
What’s hot and what’s not:

Windowed developer topic analysis

Abram Hindle and Michael W. Godfrey and Richard C. Holt

University of Waterloo

Waterloo, Ontario

Canada

{ahindle,migod,holt}@uwaterloo.ca

Abstract

As development on a software project progresses, devel-

opers shift their focus between different topics and tasks

many times. Managers and newcomer developers often

seek ways of understanding what tasks have recently been

worked on and how much effort has gone into each; for

example, a manager might wonder what unexpected tasks

occupied their team’s attention during a period when they

were supposed to have been implementing a set of new fea-

tures. Tools such as Latent Dirichlet Allocation (LDA) and

Latent Semantic Indexing (LSI) can be used to analyze com-

mit log comments over the entire lifetime of a project.

Previous work on developer topic analysis has leveraged

these tools to associate commit log comments with indepen-

dent topics extracted from these commit log comments. In

this paper, we use LDA to analyze periods, such as months,

within a project’s lifetime to create a time-windowed model

of changing development topics. We propose visualizations

of this model that allows us to explore the evolving stream

of topics of development occurring over time. We demon-

strate that windowed topic analysis offers advantages over

topic analysis applied to a project’s lifetime because many

topics are quite local.

1. Introduction

The questions that we wish to address deal with the past

and topics development that occurred in the past. What hap-

pened in the previous iteration of a project’s development?

What were the developers working on? What was the de-

veloper in the next cubicle working on? Which common

topics and issues were dealt with in the current release of

the software? What were the topics of the previous release?

Given the requirements agreed to at the start of the iteration

did our developers work on them? What else did they work

on?

We want to know about the topics of that programmers

encountered while developing a software project. We want

to know given a certain period of time, what were the pop-

ular topics being worked on during that period. We also

want to know if any of those topics occurred again, whether

before or after our current period. These topics could help

stakeholders determine what their coworkers were working

on, what were common issues, what requirements were be-

ing worked on, etc. In order to extract and evaluate these

topics we plan to rely on topic analysis.

Topic analysis extracts independant word distributions

(topics) from documents (commit log comments). Ideally

these extracted topics correlate with actual development

topics that the developers discussed during the development

of the software project. Topic analysis often allows for a

single document, such as a commit message, to be related

to multiple topics. Documents represented as a mixture of

topics maps well to commits to source code, which often

have more than one purpose. A topic represents both a word

distribution and a group of commit log comments that are

related to each other by their content. In this case a topic is a

set of tokens extracted from commit messages found within

a projects source control system (SCS).

In the past, topic analysis has been applied to the entire

history of a project [9, 14, 12], where-as this paper sug-

gests that most topics are local. For example, programmer

may be working on a story card, they might never deal

with that story card ever again. Thus that topic might be

quite relevant to a small window of time but never relevant

ever again. By applying topic analysis locally to a window

or an iteration, both the developers and managers might be

able to see what were the topics of development during that

iteration, rather than the whole project.

We want to see topics that are unique to a certain time

period, displayed across the time axis. Figure 1 illustrates

the kind of visualization we want to automatically generate.



Those topics that recur, or occur over a larger period are

plotted continuously. In our example we have titled each

topic with a word drawn from its word distribution. Given

a visualization, such as Figure 1, topic analysis can aid in

partitioning a project’s time-line into periods of developer

focus. By breaking apart an iteration into sets of topics and

trends (topics that recur), we may be able to recognize the

underlying software development process and maintenance

tasks from these commits.

In this paper we explore how topics shift over time in the

source control system (SCS) of a project, using several open

source database systems as examples. We analyze commit

log comments in each time window and we extract the top-

ics of that time window. We expect that topics will change

over time and the similarities and differences in these top-

ics will indicate developer focus and changes in developer

focus as it changes over time. We will show that most top-

ics are locally relevant, i.e., relevant to a single window of

time. Our windowing approach supports both local (single

window) analysis and global (entire history) analysis.

Our contributions include:

• We demonstrate that windowed topic analysis most

topics are local in scope, which would be missed by

a global topic analysis.

• We present a number of visualizations of topics and

their trends over time to aid communication and anal-

ysis of these topics and trends.

• We provide an exploratory case study using these tech-

niques on several open source database systems.

2. Background

We now define some terms that we will use in the rest

of the paper: A message is a block of text written by de-

velopers. In this paper, messages will be the CVS and Bit-

Keeper commit log comments made when the user commits

changes to files in a repository. A word distribution is the

summary of a message by word count. Each word distribu-

tion will be over the words in all messages. However, most

words will not appear in each message. A word distribution

is effectively a word count divided by the message size. A

topic is a word distribution, i.e. a set of words that form a

word distribution that is unique and independent within the

set of documents in our total corpus. One could think of

a topic as a distribution of the centroid of a group of mes-

sages. In this paper we often summarize topics by the top

10 most frequent words of their word distribution. A trend

is one or more similar topics that recur over time. Trends

are particularly important, as they indicate long-lived and

recurring topics that may provide key insights into the de-

velopment of the project.

In terms of clustering and finding topic distributions,

Latent Dirichlet Allocation (LDA) [2] competes with La-

tent Semantic Indexing (LSI) [11, 12], probabilistic La-

tent Semantic Indexing (pLSI) [2] and semantic cluster-

ing [7, 8]. These tools are used for document modelling,

document clustering and collaborative filtering. LDA at-

tempts to encode documents as a mixture model, a combi-

nation of topics. LDA is used in software engineering liter-

ature [14, 10]LDA extracts topics from documents such as

methods, bug reports, source code and files.

LDA, LSI and semantic clustering extract topic clusters

from the documents that are independent from one another.

LDA does not name these clusters but the clusters consist

of words whose relationship is often obvious to someone

familiar with the corpus. For our purposes, we could swap

LDA for LSI or semantic clustering and likely produce sim-

ilar results. Our data is posed as documents with word dis-

tributions (word counts per documents) and LDA extracts

distinct topics (clusters of words) from the documents.

2.1. LDA, LSI and Semantic Clustering

In order to infer or associate the expertise of an au-

thor with topics extracted from SCS, Linstead et al. pro-

posed an author-source-code model using LDA [10].This

model is essentially an extension of the author-topic (AT)

model [13], which associated authors and topics extracted

with LDA.

Lukins, Kraft and Etzkorn [14] use LDA to help bug lo-

calization by querying for documents that are related to a

bug’s topic. They used LDA to build a topic model and then

queried against it using sample documents. These queries

would indicate the proportion of topics that were associated

with the query and the related documents.

LSI is related to LDA and has been used to identify top-

ics in software artifacts for formal concept analysis and con-

cept location [11, 12]. Concept analysis aims to automati-

cally extract concepts from source code or documents that

are related to the source code. Concept location concerns

how high-level concepts relate to low level entities such as

source code. For example, when fixing a bug, how and

where do the concepts in the bug report map back to the

source code? Semantic Clustering has also been used for

similar purposes [7, 8] as it is similar to LSI.

Grant et al. [5] and have used an alternative technique,

called Independent Component Analysis [3] to separate

topic signals from software code.

Our technique differs from the previous techniques be-

cause we apply LDA locally to month-long windows of

commit log comments, whereas other approaches apply

LDA once to the entire project. Windowed topic analysis

allows us to examine the time-based windowing of topics

over its development history.



Imagine that we are analyzing one month of develop-

ment in a project where the main focus was on bug fixing,

adding a new GUI and documentation updates relating to

the system and the GUI. To use LDA we would get the word

distributions of each commit messages, pass them to LDA

and tell LDA to find some topics, in this case we in this case

we chose to concentrate on four topics. The four topics

it discovered would ideally be bug fixing, GUI, documen-

tation and other. These topics are essentially word distribu-

tions, for example the bug fixing topic would include words

like bug, fix, failure and ticket. The GUI topic would include

words like widget, panel, window, and menu. The docu-

mentation topic would include words like section, figure,

and chapter. The other topic would include words found

in topics generally independant of the other topics. If we

analyzed a commit of a bug fix it would probably contain

words like ticket and thus heavily associate with the bug fix

topic. A commit that was about user documentation regard-

ing the GUI would be associated with the documentation

topic and the GUI topic because it shared words from both

topics. Where as a topic dealing neither bugs, GUIs or doc-

umentation might be associated with the other topic. This

example demonstrates how LDA can associate one docu-

ment (a commit message) with more than one topic, and

how topics are related to documents via their word distribu-

tions. LDA also would discover these independant topics in

an unsupervised manner. All the end user has to do is name

the topic based upon the most frequent words in that topic,

which is a word distribution.

3. Preliminary Case Study

In our first exploratory pass we wanted to see if LDA

could provide interesting topics extracted from a real sys-

tem. We took the repository of MySQL 3.23, extracted the

commits, grouped them by 30 day non-overlapping win-

dows, and then applied LDA to each of these windows. We

asked LDA to make 20 topics per window and we then ex-

amined the top 10 most frequent words in that topic. We

chose one month because it was smaller than the time be-

tween minor releases but large enough for there to be many

commits to analyze. We chose 20 topics because past exper-

imentation showed that fewer topics might aggregate mul-

tiple unique topics while any more topics seemed to dilute

the results and create indistinct topics. We chose the top ten

most frequent words because sometimes a couple of com-

mon words dominated topics so we wanted to have enough

words to distinguish topics.

We found there were common words across topic clus-

ters, such as diffs, annotate and history; since these words

occur so often in the MySQL 3.23 messages. These words

probably should be viewed as stop words since occur across

so many topics, even though they are related to version con-

2000 Jul chmod

2000 Sep fixes benchmark logging Win32

2000 Nov fixes insert multi value

2001 Jan fixes Innobase Cleanups auto-union

2001 Mar bugfix logging TEMPORARY

2001 Jul TABLES update Allow LOCK

2001 Aug TABLES row version

2001 Sep update checksum merge

Table 1. Sampled topics from MySQL 3.23,

some with continuous topics. These tokens

were pulled from the top 10 most common

words found in LDA extracted topics. Each

token is a summary of one LDA generated

topic from MySQL 3.23 commit comments.

trol usage. There were notable transitional topics such as

in the first window the word BitKeeper appears because

MySQL adopted Bitkeeper for their source control system

yet in the following windows there were no mentions of

BitKeeper. RENAME also only appeared once in the first

window and never again. For each topic we tried to name

the purpose of the topic; to our surprise we found that even

with only a little familiarity with the code base that nam-

ing the topic was straightforward. To find the purpose of a

commit we looked at the most frequent words in the word

distribution of the topic and tried to summarize the topic,

then we looked into the commits related to that topic to in-

vestigate if we were correct; since the commit messages and

the word distribution share the same words the purpose ex-

tracted from commit comments was usually accurate.

A sampling of the notable topic words is displayed in

Table 1, we chose topics that we felt confident we could

name. To name each topic we selected a term that seemed

to best summarize that topic. After extracting these topics,

we attempted to track the evolution of topics by visualizing

the topics and joining similar topics into trends. Figure 1

displays a manually created plot of the extracted topics in

Table 1.

4. Methodology

Our methodology is to first extract the commit log com-

ments from a project’s SCS repository. We filter out stop

words and produce word distributions from these messages.

These distributions are bucketed into windows, and then

each window is subject to topic analysis and then we an-

alyze and visualize the results. Figure 2 depicts the general

process for processing and analyzing the commit messages.

4.1. Extraction of Repositories and Docu-
ments



chmod

Win32

benchmark

Fix

logging Typo

insert_mult i_value

innobase

Cleanup

auto-union TEMPORARY

logging

upda te

al low

Tables

LOCK

row

version

upda te

Checksum

Merge

20 0 0

Jul

2 0 0 0

Sep

2000

Nov

2001

Ma r

2 0 0 1

Jan

2001

Jul

2 0 0 1

Aug

2001

Sep

Figure 1. Example of topics extracted from MySQL 3.23. This is the kind of plot we eventually want

to illustrate: named topics and topic trends. The horizontal axis is time by month examined. The

vertical axis is used to stack topics that occur at the same time. Longer topics are topics which
recur in adjacent windows. Colors are arbitrary.

We mirrored the repositories and their revisions

using software such as rsync [15], CVSsuck [1],

softChange [4], and bt2csv [6]. softChange pro-

vided a general schema for storing revisions and grouped

CVS revisions into commits. CVSsuck and rsync mirrored

CVS repositories while bt2csv mirrored web accessible Bit-

Keeper repositories.

The documents we are analyzing are the commit log

comments, i.e. the comments that are added when revisions

to the project are committed. For each commit log com-

ment, we count the occurrence of each word in the message,

remove stop words, and then produce word distributions for

each message. These distributions are then normalized by

the size of the message, each count was divided by the total

number of tokens. After all messages are processed the dis-

tributions are extended to include all words from all of the

distributions.

4.2. Windowed Sets

Given all messages, we group the messages into win-

dows. We could use overlapping windows, but in this pa-

per we use non-overlapping windows of a set time unit be-

cause it simplifies analysis. One could overlap the windows,

which would increase the likelihood of trends, but for this

study we lacked the space and were more concerned if top-

ics ever repeated, overlapping might skew that result. Win-

dowing by time allows for many levels of granularity. We

used one month as the length of our time windows. While

we could use different window lengths for this study we

think that a month is a sizable unit of development, which

is large enough to show shifts in focus, but coarse enough

not to show too much detail. Choosing a month as the win-

dow provided us with enough documents to analyze.

4.3. Apply Topic Analysis to each Window

Once we have our data windowed, we apply our Topic

Analysis tool to each window and extract the top N topics.

We used 20 topics in our case studies because we experi-

mented before and that 20 was about all we can handle be-

fore too many topics seemed too indistinct from each other

to differeniate.

Our Topic Analysis tool is an implementation of LDA,

but we could have used other similar tools like LSI, but

previous work showed more promising topic analysis re-

sults with LDA. We note that this step is a slow one, as exe-

cuting even one instance of LDA involves significant com-

putation, and we perform LDA once per window. Figure 2

shows how LDA is applied to a set of messages, and how

the topics are extracted and related to the messages.

4.4. Topic Similarity

Once we have our topics extracted for each window, we

analyze them and look for topics that recur across windows.

We then cluster these topics into trends by comparing them

to each other using topic similarity.

Our input for topic similarity is the top 10 most com-

mon words of each topic. Each topic is compared to each

other topic in the system, given a certain threshold of top 10

word similarity, such as 8 out of top 10 matching words. 10

words were chosen because often people care about top 10

comparison and it allowed for some common words to ex-

ist but not cause topics to match so closely. We then apply

the transitive closure on similar topics to this topic similar-

ity matrix; this is similar to modelling topics as nodes and

similarity as arcs, then fill flooding along the similarity arcs

until we have partitioned the topics into clusters of similar



Figure 2. How commits are analyzed and aggregated into Topics and Trends. Commits are first

extracted, then abstracted into word counts or word distributions. These word distributions are then
given a topic analysis tool like LDA. LDA finds independent word distributions (topics) that these
documents are related to.

topics. Figure 3 illustrates clustering of topics by topic sim-

ilarity. These clusters of topics are called trends. A trend is

probably interesting if it contains more than one topic.

This technique has weaknesses in that nodes that are a

few neighbors away in similarity might not share any simi-

lar words. We use this measure because we want to be able

to color or highlight topics that are related to each other and

track them throughout time.

Once we have determined our similarity clusters we can

choose to analyze and to plot the topics.

4.5. Visualization

Visualization is an integral part of our topics analysis

which allows us to quickly explore the topics and trends

of a project. Visualization provides us with a framework

that allows us to visually answer many questions about: the

spread of topics, how many topics were independant per pe-

riod, what the repeating trends were, if the trends dominated

or did local topics dominate, how continuous trends were,

and what the topic text in topic, trend, or period was. Since

we have multiple questions to answer we have multiple vi-

sualization, described within this section, that help answer

different questions.

We have devised several techniques for visualizing these

topics and trends. For all of these techniques if we find

trends that have continuous segments, then we plot those

segments as joined horizontally across time. One technique

is the compact-trend-view, shown in Figure 4 and Figure 5,

that displays trends as they occur on the time-based x-axis

Figure 3. Topic similarity demonstrated by

clustering topics by the transitive closure

(connectedness) of topic similarity. Nodes

are topics and arcs imply similarity. Similar-

ity could be a measure such as topics share

8 out of 10 top ten words.

(placement along the y-axis is arbitrary). Another technique

is the trend-time-line, shown in Figure 6, each trend gets it

own distinct y-value, while the x-axis is time; these topics

are then each plotted on their own line across time as they

occur. Our final technique is the trend-histogram, shown

in Figure 7 where we plot each trend on its own line but

stack up the segments of the trend, much like a histogram.

Each topic has its top 10 words listed in descending order of



Figure 4. Compact-trend-view shows topics per month for MaxDB 7.500. The x-axis is time in months,
the Y axis is used to stack topics occurring at the same time. Trends that are continuous are plotted
as continuous blocks. The top 10 words in the topics are joined and embedded in box representing
the topics. No stop words were removed. The gap in the middle is a period where no development
took place.



frequency from top to bottom, this text is embedded inside

the topic’s box. A trend has all of its topic text embedded

side by side within the same trend box.

The compact-trend-view (Figure 4) attempts to show all

topics and trends at once across time in a compact view that

could fit on one page. It tries to give a compact summary

of the topics and trends across time. The compact-trend-

view (Figure 4) tries to sink the larger trends to the bot-

tom. Once the larger trends are stacked we fill in the gaps

with the smaller trends in the same window, and then stack

the smaller trends on top. Although there is a chance that

gaps will be left due to non-optimal stacking, in practice

there are lot of small trends (90% of all trends contain 1

topic) that fill in these gaps quickly. Different instances of

the same trend share the same color; apart from that, the

color of trends is randomly chosen and color similarity is

not meaningful. The compact-trend-view is convenient be-

cause it shows all of the topic information, as shown by the

zoomed-in view of MaxDB 7.500’s compact-trend-view in

Figure 5. The compact-trend-view makes repeating contin-

uous trends easy to pick out, although discontinuous trends

are harder to spot, and provides a general summary of the

topics within a project.

The trend-time-line (Figure 6) attempts to show a sum-

mary of trends seperated from single topics. This view

shows how a trend persists across time, which aids time-

wise analysis of trends. The trend-time-line displays re-

peating trends more clearly by dedicating a horizontal line

for trend segments belonging to one trend. Therefore if a

trend contains discontinuous segments then the segments

appear on the same line. However, the least common trends

need to be pruned away or the view will be very long. Thus

the trend-time-line view is used to analyze trends across

time.

The trend-histogram (Figure 7) attempts to show a count

of how often a trend reoccurs and how many topics are re-

lated to a trend. It is meant to show the distribution of trends

by their size in topics and time-span. The trend-histogram

superficially resembles the trend-time-line. However, in this

view the trends are plotted together by stacking to the left

of their row, thus time information is lost. The trends are

ordered by the number of topics in the trend. The trend-

histogram shows the count of instances of a trend and thus

indicates which trends occur the most. Unfortunately due to

the large number of topics (approximately N topics multi-

plied by M periods), given the allotted space, it is often best

to crop off the trends with only one topic (1% to 10% of the

total topics), otherwise the tail is long. The trend-histogram

summarizes the distribution of trends ordered by size.

All of these visualization combine to enable an analysis

of trends and topics. Some views like the compact-trend-

view enable an analysis of local topics while the trend-

histogram and trend-time-line focus more on trends. We

Figure 5. A zoomed in slice of compact-trend-
view of topics per month of MaxDB 7.500.
The topic text is visible in each topic box.

Trends are plotted across time continuously.

used these visualizations to analyze the database systems

that we discuss in the following results section.

5. Results

We applied our methodology to multiple database sys-

tems that we extracted. To analyze these extracted reposito-

ries we used: Hiraldo-Grok, an OCaml-based variant of the

Grok query language; Gnuplot, a graph plotting package;

lda-c, a LDA package implemented by Blei et al. [2]; and

our trend plotter, implemented in Haskell.

We applied our tools and visualizations to the reposito-

ries of several open source database systems: PostgreSQL,

MaxDB and Firebird. The total number of commits ana-

lyzed was over 66000.

5.1. PostgreSQL

When we examined PostgreSQL’s history from 1996 to

2004, which include over 20000 commits. We did not find

many trends with two or more topics, using a similarity of

7/10. 7/10 was chosen because it preserved indepedant

topics but seemed to be a borderline threshold value where

more serious trends started to appear.

Those trends that we did find were not very large, lasting

only 3 months at most. The first and second largest trends

were dedicated to the work of two external developers: Dal

Zotto, Dan McGuirk. The fifth largest trend related to work

by PostgreSQL developer D’Arcy. Other topics of the larger

trends were changes to the TODO, and time string format-

ing topics relating to timezones.

If we kept the stop words we found that the large trend

consisted mostly of stop words and non-stop words such as

patch, fix, update. By decreasing the similarity constraint

to 1/2 similarity the largest most common trend, which



Figure 6. Trend-time-line: Trends plotted per

month of MaxDB 7.500. Time in months are

plotted along the x-axis, each row on the y-

axis is associated with a trend ranked by size

in descending order

Figure 7. The top part of a trend-histogram of

MaxDB 7.500, ordered by topic occurrence.

X-axis determines the number of continuous

months of a trend. Trends are ranked by the

number of topics that a trend contains in de-

scending order.

stretched across the entire development, contained these

same words (patch, fix, update). The second largest trend

mentions Dal Zotto, while the third largest trend mentions

the [PATCHES] mailing-list and the names of some patch

contributors. Other repeating topics refer to portability with

Win32, Central Europe Time (CEST) from email headers,

issues with ALTER TABLE and CVS branch merging (CVS

does not record merges explicitly).

5.2. Firebird

We tracked Firebird from August 2000 to January 2006,

we extracted comments from 38000 commits. We found

that with a similarity of 7/10 Firebird had far more contin-

uous and recurring trends than PostgreSQL. The first large

trend was segmented across time but explicitly references

one author carlosga05 and words like added, fixed and

updated.

The second largest trend was during the month of March

2001. It was related to incremental building and the porting

of developer Konstantin’s Solaris port of the Firebird build

files. The third largest trend was about JDBC, which is how

Firebird and Java communicate. Other trends included top-

ics regarding AIX PPC compilation, updating the build pro-

cess, internationalization and UTF8, Darwin build support

and bug fixing.

Topics that were not trends but appeared to be interest-

ing were mostly external bug fixes submitted to the project.

In these cases, the developers would express gratitude in

their commit log comments, such as “Thanks, Bill Lam”.

Other easily discernible topics included tokens and phrases

such as: compiler workarounds, nightly updates, packets

and MSVC++.

5.3. MaxDB 7.500

The plots we produced of MaxDB 7.500 were unlike

those of the other systems, as there was a period where

no development occurred and thus there were no topics or

trends whatsoever (see the gap in Figure 4). Using a topic

similarity of 7/10 we evaluated MaxDB 7.500. MaxDB

7.500’s first period was from June 2004 to January 2005,

and its second period was from June 2005 to June 2006.

There were a total of 8600 commits analyzed.

The largest common trend has references to build system

files like SYSDD.punix and MONITOR.punix. This

trend is partially displayed at the top of the zoomed in

compact-trend-view (Figure 5) and at the top of the trend-

histogram (Figure 7). Other tokens mentioned are Sutcheck

v1.09 (the prefix SUT stands for Storable Unit Type),

Sutcheck is a tool that would also automate check-ins us-

ing a Perforce SCS tool, which was exporting check-ins to

CVS.



The second largest common trend seems to be a side ef-

fect of an automated check-in that is annotated as “implicit

check-in” (see the bottom of Figure 5). These were check-

ins that were produced when importing changes from an

external Perforce repository.

The third most common trend, seen on Figure 6, seemed

to include tokens related to operating system support, such

as Linux and Windows, as well as architecture support,

AMD64 and Opteron. The word problem was common

among all of these trends. This trend seemed related to

the smaller fourth largest trend that had tokens AMD64 and

Windows. This example shows that topics can overlap but

still not match via our similarity measure.

Bug tracker URLs dominated unique topics during some

months. For instance in the last month of MaxDB 7.500 de-

velopment every topic contained 1 unique Bug tracker URL,

this pattern did not occur in the previous month. We inves-

tigated the revisions and we found that developers were ref-

erencing the bug tracker more during the last month. If the

topics of one month were about unique bug tickets being ad-

dressed, the global topic analysis would probably miss this,

yet these bug tickets were the focus of development for that

month but not necessarily globally relevant.

The query optimizer was a topic that recurred during

MaxDB’s development. In our plots, topics that mention

optimizer occur four times, yet in the global-trend-view

(Figure 8) it is not in any of the topics. A query opti-

mizer is an important component of an DBMS, but as we

have shown it does not appear as a topic on its own. We

tried to remove words to see if we could get an optimizer

topic. After removing stop words and then two of the most

common words, the global analysis finally had a topic with

optimizer in its topic ten words. Our analysis shows that

optimizer was important but it had been obscured by the

global topic analysis, which used the entire history of mes-

sages, but would have been noticed using the more local

topic analysis such as our windowed topic analysis, which

used a window of messages.

We noticed that commits that mentioned PHP occurred

two thirds less frequently than commits that mentioned Perl,

but Perl-related topics appeared in the global static topics

for MaxDB while PHP-related topics did not. Our local

topic analysis mentioned PHP in 5 different topics, yet only

mentioned Perl in four different topics and one global topic.

Perhaps this is because there was a cluster of Perl men-

tions during one month while the PHP mentions were more

spread out.

Just about every topic included the words Perforce and

Changelist, so we added them to the stop words list. As a

result, longer trends were shortened and sometimes the total

number of topics found per month were reduced. Evaluat-

ing different similarity thresholds showed that by removing

common words one reduces the general similarity of topics.

That said, the larger topics were still clearly apparent. Thus

if more relevant stop words are added one should tune the

topic similarity parameters to handle these changes.

5.4. Compare with topics over the entire
development

Previous work on topic analysis that employed LSI and

LDA typically extracted a specified number of topics from

the entire development history of a project and then tracked

their relationships to documents over time, we call this

global topic analysis.

We carried out global topic analysis on MaxDB 7.500

and compared this against our windowed topic analysis. To

produce Figure 8, we extracted 20 topics and plotted the

number of messages per month that were related to that

topic. One topic would often dominate the results, as shown

in the third row of Figure 8, while the other topics did not

appear as often.

This approach seems reasonable if most of the extracted

topics are of broad interest during most of the development

process. However, it may be that some topics are of strong

interest but only briefly; in such a case, a windowed topic

analysis gives a much stronger indication of the fleeting im-

portance of such topics, and can help to put such a topic into

its proper context.

If we approach the difference of global topic analysis

and windowed topic analysis via common tokens we can

see that common tokens tend to dominate both results. For

MaxDB 7.500, our local topic approach netted us topics that

contained these relatively important and common words,

which did not occur in the topics produced by global topic

analysis: UNICODE, DEC/OSF1, ODBC, crash, SQLCLI,

SYSDD.cpnix, backup, select, make, memory, view, and fi-

nally debug. ODBC is an important topic token, because

it often determines how databases communicate with soft-

ware. None of these tokens were part of the global topic

analysis topics, but they were part of 566 commits (6% of

the entire system) to MaxDB 7.500. These tokens were part

of 87 out of 520 (26 months, 20 topics per month) of our

locally generated topics.

Even with our liberal topic similarity metrics that pro-

duced both long and short trends, we showed that there are

only a few trends in a repository that recur. Since so few

trends recur and so many trends appear only once this sug-

gests that global topic analysis might be ignoring locally

unique topics.

The utility of global topic analysis is questionable if the

value of information decreases as it becomes older. Perhaps

older trends will dominate the topic analysis. Windowed

localized topic analysis shows what are the unique topics,

yet seems to give a more nuanced view of the timeliness of

the important topics.



Figure 8. MaxDB 7.500 topics analyzed with

global topic analysis, 20 topics (each row)

and their document counts plotted over the

entire development history of MaxDB 7.500

(26 months). The shade of the topic indi-

cates the number of documents matching

that topic in that month relative to the number

of documents (white is most, black is least).

6. Validity Threats

In this study we are explicitly trusting that the program-

mers annotate their changes with relevant information. We

rely on the descriptions they provide. If the language of

check-in comments was automated we would be analyzing

only that.

We compared topics using the top 10 tokens, this ap-

proach could be throwing data away and might not be as

useful as determining the actual distance between two word

topic distributions.

Adding and removing stop words produced different re-

sults. Our choice of stop words could be biased, and could

affect the results.

The number of commits per month is inconsistent as

some months have many changes while other months have

almost none.

7. Conclusions

We proposed and demonstrated the application of win-

dowed topic analysis, that is, topic analysis applied to com-

mit messages during periods of development. This ap-

proach differs from previous work that applied topic analy-

sis globally to the entire history of a project without regard

to time. We showed that many topics that exist locally are

relevant and interesting yet would often not be detected via

global topic analysis. We identify recurring topics with a

topic similarity measure that looks for topics which recur

and mutate repeatedly throughout the development of the

software project.

Windowed topic analysis demonstrated its value to hi-

light local topics and indentify global trends. This was

shown in our case study of MaxDB 7.500. Global topic

analysis missed important topics such as ODBC while win-

dowed topic analysis identified them.

We presented several visualization techniques that fo-

cused on different aspects of the data: temporality of trends,

trend size, and a compact-trend-view. The compact-trend-

view shows much more information than the views that

global analysis could show, it indicates how focused a pe-

riod is by the total number of topics, as well, it shows topics

by similarity so one can track trends across time. Our trend-

histogram immediately highlights and measures the size of

trends while our trend-time-line view shows how a topic re-

occurs over time. These visualizations help us get a general

feeling about the common and unique topics that developers

focus on during development. If implemented interactively

an user could easily zoom in and query for a summary of a

topic or trend.

7.1. Future Work

We want to explore parameters more across multiple

projects, what motivates the need for more or less topics,

can we find a good estimate of a good choice of number

of topics to evaluate. We want to investigate the effects

of overlapping windows on this analysis, do they make the

trends too long? Do they highlight some trends unnecessar-

ily or are they more because they are time agnostic.

Another avenue of future work is automatic topic la-

belling. Given a word distribution we should be able to

automatically select a word or term that describes that dis-

tribution. Potential external sources of topic names include:

software engineering taxonomies, ontologies and standards.

References

[1] T. Akira. Cvssuck - inefficient CVS repository grabber.

http://cvs.m17n.org/ akr/cvssuck/.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet

allocation. J. Mach. Learn. Res., 3:993–1022, 2003.

[3] K. Delac, M. Grgic, and S. Grgic. Independent comparative

study of pca, ica, and lda on the feret data set. International

Journal of Imaging Systems and Technology, 15(5):252–

260, 2006.

[4] D. M. German, A. Hindle, and N. Jordan. Visualizing the

evolution of software using softchange. In Proceedings



SEKE 2004 The 16th Internation Conference on Software

Engineering and Knowledge Engineering, pages 336–341,

3420 Main St. Skokie IL 60076, USA, June 2004. Knowl-

edge Systems Institute.

[5] S. Grant, J. R. Cordy, and D. Skillicorn. Automated con-

cept location using independent component analysis. In 15th

Working Conference on Reverse Engineering, 2008.

[6] A. Hindle, M. Godfrey, and R. Holt. Release Pattern Discov-

ery via Partitioning: Methodology and Case Study. In Pro-

ceedings of the Mining Software Repositories 2007. IEEE

Computer Society Press, May 2007.

[7] A. Ko, B. Myers, and D. H. Chau. A linguistic analysis of

how people describe software problems. Visual Languages

and Human-Centric Computing, 2006. VL/HCC 2006. IEEE

Symposium on, pages 127–134, Sept. 2006.

[8] A. Kuhn, S. Ducasse, and T. Girba. Enriching reverse engi-

neering with semantic clustering. Reverse Engineering, 12th

Working Conference on, pages 10 pp.–, Nov. 2005.

[9] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.

Mining concepts from code with probabilistic topic models.

In ASE ’07: Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineer-

ing, pages 461–464, New York, NY, USA, 2007. ACM.

[10] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.

Mining eclipse developer contributions via author-topic

models. Mining Software Repositories, International Work-

shop on, 0:30, 2007.

[11] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An in-

formation retrieval approach to concept location in source

code. Reverse Engineering, 2004. Proceedings. 11th Work-

ing Conference on, pages 214–223, Nov. 2004.

[12] D. Poshyvanyk and A. Marcus. Combining formal concept

analysis with information retrieval for concept location in

source code. International Conference on Program Com-

prehension, 0:37–48, 2007.

[13] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The

author-topic model for authors and documents. In AUAI

’04: Proceedings of the 20th conference on Uncertainty in

artificial intelligence, pages 487–494, Arlington, Virginia,

United States, 2004. AUAI Press.

[14] L. H. E. Stacy K. Lukins, Nicholas A. Kraft. Source code

retrieval for bug localization using latent dirichlet allocation.

In 15th Working Conference on Reverse Engineering, 2008.

[15] A. Tridgell, P. Mackerras, and W. Davison. Rsync.

http://www.samba.org/rsync/.


