Blueprints

are stored in their uncompiled form within .uasset files,

allowing the node and edge-based source code to be parsed

independently, without requiring a full set of project files.

There are five types of Blueprints [13]: (1) Level Blueprint

to define gameplay logic at a level scope; (2) Blueprint Class

to define gameplay functionality as a class; (3) Data-Only

Blueprint to tweak properties of a parent Blueprint Class;

(4) Blueprint Interface to allow Blueprint Classes and Level

Blueprints to share and send data with each other; and (5)

Blueprint Macro Library stores self-contained graphs that can

be added to other blueprints.

A Blueprint is similar to a C++ class and takes in a par-

ent class to inherit. When creating a Blueprint or Blueprint

Macro Library, there is a GUI prompt that allows you to

select the parent class of your Blueprint. The most common

parent classes presented are: Actor, Pawn, Character, Player

Controller, Game Mode, Actor Component, Scene Component.

A parent class is the base class of your Blueprint providing

predefined functions and variables for an object. Data-Only

Blueprints use a Blueprint as its parent class. While the

Blueprint Interface class uses the object interface class as its

parent class. A Blueprint augments an inherited parent class

and produces a “Blueprint Generated Class” for runtime use.

With the exception of the Level Blueprint, the other four

types of Blueprints are stored as an .uasset Unreal Engine

asset binary file, thus we extract the four types of Blueprints in

our dataset. Within the binary file contains information about

the asset filename, parent classes, nodes, and pins for the

Unreal Engine editor. Because the asset filename is embedded

within the binary file, the asset cannot be renamed outside the

Unreal Engine editor as the binary file needs to be updated

with the new filename. The recommended naming convention

for Blueprints is to append an asset name with “BP ” [14].

Blueprints mainly consist of events and functions, each with

a graph editor for manipulating nodes. A function graph cre-

ates local variables and typically returns a value. Every object

Blueprint contains a Construction Script function graph, which

is executed when the object is instantiated in Unreal Engine.

In contrast, an event graph allows functions or actions to be

triggered based on occurrences in the game, such as player

inputs, collisions, or changes in game state, enabling timed

execution. The graph editor also includes event dispatchers for

one-to-many communication between Blueprints and macros,

which condenses node groups into a single node.

There are four primary graph types: Event Graph (Uber-

Graph), Function Graph, Macro Graph, and Delegate Signature

Graph, with an additional Implemented Interfaces Graph for

Blueprints that implement interfaces. The Event Graph is

where gameplay logic is created and stored as an UberGraph

Page, which is then compiled into a single UberGraph to

manage all event-based logic. Function and Macro Graphs de-

fine reusable logic, while Delegate Signature Graphs represent

event dispatchers, enabling communication between objects.

III. RELATED WORK

To the best of our knowledge, there has been no work in

analyzing Unreal Engine Blueprints at scale. This makes our

dataset a unique contribution to the domain of visual program-

ming research. Visual programming involves the creation of

visual code, which is also known as block-based code, low-

code, no-code, or visual scripts [1, 2].

Two published datasets related to our research on visual

programming exist. One dataset [15] focuses on Scratch, a

block-based visual programming language used for coding

education. The other Pure Data dataset [16] is more closely

related this work as Pure Data is a visual programming

language that employs nodes and edges akin to Unreal Engine

Blueprints. Pure Data is simpler and primarily utilized in

audio engineering, while Unreal Engine employs Blueprints

for video game development.

IV. METHODOLOGY

We used World of Code [17] to find projects and clone the

projects’ git repositories for the binary Blueprint .uasset

files, then we parsed the files using our parser tool and stored

the Blueprint graphs, nodes, and pins into a relational database.

A. Project Discovery

To discover projects that use Unreal Engine on GitHub,

we used the World of Code (WoC) version V dataset [17].

The WoC version V dataset contains 16,252,394,678 blobs

and 1,31,171,380 distinct repositories retrieved by Mid May,

2023 [18]. We searched for filenames with the .uasset file

extension using the “b2f” basemap. The name “b2f” stands

for “blob to filename”; a blob is a SHA-1 of a file’s content

that is used for lookup, while a filename refers to the name of

a file in a git repository. A blob can have multiple filenames.

38,172,994 “b2f” entries were found to contain the .uasset

file extension. A major challenge to using the WoC dataset is

that the binary contents of blobs are not stored — only text

blobs as defined by git are stored. Therefore, we manually

mirrored git projects containing the blobs.

Using the 38,172,994 entries, we retrieved possible Unreal

Engine git projects with the “b2P” lookup script. The name

“b2P” stands for “blob to a distinct repository”. A “distinct

repository” is identified as the most central repository within

a cluster of repositories, as determined by the Louvain commu-

nity detection algorithm [19]. Using distinct repositories, one

can avoid many duplicated projects (forks) during analysis.

33,899 distinct GitHub repositories were discovered.



We were able to successfully clone 27,108 git repositories

as of October 20, 2023. Cloning was done using the “mirror”

option ensuring a complete copy of the source git repository

including branch names. We use the latest updates of the git

repositories as of July 3, 2024 for our analysis. In total there

is 21 TB of repository data cloned.

We traversed the git trees of cloned projects on the main

branch to find binary files ending with .uasset. We hashed

the binary files with MD5 to use as an identifier for our

database schema described in Section IV-C. The main branch

is considered to be the current branch of a repository when

running the git branch command. We parsed the binary

.uasset files, ignoring null files and filenames that mis-

match the embedded filename. Some files were unparseable

due to being Git LFS placeholders, while others were partially

parsed due to unresolvable graphs and nodes. Of the 27,108

cloned git repositories, we find that 24,060 repositories contain

at least 1 partially parseable Blueprint file. There are 341,519

unique Blueprint files in total with: 2,462 serialized by an

unknown custom Unreal Engine Version; 336,479 serialized

by Unreal Engine 4; and 2,578 serialized by Unreal Engine 5.

We fully parse graphs, nodes, and pins from 335,753 Unreal

Engine 4 Blueprint files and store them in an SQLite database.

B. Blueprint Parser Tool

Our Blueprint parser tool is developed to extract Blueprint

graphs, nodes, and pins from Unreal Engine 4 (UE4.0 -

UE4.27) .uasset files by de-serializing its binary con-

tents. It was created by analyzing the Unreal Engine source

code. The Blueprint UAsset binaries contain serialized objects

(instances of classes) and their properties. Unreal Engine’s

serialization process has developed over various versions of

Unreal Engine, increasing its complexity. Our work on parser

development reveals several noteworthy serialization changes:

• UE4.0 - 4.12: Blueprint graphs, nodes, and pins are

serialized as objects.

• UE4.13: Major change where pins are no longer objects,

but stored as properties of a node object.

• UE4.14: Changes to pin serialization with a new custom

version scheme to serialize data for determining pin types.

• UE4.17: Pin serialization was changed to using container

types to handle data serialization.

• UE4.19: Pin names are now serialized as a new type

FName instead of FString.

We have released our parser with the dataset pack-

age [20] to support further development of the parser for Un-

real Engine 5 and research into the Unreal Engine ecosystem.

C. Data Storage

The extracted Blueprint data about graphs, nodes, and

pins are stored in a SQLite database file and a simplified

schema can be seen in Figure 2. The schema consists of

several interrelated tables, each storing different properties and

relationships. The main tables include:

• git files: Stores metadata for UAsset files in a Git reposi-

tory, including file paths, commit details, and hash values.

*


1
 1


*


1
 *


1


*


1


1


1


*


1

1
1
*
1


1


1


*


1


1


1


1


1


git_files


repo


main_branch


filename


md5_hash


commit_sha


uasset_stats


md5_hash


ExportCount


ImportCount


SavedByEngineVersionMajor


SavedByEngineVersionMinor


PackageFileSize


AssetClassName


AssetFileName


blueprint


blueprint_uuid


md5_hash


ubergraph_count


function_graph_count


macro_graph_count


delegate_signature_graph_count


implemented_interfaces_graph_count


blueprint_description


graph_subgraph


graph_uuid


subgraph_uuid


graph_node


graph_uuid


node_uuid


node_pin


node_uuid


pin_uuid


pin_linkedto_pin


pin1_uuid


pin2_uuid


pin_subpin


pin_uuid


subpin_uuid


graph


blueprint_uuid


graph_uuid


graph_type


node_count


node


node_uuid


node_type


node_pos_x


node_pos_y


pin_count


pin


pin_uuid


pin_name


pin_direction


Fig. 2: Simplified database schema of extracted Blueprints.

• uasset stats: Contains information about all UAssets

extracted from Git repositories, including compatibility

with different engine versions, asset types, file sizes, and

export/import counts. The “md5 hash” column is used to

link a uasset with a blueprint.

• blueprint: Represents Blueprints, storing graph counts,

and blueprint properties like description. Blueprints

are associated with one-or-many graphs via the

“blueprint uuid” column.

• graph: Represents graphs, storing node counts, and graph

properties like type. Graphs are associated with one-or-

many nodes with the “graph uuid” column.

• node: Represents nodes, storing pin counts, and node

properties such as x and y position on the graph editor.

Nodes are associated with one-or-many pins via the

“node uuid” column.

• pin: Represents pins, storing pin properties such as name

and direction. Pin-to-pin relationships are stored in the

pin linkedto pin table linking pins with the “pin uuid”

column and can be used to reconstruct a full graph.

Each of the major entities (blueprints, graphs, nodes) also

has a corresponding table for extra properties, allowing the

schema to store additional properties extracted from the UAs-

set Blueprint that do not commonly appear in other Blueprints.

There are also tables to model subgraphs (graph subgraph),

subpins (pin subpin), and linked pins (pin linkedto pin).

D. Data Validation

We developed our parser by testing Blueprint files across

UE4 versions (UE4.0–UE4.27), ensuring error-free parsing

and refining it for compatibility with files we made and the

dataset files. From the parsed dataset, we randomly sampled

19 UAsset files without replacement. The sample size was

determined using Cochran’s formula (z-score of 1.31, 90%

confidence level, 0.5 variability, and 15% precision). The

small sample size was due to the labour-intensive process

of manually comparing graphs in the Unreal Engine Editor

to our parsed data, which involves downloading each project

containing the file, opening it in the appropriate Unreal Engine

version, and matching nodes and connections one-by-one.

V. DATASET ANALYSIS

In this section, we provide a summary of our dataset queried

with SQL. The extent of our dataset can be seen in Table I.



Count Mean SD Min 25% 50% 75% Max

Event Graph (UberGraph Page) Per Blueprint 324,767 1.01 0.16 1 1 1 1 18
Function Graph Per Blueprint 300,320 1.68 2.97 1 1 1 1 236
Macro Graph Per Blueprint 7,903 2.38 3.69 1 1 1 2 72
Delegate Graph Per Blueprint 6,749 1.74 1.95 1 1 1 2 42
Implemented Interfaces Graph Per Blueprint 16,040 0.93 2.61 0 0 0 1 73
Total Graphs Per Blueprint 335,757 2.62 3.32 0 2 2 2 255
Nodes Per Graph 857,207 13.25 35.51 1 1 4 12 3,435
Pin Connections Per Graph 475,394 23.36 52.45 1 4 10 24 4,432
Pin Connections Per Node 10,661,298 2.31 1.55 1 1 2 3 359
Unique Blueprints Per Project 24,009 22.50 33.11 1 9 13 24 902
Extracted Blueprint File Size (Bytes) 335,753 158,348.31 318,540.25 2,409 32,862 108,369 165,526 39,789,332
Blueprint Clones Across Projects 16,585 13.32 265.70 2 2 2 3 12,523

TABLE I: Summary Statistics for Blueprints

Node Type Count %

CallFunction 3,683,795 32.44
VariableGet 2,310,101 20.34
VariableSet 845,151 7.44
Event 654,211 5.76
IfThenElse 541,540 4.77
FunctionEntry 532,236 4.69
Knot 528,746 4.66
CommutativeAssociativeBinaryOperator 328,224 2.89
MacroInstance 245,828 2.16
DynamicCast 203,711 1.79

TABLE II: Top 10 Node Types

Baseline Comparison: We compare our dataset to the Pure

Data dataset [16] as a rough baseline using the summary

statistics in Table I. While Islam et al. [16] assumes one graph

per file, our dataset has multiple graphs per Blueprint UAsset

file, making our comparison approximate. Islam et al. [16]

report a mean of 94 nodes and 85 connections per graph, with

a median of 25 nodes and 16 connections. Our dataset has

a mean of 13 nodes and 23 connections, with a median of 4

nodes and 10 connections per graph, indicating simpler graphs.

Graphs: Graphs, consisting of nodes and pins, are central to

Blueprints with four primary types (Event, Function, Macro,

Delegate) representing different gameplay logic. Table I shows

that Event Graphs (UberGraph Pages) and Function Graphs are

the most common, with significantly fewer Macro, Delegate,

and Implemented Interfaces Graphs. Most Blueprints contain

between 0-2 graphs. Interestingly, we can see that at least one

of the Blueprints has 236 Function graphs which suggests high

complexity for a Blueprint.

2000 1000 0 1000 2000 3000 4000
X Position

1000

0

1000

2000

Y 
Po

sit
io

n

Node Positions

200000

400000

600000

800000

Co
un

t

Fig. 3: Density heatmap showing the common positions of

nodes in the Blueprint Editor. Outlier positions are omitted.

Nodes: Nodes in Blueprints represent actions or operations.

From Table I, 25% of graphs contain only 1 node, 50% contain

1-4 nodes, and 75% have 1-12 nodes, showing most graphs

are simple. However, one graph with 3,435 nodes indicates

that some Blueprints are highly complex.

Additionally, Figure 3 presents a heatmap showing the

distribution of node positions across all graphs. The heatmap

reveals that most nodes are located within a range of -285 to

432 on the y-axis and -533 to 888 on the x-axis, highlighting

that the majority of nodes across all graphs are concentrated

within a relatively confined space in the coordinate plane.

Table II lists the top 10 most common Unreal Engine

Blueprint node types and their percentage out of all node

types. Nodes like CallFunction (32%), VariableGet (20%),

and VariableSet (7%) are key for variable access and function

calls, while Event (5.8%) and IfThenElse (4.8%) handle game

logic. Other nodes, such as FunctionEntry (4.7%) and Knot

(4.7%), serve specific formatting and entry purposes. These

counts reflect the core functions of Blueprint visual scripting.

Pin Connections: Pin connections in Blueprints, similar to

graph edges, link nodes to enable data flow. Table I shows the

average number of pin connections per node is 2.31, with most

nodes having between 1-3 connections, up to a maximum of

359 pin connections per node. This suggests that while most

nodes have few connections, some are highly interconnected,

representing high complexity. These highly connected nodes

may indicate areas of high interdependency, where changes in

one part of the Blueprint could impact several others.

Blueprint Clones: In Table I, it is shown that Blueprints

with cloned binary file contents are cloned an average of 13

times. However, some Blueprints are reused significantly, with

the highest clone count reaching 12,523. This underscores the

importance of Blueprints in the development process, as many

projects depend on the reuse of essential Blueprints. While

cloning enhances efficiency, it also raises concerns regarding

the proliferation of defects through code replication.

VI. FUTURE RESEARCH

With our extensive Unreal Engine Blueprint graphs dataset,

researchers can explore static analysis, quality assessment, and

code completion. Potential research questions (RQs) include:

• How can static analysis techniques be adapted to assess

the quality of Unreal Engine Blueprint graphs?

• What common defects and code smells exist in Unreal

Engine Blueprints, and how do they impact performance?

Our dataset supports developing tools that leverage past

examples like code completion, auto-layout, refactoring sug-

gestions, and language models. By analyzing node details,

pin types, connections, and graph structures, researchers can

train models on the syntax and semantics of Unreal Engine

Blueprints to develop these tools.

VII. CONCLUSION

We present a dataset of Blueprint graphs, nodes, and pins

from 335,753 Unreal Engine asset files across 24,009 pub-

lic Github projects, along with a parser tool for extracting

Blueprint graphs, nodes, and pins from Unreal Engine 4

UAsset files. All code for extraction and dataset construction

is available in our dataset package [20].

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada (NSERC), RGPIN-

2022-03464.



REFERENCES

[1] K. Eng, A. Hindle, and A. Senchenko, “Identifying

Defect-Inducing Changes in Visual Code,” in 2023 IEEE

International Conference on Software Maintenance and

Evolution (ICSME). IEEE, 2023, pp. 474–484.

[2] ——, “Predicting Defective Visual Code Changes in a

Multi-Language AAA Video Game Project,” in 2023

IEEE International Conference on Software Maintenance

and Evolution (ICSME). IEEE, 2023, pp. 485–494.

[3] Epic Games, “Blueprints Visual Scripting,” 2017.

[Online]. Available: https://web.archive.org/web/

20170708113303/https://docs.unrealengine.com/latest/

INT/Engine/Blueprints/index.html

[4] ——, “Nativizing Blueprints,” 2017. [Online]. Available:

https://web.archive.org/web/20170708170345/https:

//docs.unrealengine.com/latest/INT/Engine/Blueprints/

TechnicalGuide/NativizingBlueprints/index.html

[5] ——, “Epic Games Releases Unreal Engine

4 for All,” 2014. [Online]. Available:

https://web.archive.org/web/20140701175219/http:

//epicgames.com/news/epic-games-releases-unreal-

engine-4-for-all/

[6] ——, “Essential Material Concepts,” 2014. [Online].

Available: https://web.archive.org/web/20140907144008/

https://docs.unrealengine.com/latest/INT/Engine/

Rendering/Materials/IntroductionToMaterials/index.html

[7] ——, “Animation Blueprints,” 2014. [Online]. Available:

https://web.archive.org/web/20140827015058/https:

//docs.unrealengine.com/latest/INT/Engine/Animation/

AnimBlueprints/index.html

[8] ——, “Behavior Trees Nodes Reference,” 2014. [Online].

Available: https://web.archive.org/web/20140906114310/

https://docs.unrealengine.com/latest/INT/Gameplay/AI/

BehaviorTrees/NodeReference/index.html

[9] ——, “Niagara Overview,” 2023. [Online]. Available:

https://web.archive.org/web/20231202152827/https:

//docs.unrealengine.com/5.0/en-US/overview-of-

niagara-effects-for-unreal-engine/#modules

[10] ——, “Widget Blueprints,” 2024. [Online].

Available: http://archive.today/2024.09.04-191950/https:

//dev.epicgames.com/documentation/en-us/unreal-

engine/widget-blueprints-in-umg-for-unreal-engine

[11] ——, “Using PCG Generation Modes,” 2024. [Online].

Available: http://archive.today/2024.09.04-150128/https:

//dev.epicgames.com/documentation/en-us/unreal-

engine/using-pcg-generation-modes-in-unreal-engine

[12] ——, “Creating Procedural Music with

MetaSounds,” 2024. [Online]. Available:

http://archive.today/2024.09.04-150746/https:

//dev.epicgames.com/documentation/en-us/unreal-

engine/creating-procedural-music-with-metasounds

[13] ——, “Types of Blueprints,” 2024. [Online].

Available: http://archive.today/2024.09.04-153544/https:

//dev.epicgames.com/documentation/en-us/unreal-

engine/types-of-blueprints-in-unreal-engine

[14] ——, “Recommended Asset Naming Conventions,”

2021. [Online]. Available: https://web.archive.org/web/

20211128215252/https://docs.unrealengine.com/4.27/en-

US/ProductionPipelines/AssetNaming/

[15] E. Aivaloglou, F. Hermans, J. Moreno-León, and G. Rob-

les, “A Dataset of Scratch Programs: Scraped, Shaped

and Scored,” in 2017 IEEE/ACM 14th International Con-

ference on Mining Software Repositories (MSR). IEEE,

2017, pp. 511–514.

[16] A. Islam, K. Eng, and A. Hindle, “Opening the Valve on

Pure-Data: Usage Patterns and Programming Practices

of a Data-Flow Based Visual Programming Language,”

in 2024 IEEE/ACM 21st International Conference on

Mining Software Repositories (MSR). IEEE, 2024, pp.

492–497.

[17] Y. Ma, T. Dey, C. Bogart, S. Amreen, M. Valiev,

A. Tutko, D. Kennard, R. Zaretzki, and A. Mockus,

“World of Code: Enabling a Research Workflow for

Mining and Analyzing the Universe of Open Source VCS

Data,” Empirical Software Engineering, vol. 26, pp. 1–

42, 2021.

[18] A. Mockus, Version V stats, 2023,

https://bitbucket.org/swsc/overview/commits/

9163c503277fa4d4aeb5fbf336e41e5eb4c7d28b.

[19] A. Mockus, D. Spinellis, Z. Kotti, and G. J. Dusing,

“A Complete Set of Related Git Repositories Identified

via Community Detection Approaches Based on Shared

Commits,” in Proceedings of the 17th International Con-

ference on Mining Software Repositories, 2020, pp. 513–

517.

[20] K. Eng and A. Hindle, “Under the Blueprints: Parsing

Unreal Engine’s Visual Scripting at Scale (Dataset),”

https://zenodo.org/records/14247703, 2025.

https://web.archive.org/web/20170708113303/https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://web.archive.org/web/20170708113303/https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://web.archive.org/web/20170708113303/https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
https://web.archive.org/web/20170708170345/https://docs.unrealengine.com/latest/INT/Engine/Blueprints/TechnicalGuide/NativizingBlueprints/index.html
https://web.archive.org/web/20170708170345/https://docs.unrealengine.com/latest/INT/Engine/Blueprints/TechnicalGuide/NativizingBlueprints/index.html
https://web.archive.org/web/20170708170345/https://docs.unrealengine.com/latest/INT/Engine/Blueprints/TechnicalGuide/NativizingBlueprints/index.html
https://web.archive.org/web/20140701175219/http://epicgames.com/news/epic-games-releases-unreal-engine-4-for-all/
https://web.archive.org/web/20140701175219/http://epicgames.com/news/epic-games-releases-unreal-engine-4-for-all/
https://web.archive.org/web/20140701175219/http://epicgames.com/news/epic-games-releases-unreal-engine-4-for-all/
https://web.archive.org/web/20140907144008/https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/IntroductionToMaterials/index.html
https://web.archive.org/web/20140907144008/https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/IntroductionToMaterials/index.html
https://web.archive.org/web/20140907144008/https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/IntroductionToMaterials/index.html
https://web.archive.org/web/20140827015058/https://docs.unrealengine.com/latest/INT/Engine/Animation/AnimBlueprints/index.html
https://web.archive.org/web/20140827015058/https://docs.unrealengine.com/latest/INT/Engine/Animation/AnimBlueprints/index.html
https://web.archive.org/web/20140827015058/https://docs.unrealengine.com/latest/INT/Engine/Animation/AnimBlueprints/index.html
https://web.archive.org/web/20140906114310/https://docs.unrealengine.com/latest/INT/Gameplay/AI/BehaviorTrees/NodeReference/index.html
https://web.archive.org/web/20140906114310/https://docs.unrealengine.com/latest/INT/Gameplay/AI/BehaviorTrees/NodeReference/index.html
https://web.archive.org/web/20140906114310/https://docs.unrealengine.com/latest/INT/Gameplay/AI/BehaviorTrees/NodeReference/index.html
https://web.archive.org/web/20231202152827/https://docs.unrealengine.com/5.0/en-US/overview-of-niagara-effects-for-unreal-engine/#modules
https://web.archive.org/web/20231202152827/https://docs.unrealengine.com/5.0/en-US/overview-of-niagara-effects-for-unreal-engine/#modules
https://web.archive.org/web/20231202152827/https://docs.unrealengine.com/5.0/en-US/overview-of-niagara-effects-for-unreal-engine/#modules
http://archive.today/2024.09.04-191950/https://dev.epicgames.com/documentation/en-us/unreal-engine/widget-blueprints-in-umg-for-unreal-engine
http://archive.today/2024.09.04-191950/https://dev.epicgames.com/documentation/en-us/unreal-engine/widget-blueprints-in-umg-for-unreal-engine
http://archive.today/2024.09.04-191950/https://dev.epicgames.com/documentation/en-us/unreal-engine/widget-blueprints-in-umg-for-unreal-engine
http://archive.today/2024.09.04-150128/https://dev.epicgames.com/documentation/en-us/unreal-engine/using-pcg-generation-modes-in-unreal-engine
http://archive.today/2024.09.04-150128/https://dev.epicgames.com/documentation/en-us/unreal-engine/using-pcg-generation-modes-in-unreal-engine
http://archive.today/2024.09.04-150128/https://dev.epicgames.com/documentation/en-us/unreal-engine/using-pcg-generation-modes-in-unreal-engine
http://archive.today/2024.09.04-150746/https://dev.epicgames.com/documentation/en-us/unreal-engine/creating-procedural-music-with-metasounds
http://archive.today/2024.09.04-150746/https://dev.epicgames.com/documentation/en-us/unreal-engine/creating-procedural-music-with-metasounds
http://archive.today/2024.09.04-150746/https://dev.epicgames.com/documentation/en-us/unreal-engine/creating-procedural-music-with-metasounds
http://archive.today/2024.09.04-153544/https://dev.epicgames.com/documentation/en-us/unreal-engine/types-of-blueprints-in-unreal-engine
http://archive.today/2024.09.04-153544/https://dev.epicgames.com/documentation/en-us/unreal-engine/types-of-blueprints-in-unreal-engine
http://archive.today/2024.09.04-153544/https://dev.epicgames.com/documentation/en-us/unreal-engine/types-of-blueprints-in-unreal-engine
https://web.archive.org/web/20211128215252/https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/AssetNaming/
https://web.archive.org/web/20211128215252/https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/AssetNaming/
https://web.archive.org/web/20211128215252/https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/AssetNaming/
https://bitbucket.org/swsc/overview/commits/9163c503277fa4d4aeb5fbf336e41e5eb4c7d28b
https://bitbucket.org/swsc/overview/commits/9163c503277fa4d4aeb5fbf336e41e5eb4c7d28b
https://zenodo.org/records/14247703

	Introduction
	Unreal Engine and Blueprints
	Blueprints Visual Scripting System

	Related Work
	Methodology
	Project Discovery
	Blueprint Parser Tool
	Data Storage
	Data Validation

	Dataset Analysis
	Future Research
	Conclusion

