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Abstract

CAPTCHAs are automated Turing tests used to de-
termine if the end-user is human and not an automated
program. Users are asked to read and answer Visual
CAPTCHAs, which often appear as bitmaps of text char-
acters, in order to gain access to a low-cost resource such
as webmail or a blog. CAPTCHAs are generated by soft-
ware and the structure of a CAPTCHA gives hints to its im-
plementation. Thus due to these properties of image pro-
cessing and image composition, the process that creates
CAPTCHAs can often be reverse engineered. Once the im-
plementation strategy of a family of CAPTCHAs has been
reverse engineered the CAPTCHA instances may be solved
automatically by leveraging weaknesses in the creation pro-
cess or by comparing a CAPTCHA’s output against itself.
In this paper, we present a case study where we reverse engi-
neer and solve real-world CAPTCHAs using simple image
processing techniques such as bitmap comparison, thresh-
olding, fill-flood segmentation, dilation, and erosion. We
present black-box and white-box methodologies for reverse
engineering and solving CAPTCHAs. As well we provide
an open source toolkit for solving CAPTCHAs that we have
used with a success rates of 99, 95, 61, 30%, and 27% on
hundreds of CAPTCHAs from five real-world examples.

1. Introduction

CAPTCHAs are often the lone sentry that guards po-
tentially valuable or abusable resources. CAPTCHA is an
acronym for “Completely Automated Public Turing test to
tell Computers and Humans Apart”’[10]. Many websites
and services utilize CAPTCHAs to act as a Turing test for
their clients, to ensure that each request comes from an
individual human user and is not an attempt by an auto-
mated program to acquires resources in bulk (Figure 1). Es-
sentially, a CAPTCHA is a strange kind of lock, one that
is designed to be easily broken by human visual pattern
matching, but not by means of automated software. That

is, CAPTCHA design is an exercise in creating a breakable
lock.

Unfortunately CAPTCHAs limit not only automated
spam bots from using resources, their use is an impediment
to anyone who is visually impaired, or anyone who has to
rely on audio screen readers, braille screen readers or alter-
native browsers. Even if an audio CAPTCHA is provided
there are still users who are discriminated against. Thus
there are legitimate reasons to automate the solving of these
CAPTCHASs, whether the purpose is humanistic or mali-
cious.

Solving CAPTCHA is an Hard Al image processing
problem in the general case [10], thus it is hard to cre-
ate an all encompassing CAPTCHA solver, but it is easy
to create a solver for a family of CAPTCHAs. There are
an infinite number of methods to produce CAPTCHAs but
CAPTCHA generation is also an Hard Al problem (in the
general case) [10]; this makes CAPTCHASs similar to the
SPAM problem: a continuous interaction between adver-
sarial elements trying to tune their techniques to defeat each
other’s defences.

The CAPTCHAs we consider in this paper are primar-
ily bitmap depictions of text that the user is meant to rec-
ognize and reproduce. Audio CAPTCHAs and picture
CAPTCHAs are not dealt with in this study. For sake of
brevity, within this paper we will use the term “captcha” to
refer only to visual textual bitmapped CAPTCHAs.

Captchas ! are generated by software, thus they are rela-
tively deterministic. Their output might vary wildly, but the
output, the instance of the captcha, was created by follow-
ing a deterministic process. As we mentioned above, gen-
eral captcha generation is a Hard Al problem, captcha gen-
erators avoid this complexity by generating specific fami-
lies of captchas by following a deterministic process. This
process and this software can be reverse engineered in both
black-box and white-box (source available) settings. Thus
target captchas can be solved by reverse engineering and re-

From this point on, we will use the more common lower-cased spelling
of the term.



implementing the captcha generator. A target captcha may
also be solved by exploiting the weaknesses of the opera-
tions identified while reverse engineering the captcha.

Our contributions include:

e A methodology for reverse engineering the process of
captcha creation

e A general methodology for solving captchas

e A method of solving captchas by leveraging an exist-
ing implementation

e A set of tools for captcha solving

1.1. Previous Work

Von Ahn et al. [10] formalized the idea of CAPTCHASs
as an automated Turing test that leveraged Hard Al prob-
lems. We have previous work that briefly describes some of
our captcha solving efforts [5]. Much of our work was mo-
tivated by the work on the application of shape matching to
the EZ-Gimpy captcha [7]. The shape matching algorithm
was used for character recognition. It relied on matching the
points of the contour of a shape to points of shapes in the
database and then finding the best permutation of matching
points, measuring the distance and then choosing the class
of the closest matching candidate.

Other work focused solely on segmentation [12], which
dealt with noise removal via supervised learning and rules.
Others further applied machine learning techniques to aid
segmentation and character recognition [3]. We have
adopted the use of K-Means clustering [6] to segment
captchas as described by our colleagues Caine et al. [2].

2. Common Properties of Captchas
The constraints that are important to every captcha are:

Readable: the captcha must be easily read and decoded by
humans.

Unguessable: The captcha message cannot be guessed at
random with any real confidence.

Order-able: Characters are read left to right, top to bottom
(exceptions could include Hebrew or Arabic captchas).
If a captcha is readable, its character ordering should
be apparent.

These constraints are important because difficult
captchas can dissuade potential customers, which is not the
intent of using captchas. Given these constraints some fea-
tures and properties of common captcha implementations
include:

Bitmap fonts in fixed positions: Many Captchas con-
sist of text in a fixed position written in a bitmap font. Al-
though they are easy to break, they are easy to generate and
thus very common while still serving as a minor deterrent
to spammers.

Static background: Captchas that use static back-
grounds are easy to spot because the background is always
the same color or texture.

Random placement: Many captchas use randomly
placed characters instead of characters in static positions as
it can complicate segmentation and recognition.

Background/foreground noise: Captchas often deploy
background noise and overlapping foreground noise. Noise
often consists of random pixels, lines and other objects.
This makes comparison less deterministic.

Linear transformations: Captchas often warp their
characters via linear transformations such as rotation or
skew. These characters are more difficult to match because
they need to be normalized first.

Non linear transformations: More advanced captchas
rely on non-linear transformations and warping because
they are harder to normalize. Non-linear transforms include
projecting characters onto surfaces, smearing and warping.

Dripping/Fuzzy text: Some captchas employ creative
distortions by obscuring individual characters with smears
and spikes that often renders text difficult to read and to
match.

Layering: Most importantly many of these captchas
follow some general pattern of composition: the layering of
these above techniques, the use of overlays, and transfor-
mations. Identifying how a captcha is layered is similar to
discovering how the captcha was created.

3. Methodology

The main methodology for solving a captcha is first to
analyze the captcha and determine the steps of its generation
process, find relevant counter-techniques, then to configure
a specific solver from this information. The specific captcha
solver will exploit the weaknesses of the methods used to
generate that family of captchas.

3.1. Reverse Engineering a Captcha

The knowledge of common captcha implementation
strategies allows us to reverse engineer the process of
captcha creation. This helps us choose and configure the
appropriate tools to solve the captcha. In some cases, if
a captcha can be reproduced, then instances can also be
solved by comparing them to instances of the captcha gener-
ated during a parameter search (as explained in Section 3.3).
A general methodology for reverse engineering a captcha is
to identify the following operations and order them by their
layering:
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Figure 2. Model of Computer CAPTCHA Solving

Layering: discover operations and overlays

Background: discovery and filtering

Noise: method and possible removal

Text: method and properties of the text

Transforms: method, what objects or layers are trans-
formed, and possible reverse transforms

Layering refers to the general pattern of captcha con-
struction. Layers consist of bitmaps, text, vector graphics,
transforms and noise. Layers are usually placed on top of
each other cumulatively (assuming some transparency or
opacity) or in the case of transforms, as operations in a se-
quence. In many cases the sequence of operations applied
is analogous to layering. This is similar to how layering
is used in photo-editing software like Adobe Photoshop or
the GIMP. One difficulty is in determining when the text is
added, although if one assumes that layers are added cumu-
latively, it is often not hard to see if the text is overlapped
or transformed by anything such as line noise or a rotation.
Layering is often given away by overlapping objects or a
difference between background and foreground elements.

Backgrounds are added mainly to cause confusion for
solvers as they usually add noise that makes analysis more

difficult. Often backgrounds are a single color or a static
image, these can be identified and ignored by looking for
common pixels among a set of captchas. Background noise
could include lines and shapes meant to cause edge noise in
an effort to confuse edge detection, or random pixels, that
are the same color as text, spread about to confuse segmen-
tation. It could also include false letters drawn differently as
to hinder segmentation or character recognition. The back-
ground could also mimic the colors and textures of the char-
acters. Backgrounds are obvious because they are the nega-
tive space around characters.

Noise is commonly added after text characters and back-
ground layers are applied, sometimes noise is only added to
the background. Often noise consists of randomly placed
grey pixels, random lines, and shapes that overlap the char-
acters and background. Noise is often visually identifiable
by its presence. Image compression can also add noise.
Noise is often removable by thresholding, erosion, and di-
lation.

Text characters are drawn in captchas in a variety of
ways. Captchas consisting of untransformed text gener-
ated from bitmapped fonts, placed randomly or statically,
are easy to solve as segmentation is often not required be-
cause the cost of bitmap comparison of N bitmaps per each
pixel is so low it renders segmentation unnecessary. Gen-



erally one can order characters by their x coordinates since
captchas must be readable and orderable. To determine the
layering of the text, check if the text is occluded or trans-
formed independently of a background, then it is obviously
in a sublayer. Often text pixels are easy to identify because
they share a similar set of properties, distinct from the back-
ground.

Transformations are applied either per character, over
all the text at once, or over the whole image. Transforma-
tions come in two main categories: linear and non-linear
transformations. Linear transformation include skew, rota-
tion, and projection. Non-linear transformations often in-
clude projecting the text onto a bumpy surface like a flag
or warping. Linear transforms can be normalized by Prin-
ciple Component Analysis (PCA), while non-linear trans-
forms require the more complicated Independent Compo-
nent Analysis (ICA). If these transformations are indepen-
dent of the background or noise then they were applied per
character or just to the text layer. Global transforms are
identifiable if the background suffers from the same warp-
ing as the text characters. If characters are transformed in-
dependently it is a good sign that the transformation was
applied per character.

Figuring out the layering and operations is often the most
important step because it indicates an order of operations
which is the process of captcha creation itself. It can also
help identify those operations that are weak against counter
measures like PCA or fill flooding.

3.2. Solving a Captcha

Solving a captcha usually has four main steps: image
clean up, text pixel identification, segmentation, and char-
acter matching. Figure 1 illustrates how a human solves a
captcha, while Figure 2 illustrates the process that a com-
puter program goes through to a solve a captcha. The steps
of this process and the important algorithms related to each
step are:

1. Image Clean Up removes noise that could harm later
steps.

Erosion / dilation can sometimes clean up back-
ground noise and reconnect disconnected char-
acters; the effectiveness depends on the color
scheme used.

Thresholding can clean up, and often remove a back-
ground before text pixel identification.

Lone pixel removal reduces noise by removing po-
tential text pixels that are relatively isolated from
other potential text pixels.

2. Text pixel identification categorizes individual pixels
as either text or non-text.

Edge detection , which is a computer vision tech-
nique to detect hard edges in an image, is used
to detect the hard edges of characters if the back-
ground is soft.

Thresholding looks for values above or below a cer-
tain color or luminosity. It often works because
many captchas have text that is an extreme color
(black or white).

Fill Flooding works by flooding a color or value re-
cursively in multiple directions so that one can
look for continuous areas large enough and uni-
form enough to be characters.

. Segmentation , using a variety of means, parses the

text pixels into separate character segments.

Fill Flood Segmenting utilizes fill flooding to sepa-
rate and segment text pixel regions.

Weight Segmenter segments along the x axis by the
counts of text pixels per column.

Box Segmenter grows segments around text pixels
until no more text pixels are adjacent.

K-Means Segmenter segments text pixels via K-
Means clustering [6].

Shrink and Fill segments by applying erosion or

shrinking and fill flooding repeatedly until the
optimal number of segments have been found.

. Character Matching matches the segments against

characters in a database, often using a normalization
step (see Figures 7(a) and 7(b) for an example of char-
acter databases). The following techniques are em-
ployed in character matching:

Centering normalizes characters; often they are cen-
tered in a bitmap and scaled to a certain size so
that they can be compared against other candi-
dates in the database.

Principal/Independent Component Analysis is of-
ten used to normalize the contour, shape data, or
pixels of a characters. PCA is used to normalize
against linear transformations, while ICA is used
on non-linear transformation.

Nearest Neighbor is a simple machine learning tech-
nique to compare vectors and choose the class of
an instance from the classes of the nearest K in-
stances from the database.

Shape Matching , described in [7], matches the con-
tour of a character against those in a database via
the best matching permutation of paired points.

Skeletonization reduces the dimensionality of the
data and eases comparison by generating skele-
tons of characters.



3.3. Solving a Captcha by Cloning

One possible method of solving a captcha, where the
source code is available (open source web applications) or
the captcha is easy to re-implement (e.g., you have already
reverse engineered the captcha), is to parametrize the gen-
erators to produce captchas that one can compare against a
target instance captcha. This would allow for a nearly lin-
ear time search of valid characters (per character, try each
character in the alphabet, find the best match and move on).

A method for solve-by-cloning is:

1. Reverse engineer the captcha generating code: ei-
ther re-implement it by reverse engineering or find the
source code.

2. Parametrize the captcha so the previously random val-
ues for properties such as distortion, text placement,
and background are now parameters and potentially
search-able.

3. Preprocess the captchas to remove noise.

4. Search through generated captchas by character posi-
tions from left to right, generating all captchas with the
same prefix but a different one letter suffix, keep those
which best match, extend the prefix with the good
match and continue on to the next character. Even-
tually the prefix will converge on the solution to the
instance of the captcha. Repeating this step might im-
prove accuracy.

5. Find the best fit of generated captchas by parameter
search

Thus by parameterizing and searching/estimating the pa-
rameter space of the target captcha, an instance of a captcha
can be solved by similarity measures. This method is effi-
cient in the sense that only N * k comparisons are needed
where N is the number of positions and k is the size of the
alphabet. One problem encountered when solve-by-cloning
is that often the placement or size of different characters
might cause the text to be centered differently. Sometimes
the entire text is centered in the image so a search over all
possible text might require some sort of centering correction
otherwise matches will be error prone. See our solve-by-
cloning solution to the Watercap captcha in Section 5.2.5.

3.4. Developing a Specific Captcha Solver

The general process for developing a captcha solver is as
follows:

1. Get a sampling of target captchas.
2. Solve some of the sampled target captchas manually.

3. Label the solved target captchas.

4. Develop the captcha cleaner (see section 3.2).

“

Develop the captcha segmenter (see section 3.2).

Segment some of the solved captchas.

S

Create a database of labeled segments (train on exam-
ples).

I

Develop the captcha solver (see section 3.2).

9. Test trained and untrained solved captchas against
captcha solver

(a) If the accuracy is acceptable, then continue.

(b) Else re-integrate newly solved segments and re-
solve;

(c) If accuracy is still too low, improve the solver and
segmenter.

(d) Else if accuracy is still too low, improve the
cleanup algorithm and re-segment from the be-
ginning.

10. Test against unsolved captchas, improve the character
segment database as needed.

One of the most fruitful and important steps in captcha
solving is the integration of solved and miscategorized seg-
ments into the database. Often more and better data will
result in a more accurate solver.

4. Captcha Solving Algorithms

Many of these algorithms are quite useful for prepro-
cessing captchas, segmenting them, normalizing them and
matching segments. Many of these image processing al-
gorithms are parallel algorithms. They operate on one im-
age and produce another new image. Often if an image
processing algorithm does not read from one buffer and
write to another it causes cataclysmic problems like discon-
nected characters and loss of information. Many of these
image processing algorithms rely on knowing about the pix-
els around a target pixel (usually a 3x3 square around the
pixel in question, sometimes more) and thus these algo-
rithms need the original image to be untouched while they
write to a new image.

4.1. Erosion and Dilation

Erosion and dilation are essentially the same transform
but dilation makes bright colored areas bigger while dila-
tion makes the dark colored areas bigger. These image pro-
cessing operations are commonly used thicken or thin text
characters. For example if dark text characters are placed
together snugly on a bright background, dilation, by grow-
ing the brighter background, might separate the characters
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Figure 3. Examples of Captchas

better so that we can apply a fill segmenter, whereas thin
dark anti-aliased characters that are almost merging into the
background can be thickened by using erosion. Erosion and
dilation can also be used in a positive sense where objects
(text pixels) are posed as positive space, then erosion and
dilation make objects shrink or grow.

4.2. Thresholding

Thresholding is the simple act of partitioning pixels into
two groups, text and background, by a value such as color
or magnitude/brightness. Pixels matching values above or
below a threshold are labeled text or background. Thresh-
olding is used to help segment characters and find character
pixels.

For example, if the text characters of a captcha are pure
white, then with a threshold of 99% brightness, anything
darker would indicate a background pixel. Thresholding
works well on many captchas, such as the Digg captcha,
because the background colors are sufficiently darker or
lighter than the text characters.

There are disadvantages to thresholding: for example, it
can disconnect parts of a character making fill-based seg-
mentation difficult, especially if the text is anti-aliased.

4.3. Shrinking and Pixel Removal

Shrinking is often seen as erosion but it can also be per-
formed by removing potential text pixels that do not have
enough neighbors. Shrinking is quite useful to remove line
noise because often line noise is applied later in the gen-
eration process and is often not anti-aliased. Shrinking is
often done after thresholding, as it can remove islands of
lone text pixels. A common algorithm for shrinking is to
remove every text pixel that has fewer than £ text pixels

around it. This is done in parallel and the output is written
to a different buffer.

Lone pixel removal often helps with segmentation. The
algorithm is quite simple: if a pixel is not surrounded by
other text pixels, then that pixel is removed in the output
buffer.

Shrinking and fill flooding can be combined to make a
segmenter that handles characters that are too close together
until only K candidate segments remain.

4.4. Fill Flood Segmenter

Fill flooding works well for identifying text pixels as
well as segmentation. The fill flood segmenter looks for
regions of continuous color by fill flooding an unique value
per each pixel. Once each region is fill flooded the top can-
didate regions are evaluated and filtered depending on size
requirements. In some cases the background will not pro-
duce regions that are fill flood-able. In some cases the text
pixels have already been found so fill flooding only needs
to be applied to the text pixels themselves.

The fill flood follows a simple recursive algorithm of
coloring in pixels of a similar uncolored value with the
current fill color in either four or eight directions (North,
West, South, East, and North-west, South-west, South-east,
North-east).

The benefits of fill flooding are that it is quite fast and
it can handle text that has overlapping ranges, although it
does not work well on text that touches or truly overlaps
with the same color. Fill segmenting sometimes benefits
from anti-aliasing because it defines segment borders and
separates characters. Fill flood segmenters do not work well
on characters that are not continuous. Characters composed
of dots can defeat this segmenter as well as characters that
have non-uniform colors like gradients.



4.5. Weight Segmenter

Once text pixels are detected one can slice the segments
by the dips produced in the histogram of the text pixels per
column. This is similar to making all the text pixels fall
from their positions and stack on top of each other then
drawing segmentation lines in the dips between the larger
lumps.

This segmenter works well in cases that have a lot of
line noise but where the characters do not overlap. This
segmenter is essentially half of a common region finder seg-
menter used in OCR. This also has been called vertical seg-
mentation [12].

4.6. Box Segmenter

The box segmenter attempts to increase a segment size
of a possibly disconnected cluster of segments which over-
lap simple ranges. The box segmenter algorithm is simple:
start at a text pixel, put a box around it, then keep extending
the edges of the box until the edges do not overlap a text
pixel. Keep extending each edge of the box until no edge is
adjacent to any text pixel.

The box segmenter works poorly on overlapping charac-
ters but works well on disconnected characters. For exam-
ple, the Digg captcha has a lot of line noise; consequently,
the normalization process can separate parts of the charac-
ters so that fill flooding does not work but the box segment-
ing often does.

4.7. K-Means Segmenter

K-Means segmentation [2] is the use of K-means clus-
tering [6] on text pixels to determine which pixels belong
to which character. One provides the number of clusters to
look for, K, and the K-Means algorithm tries to build the
number clusters suggested. The disadvantages of K-Means
is it unstable and often requires multiple runs just to be con-
fident in the clusters chosen. Also large characters like M’s
and G’s and small characters like i’s and I’s sometimes con-
fuse the clustering. K-Means has been successfully used to
segment the Ticket Master captcha [2].

4.8. Microsoft Captcha Segmentation

The Microsoft captcha segmentation algorithm, as dis-
cussed by Yan et al. [12], combines methods to segment
noisy captchas. They have built an arc identifier that iden-
tifies arcs which are not characters. Using fill floods they
then find candidate regions by using a decision tree. Noise
arcs are removed and candidate segments are identified.

4.9. Principal Component Analysis

Principal Component Analysis (PCA) attempts to find a
vector with the most variation through a multidimensional
data set. Characters often are normalized via PCA. There

Figure 5. Edge detection example

are two main ways to apply PCA, one is to operate on a
high dimensional data set consisting of the pixels of the
characters as a vector, the other is to act on a two dimen-
sional data-set of the contour points (the points along the
edge of the characters) of a character. By dealing with the
contour one can normalize the characters that have been lin-
early transformed.

Figure 4 demonstrates the application PCA to the con-
tours of 360 rotations of A’s and F’s. Note how the rotations
A’s and F’s map back to the four quadrants of the Cartesian
plane.

4.10. Edge Detection

If characters are filled with noise but are differentiable
from the background, edge detection [1] can be used to de-
tect the contour of the characters. This is found by analyz-
ing the difference in color or luminosity between a pixel and
its surrounding pixels.

4.11. Rosenfeld Skeletonization

Skeletonization attempts to find the connected structure
of a continuous block of pixels. It seeks to represent a skele-
tal structure of an object and maintain certain properties of
that object. Common properties include: keep the sharp
end points of the object, stay inside of the object, keep in-
tersections, and keep connected objects connected. There
are many kinds of skeletonization and each has different
properties. Skeletonization can be used as a dimensionality
reduction step that seeks to keep various geometric proper-
ties. It is also good for generating small geometric graphs
of thicker objects.

The skeletonization algorithm we used was the Rosen-
feld Skeletonization algorithm [9], it tries to maintain thin-
ness and connectivity while being a skeleton within the ob-
jectitself. Figure 6 illustrated Rosenfeld skeletonization ap-
plied to a captcha.

4.12. Nearest Neighbor

Nearest Neighbor is the method of classifying a query in-
stance based on its distance to K nearest neighbor instances
in the database. Distance is calculated via metrics such as
Euclidean distance. It is assumed that the majority class
of the K neighbors will likely be the class of the query in-
stance. Nearest neighbor works well when one describes a
segment as an /N dimensional vector. The simplest case of
nearest neighbor is 1 nearest neighbor.



Figure 4. PCA Applied to 360 rotations of the letters A and F
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5. Case Study

We studied multiple captchas and solved most of them
with reasonable accuracy (30% or better) using our toolkit
and our utilities.

5.1. Utilities and Tools

Our tools [4], consist of a library of useful captcha
solving functions written mostly in OCaml. The library
provides much of the functionality described in the previ-
ous sections. General purpose infrastructure includes font
loading routines, image routines, transformations and algo-
rithms such as PCA.

We also have utilities that aid in the process of reverse
engineering a captcha as well as labelling segments. Many
of our utilities are command line versions of the previously
mentioned algorithms so we can prototype techniques for
cleaning or segmenting a captcha.

To handle segmentation we have two main tools: the seg-
ment mover and the segment namer. The segment mover
is used when there is a corpus of already solved captchas,
where the image files are named by their solution (e.g.,

abc. jpg for “abc”). Segment mover takes the segments
produced by the segmenter that has been configured, and
then moves the segments to the appropriate letter collection
they belong to, assuming the segmenter was correct. For
example, the third segment of abc . jpg would be moved
to the c collection. These collections then need to be in-
spected, and the errors reclassified.

The segment namer takes un-labeled segments, displays
them and waits for user input to determine which letter the
character represents. This produces a shell script that will
move all the appropriate segments into their respective letter
collections.

5.2. Captcha breaking results

We will now discuss the captcha families that we tried
to break and summarize our success with each: PHPBB at
99%, Rogers at 95%, Piratebay at 61%, Digg at 30% and
Watercap at 27%/93%.

5.2.1. PHPBB Captcha

The PHPBB Captcha is used by the PHPBB forums soft-
ware, which is an Open Source web forum. PHPBB’s
captcha is quite simple (see Figure 3(a)), consisting of
a grey background with randomly placed but uniformly
spaced black letters, all covered by a layer of grey noise.
PHPBB’s font is static and its characters are un-warped. We
found that simple box segmentation and bitmap comparison
can be used to solve the captcha with almost 99% accuracy
as the noise left more than 50% of the text pixels in place.
We achieved 99% accuracy on over 100 captchas.

5.2.2. Rogers SMS Captcha

The Roger’s SMS captcha is particularly interesting (see
Figure 3(b)), consisting of rotated characters on a noisy grey
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Figure 7. Samples of character databases for
the Piratebay and Digg

background. This captcha was used for guarding a SMS
sending application. To defeat this captcha we use thresh-
olding and dilation to segment the captcha. We found that
the text pixels were obvious, as they were black and nothing
else was black. We then sampled the points of the contour
of the characters, processed those 2D points with PCA and
then matched against our database using nearest neighbor.
We found that shape matching did not help that much al-
though it reportedly worked well on other captchas [7]. We
achieved greater than 95% accuracy on over 150 captchas.

5.2.3. PirateBay Captcha

The PirateBay captcha is a rotated font captcha where the
characters might overlap in range (see Figure 3(c)). There
is some geometrical line and circle noise added as well. To
solve the PirateBay captcha we tried to remove the lines and
circles by removing white pixels that were not surrounded
by many white pixels. Then we skeletonized the remain-
ing white text pixels using Rosenfeld skeletonization (see
section 4.11). Taking these skeletons (see Figure 7(a)), we
PCA’d their points and then did a nearest neighbor compar-
ison to known samples. This resulted in 61% accuracy on
100 captchas.

5.2.4. Digg Captcha

The Digg captcha is quite noisy (see Figure 3(d)). It has
a grey background of concentric circles which make edge
detection slightly more difficult. Multi-tone line noise in-
tersects the characters, segmenting them into multiple parts.
This makes fill flooding difficult, multiple passes of dilation
and erosion can be used to remove most of the line noise. K-
means segmentation worked well against the Digg captcha.
Then the clusters of pixels were abstracted as points and

then run through PCA. The PCA’d characters were com-
pared against the database using nearest neighbors. This
results in a solver that had 30% accuracy on 540 captchas.

5.2.5. Watercap Captcha

We naively defeated the Watercap captcha [8] (see Fig-
ure 3(f)) by applying solve-by-cloning. We made an im-
age distance program that outputs the image distance be-
tween images, then we took the Watercap captcha code,
and tooled it for a linear search. Using a 20 line PERL
script we had it call the Watercap captcha code to gener-
ate candidate captchas, then our image distancer (based on
the PHPBB code) determined the closest captchas. Using
this method we solved 27% of 100 randomly generated Wa-
tercap captchas of dictionary words 8 characters in length;
2 passes of the algorithm corrected most of the previous
mistakes, resulting in 93% accuracy. A real solver or more
preprocessing would have done better.

5.2.6. Yahoo Captcha

Currently we have yet to confidently solve the Yahoo
captcha (see Figure 3(e)). Separating the non-textual lines
out of the captcha has proven to be difficult. As well the
warping of the characters makes character matching diffi-
cult as it is non-linear. Some success has been made by
others, who employ neural networks for segmentation and
character recognition [11].

6. Discussion

Based on our experience with the case studies we have
some recommendations and some comments about the gen-
eral security of captchas, and some future directions to in-
vestigate.

6.1. Suggestions for Captcha Design

If one still wants to use captchas for marginal security
(a security effort easily beaten by human effort), one should
attempt to make a captcha that is so difficult for programs to
solve that it serves as a deterrent. Difficult captchas are hard
to segment and hard to match. We have provided some rec-
ommendations that improve the difficultly of solving such
captchas:

Non-linear transformations: As explained before lin-
ear transforms are easily corrected and normalized by tech-
niques such as PCA. Other non-linear techniques are more
difficult to implement thus using non-linear transformations
can impede captcha solving.

Non fill flood-able letters: Characters that are filled
with a texture or a gradient will stop fill flood segmenta-
tion and often defeat thresholding. The more dynamic the
characters are color-wise, the harder they are to identify.

Use more characters: Use more characters and more
kinds of characters (uppercase, lowercase, numbers, punc-



tuation). If one can only match characters 90% of the time,
more characters will reduce total accuracy.

Limit the number of captcha attempts: Only allow a
limited number of captcha attempts at a certain rate.

Similar to the background: If the text is nearly indis-
tinguishable from the background it will be harder to match.

Non continuous characters: Characters that rely on
Gestalt principles like closely spaced dashes and dots will
defeat many of the common segmenters.

Overlapping characters: Characters that overlap or are
embedded in each other often cause a myriad of segmenta-
tion problems.

6.2. Ethical Considerations

Some readers may be concerned about the ethics of
captcha solving. Indeed, any research on security-related
technologies requires considering the ethical ramifications
of the work.

We consider that research on captcha solving is ethical.
First, we note that many captchas in current use are poorly
engineered and easily solved. The goal of captcha design is
to create a lock that is easily broken by a human but hard
to break by automated software. If we have shown that the
state-of-practice fails to meet these goals, then clearly more
work needs to be done. We note that we have also provided
a set of recommendations for captcha designers to improve
their techniques.

Second, we feel that the risk posed by publicizing this
work is small. The resources guarded by captchas are meant
to be given out, just not in bulk.

Third, captchas provide an unnecessary barrier to acces-
sibility by limiting automation. This means those who rely
on alternative means to use websites or software will be de-
nied access to these resources.

We hope that this paper demonstrates that current
captcha generation practices yield poor security and poor
locks, which can be relatively easily broken; they also un-
intentionally limit users of alternative browsing methods.

6.3. Future Work

We would like to evaluate more captcha solving tech-
niques and tools such as: hierarchical machine learners,
color subspace analysis, contour analysis, Fourier trans-
forms, etc. As well we wish to study how to reverse en-
gineer audio CAPTCHAs.

7. Conclusions

We have shown that the properties of 2D image genera-
tion enable us to identify common operations and patterns
used to generate captchas. These operations can be reverse
engineered from instances of the captchas themselves. The
combination and ordering of these image operations is often
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identifiable, enabling the underlying creation process to be
discovered, thus potentially allowing a family of captchas
to be solved or re-implemented.

We have confirmed the results of previous work that
captchas are often solvable, and we have also provided a
more general framework for reverse engineering a captcha
in order to either solve or re-implement it. We have solved
a number of captchas ranging in use, purpose, implementa-
tion and difficulty.

We have followed and provided a methodology for re-
verse engineering and solving families of captchas. We
also provided a tool-chest of algorithms for captcha solv-
ing, each illustrating its appropriateness.

We have provided recommendations for making better
captchas, based upon previous work, our own personal ex-
perience, and observations: use non-linear transformations.
We have also released the code and utilities that we used for
captcha solving[4].

Acknowledgements: Thanks to NSERC for a PGS D
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