
Orchestrating Your Cloud-orchestra

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
abram.hindle@ualberta.ca

ABSTRACT
Cloud computing potentially ushers in a new era of com-
puter music performance with exceptionally large computer
music instruments consisting of 10s to 100s of virtual ma-
chines which we propose to call a ‘cloud-orchestra’. Cloud
computing allows for the rapid provisioning of resources,
but to deploy such a complicated and interconnected net-
work of software synthesizers in the cloud requires a lot
of manual work, system administration knowledge, and de-
veloper/operator skills. This is a barrier to computer mu-
sicians whose goal is to produce and perform music, and
not to administer 100s of computers. This work discusses
the issues facing cloud-orchestra deployment and o↵ers an
abstract solution and a concrete implementation. The ab-
stract solution is to generate cloud-orchestra deployment
plans by allowing computer musicians to model their net-
work of synthesizers and to describe their resources. A
model optimizer will compute near-optimal deployment plans
to synchronize, deploy, and orchestrate the start-up of a
complex network of synthesizers deployed to many comput-
ers. This model driven development approach frees com-
puter musicians from much of the hassle of deployment and
allocation. Computer musicians can focus on the configura-
tion of musical components and leave the resource allocation
up to the modelling software to optimize.

Author Keywords
cloud computing, cloud instruments, cloud-orchestra

1. INTRODUCTION
With the flick of a switch your lights turn on. With the
click of the mouse your computation can turn on too. Cloud
computing promises utility computing: computing treated
as a utility and billed like a utility – even provisioned like a
utility such as electricity [5]. This demand-based dynamic
provisioning of virtual machines is what makes it possible
for cloud providers to allow clients to scale computation to
their needs. Cloud computing promises much flexibility but
these promises are often wrapped in intense complexity [5].
The benefits of using cloud computing are clear: one does

not need to own the hardware to run their software; cloud
computing enables experimentation with large allocations of
resources for short periods of time; cloud service providers

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.

Copyright remains with the author(s).

often have reasonable bandwidth; performers who exploit
cloud services avoid bringing lots of computer equipment
to a performance venue [10]; networked computers enabled
centralized and decentralized collaborative instruments [12].
The cloud has been leveraged for computer music perfor-

mance [10]. While the authors succeed at a demoing the
feasibility of cloud instruments, they also demonstrated the
complexity and frustration of organizing and orchestrating
synthesizers in the cloud. Organizing these synthesizers re-
quires much knowledge about cloud computers, networking,
systems administration, Unix-like systems, shell scripting
and programming. Essentially such a prerequisite knowl-
edge is a large barrier to the adoption of cloud computing
for computer music performance.
Requiring a computer musician to play the role of sys-

tem administrators or developer/operators is too high a
barrier. This work seeks to enable the generation and de-
ployment of a cloud-orchestra. We define a cloud-orchestra
as a network of software synthesizers deployed to multiple
networked computers (usually on a cloud). We envisage
cloud-orchestras to be composed of multiple virtual ma-
chines running software synthesizers connected together by
network audio links.
Deployment is an ardous task that requires much net-

working, programming, and shell scripting knowledge – un-
less it is automated. Systems can be built that take both a
model of a cloud-orchestra and a list of resources as input to
produce a coherent, runnable deployment plan. Once the
deployment plan is generated the computer musician can
deploy/start a cloud-orchestra upon request.
Model Driven Development (MDD) [9] allows for the rapid

modelling (defining) and generation of runnable code that
implements such a model. We propose to abstractly model
a cloud-orchestra and rely upon model optimizers to fit such
a synthesizer network near-optimally to available resources
such as cores, virtual machines, etc.
This work addresses: the di�culty of configuring and de-

ploying a cloud-orchestra; and the e�cient allocation of re-
sources for cloud-orchestras. These problems motivate the
following contributions described in this paper:

• Propose and define cloud-orchestras;
• Define a model of cloud-orchestras;
• Argue for a declarative model driven development ap-

proach to cloud-orchestras;
• Provide a prototype that defines, generates, and de-

ploys a cloud-orchestra;
• Address cloud-orchestra deployment abstractly and con-

cretely.

2. PREVIOUS WORK
Cloud-orchestras can employ model driven development,
cloud computing, cloud deployment, networked audio, net-

121

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

worked computer music, networking latency, streaming tech-
nology and networked orchestras.
Model Driven Development (MDD) and Model Driven

Engineering [9] are methods of specifying software and sys-
tems as models and then relying on model checkers, and
model generators to generate skeletal stub code, or fully
working systems. Model Driven Development is often used
in fields which have computation but are limited to certain
problem domains, often allowing end-users to customize a
system without much programming experience.
Barbosa et al. [3] surveyed networked computer music

since the 1970s. This body of work lead to the jack [7] low
latency sound server, netjack [7] and Jacktrip [6]. The Net-
jack and Jacktrip [6] send synchronized jack audio streams
over a LANs and the internet.
One reason to employ cloud computing in a computer

music instrument is to provide user interfaces to mobile de-
vices over the web, thereby allowing audience participation.
Oh et al. [13] demonstrate the use of smartphones in audi-
ence participatory music and performance. Jordà [11] de-
scribes many patterns of collective control and multi-user
instruments as well as the management of musicality of in-
struments. Cloud computing was indirectly used by Dahl et
al. [8] in TweetDreams. TweetDreams allows an audience to
participate with a musical instrument by tweeting at a twit-
ter account that aggregates audience tweets using Twitter’s
own message delivery cloud. These recommendations would
be valuable for anyone creating an audience-participatory
instrument with a cloud-orchestra.
Jesse Allison et al. [1, 2] describe the Nexus framework

to allow for user-interface distribution via the web. While
Weitzner et al. [17] built massMobile that allows the cre-
ation of a web interface to interact with Max/MSP via the
web. Both works emphasize the value of HTML5 interfaces
as they are both standardized and ubiquitous. Exposing
these user-interfaces from a cloud-orchestra would prove in-
valuable as it would allow fine grained control of a synthe-
sizer running on a VM.
Cloud-orchestras share many of the same problems and

di�culties as laptop orchestras [15, 14]. Laptop orchestras
are composed of laptop synthesizer users who are connected
together over OpenSound Control or jack. The main dif-
ference between a laptop orchestra and a cloud-orchestra is
that a cloud-orchestra doesn’t necessarily have more than
1 performer or musician, much of the orchestra is under
computer control.
Lee et al. [12] describe many opportunities for live net-

work coding. They argue that networked live coded music
allows for interesting mixes of centralized and decentralized
synthesis and control – all amenable to cloud-orchestras.
Ansible, Chef and Puppet [16] are common configuration

management and automation framework tools. These tools
tend to be used to install software, synchronize software,
bring up servers and automate tasks. In this research we
use Ansible to run commands on multiple VMs.
Beck et al. [4] first used grid-computing and generated

deployment plans for interactive performances. Hindle [10]
describes using the cloud [5] for computer music and the is-
sues one encounters, exporting audio from the cloud. Cloud-
orchestras su↵er from this problem, in the cloud no one can
hear unless you stream. This work seeks to elaborate on the
prior work and focuses more on synthesizers in the cloud.

3. MODEL OF A SYNTH NETWORK
The proposed solution to the cloud-orchestra deployment
problem is to leverage model driven development to define
a cloud-orchestra. A definition of a cloud-orchestra is a

model. This model may be optimized by model optimiz-
ers which search for an e�cient configuration. Once such
a configuration has been found, templates can be executed
to generate a working deployment plan. This deployment
plan can be executed and the cloud-orchestra will be in-
stantiated, configured, and executed eventually producing
music in near real-time streamed over a network.
Cloud-orchestras and their potential resources can be mod-

elled and these models can be used to develop a deployment
plan to deploy a cloud-orchestra on resources available to
you. The fundamental problem of a declarative model of a
cloud-orchestra is how to match a set of resources (hosts)
with the workload (cloud-orchestra) proposed.
The inputs to this problem are a set of usable host vir-

tual machines and a synthesizer network model (the cloud-
orchestra). The model we use is partially described in the
model package of Figure 2. Synthesizers are modelled as
SynthModules or modules. An instance of a module is a
SynthBlock. The distinction is similar to the distinction
between a class and an object. The SynthBlock has a Syn-
thModule, a name and a host will be associated with it.
These Synthblocks are collected within a SynthDef, which
is the definition of the entire cloud-orchestra. The SynthDef
also contains connections that join the inputs and outputs
of a SynthBlock together. In the next section we formalize
this model for the purposes of optimization.

3.1 Modeling and optimization
In general one can model the resource allocation problem as
a cost minimization problem.One can formalize this prob-
lem as an Integer Linear Programming problem, and po-
tentially minimize it using tools such as GNU Linear Pro-
gramming Kit 1. This formulation enables search methods
to produce optimal or near-optimal configurations.
Regardless, given available resources or a resource alloca-

tion one must allocate synthesizers (synthBlocks) to hosts.
For a cloud-orchestra deployment one should consider opti-
mizing for:

• Locality: the more synths communicating on the same
VM the less latency and network bandwidth required.

• CPU load: too many synths will overload a CPU ham-
per near-realtime performance.

• Remote Links: The number of remote links between
synths should be reduced, di↵erent allocations of synths
to di↵erent hosts can increase or decrease the number
of remote links.

• Bandwidth: network bandwidth use decreases as lo-
cality of synths increases and the number of remote
links decreases.

Other costs could be considered such as the monetary
cost to provision cores, VMs, memory, and bandwidth. One
could add another level of modeling to model provisioning
to determine the minimum resources required to deploy a
cloud-orchestra.
The optimizer’s main task is to take the available hosts

and allocate the synthesizer instances (synthBlocks) to these
hosts based on the cores and bandwidth available. The al-
location should be optimal in the sense that it increases
locality and reduces the number of remote links. Reducing
remote links limits the potential latency.
Given synthBlocks from S, connections can be repre-

sented as a set of edges Cs,t from C : S ⇥ S where s and t
are synthBlocks and a connection from s to t is represented
by set membership. The UML in Figure 2 is labelled with
our mathematical definitions.

1https://www.gnu.org/software/glpk/

122

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

[
 {
 "name":"VagrantHost",
 "host":"172.17.0.4",
 "username":"ubuntu",
 "cores":1,
 },
 {
 "name":"DockerHost",
 "host":"172.17.0.5",
 "username":"ubuntu",
 "cores":2,
 }
]

slaves.json

1) Define resources 2) Define and deploy cloud orchestra 3) Generate deployment plan

4) Run deployment plan 5) Connect to Cloud Orchestra 6) Use Cloud Orchestra

Web User
Interface

Generated
Deployment

Plan

Deploying to hosts
and running Synths

Connecting audio
from cloud to Jack

clicking here
will execute

steps 3-5

Figure 1: Example of defining and deploying a cloud-orchestra using the concrete implementation synth-

cloud-orchestra.

This synthDef model tuple (H,S,C,A) can formalized
and optimized using the following definitions and mappings:

• H is the set of hosts.
• S is the set of SynthBlocks.
• C : S ⇥ S is the set of connections between synth-

Blocks. Cs,t where s and t are synthBlocks represents
a connection between s and t. This set is constant
throughout optimization.

• A : H ⇥ S is the allocation of synthBlocks to hosts
where Ah,s, h 2 H and s 2 S, represents an allocation
of a synth s to a host h. This set is the set to be
optimized.

• cores : H 7! Z+ is a function returning the number of
cores of a host.

• blocks : H 7! Z = |{Ah,s|s 2 S}| returns the number
of synthblocks allocated to the host in A.

• overflow : H 7! Z = max(0, blocks(h) � cores(h))
The number of allocated synthBlocks beyond the cores
of the host.

• overflowall =
P

h2H overflow(h) The number of over-
flowing hosts for the whole network.

• connections : H 7! Z = |Cu,x| + |Cx,u| where x 2 S
and u 2 {s|s 2 S ^Ah,s}. The number of connections
to/from synthBlocks of host h.

• locals : H 7! Z = |{Cs,t|Ah,s ^ Ah,t ^ Cs,t}| The
number of connections internal to host h.

• remotes : H 7! Z = connections(host) � locals(h)
The number of remote connections to and from host
h.

• remotesall =
P

h2h remotes(h) The sum of remote
connections over all hosts.

An optimizer for this problem should be a function that
at least takes in a current configuration optimize : (H ⇥
S ⇥ C) 7! (A : H ⇥ S) and produces a host to synthBlock
mapping A. When implemented it could potentially take a
partial initial allocation A if needed.
The goal of the optimize function should be to minimize

overflowall first and then to minimize remotesall. A syn-
thDef that needs more resources than are available is a con-

cern. A tuning parameter ↵ (↵ 2 R) can be used to indi-
cate the importance of overflowall versus remotesall. An
optimal optimizer function will meet the requirements of
Equation 1 below:

optimize(H,S,C) = argmin
A

f(A)

f : A 7! R = ↵ · overflowall + remotesall
(1)

Naively one could generate all permutations of the legal
sets A, matching SynthBlocks and Hosts, and rank them by
function f described in Equation 1, choosing the minimum
result. There are likely more e�cient methods of determin-
ing optimal configurations, such as employing linear pro-
gramming. At this point, once an optimal or near-optimal
configuration of hosts and synthBlocks is found, the deploy-
ment can be generated or executed.

3.2 Deploying a synth network
In this section we describe a general process to start and
deploy a cloud-orchestra. Any concrete implementation will
follow this process. After generating all the code necessary
to deploy and run a cloud-orchestra from the model, one
has to deploy and run the synth network.

1. First the synthesizer source code and cloud-orchestra
model are synchronized to all synth hosts (rsync).

2. Then the sound server (jackd) is started on each synth
host.

3. Remote network audio connectors are started (jacktrip
or netjack).

4. For every synth host, their synthBlocks’ associated
synthesizers are started.

5. All audio connections are disconnected on all hosts to
avoid interference and to start in a disconnected state.

6. SynthBlock synthesizers are connected to their appro-
priate jack audio ports per each synth host.

7. An audio exporter is started (e.g., icecast (mp3), jack-
trip, or cloudorch [10] (websocket streaming)).

To halt or tear down the cloud-orchestra each host is con-
tacted and all sound servers, remote network audio connec-
tors, and all synthesizers and audio exporters are killed.

123

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

H

S

A C

locals remotes

cores

Figure 2: Architecture of an example cloud-

orchestra

The responsibilities of a concrete framework based on this
abstract will be: to elicit a definition from a user; to elicit
resources and resource constraints; to search for optimal
deployment plans; to generate or execute such a deployment
plan; to enable the end-user to listen to the cloud-orchestra
once it is deployed. These responsibilities will be discussed
in the next section.

4. A CONCRETE IMPLEMENTATION
Our concrete cloud-orchestra generator is called synth-cloud-

orchestra and it is freely available 2. The hope is that the
compute music community can take advantage of this oper-
able framework and start building cloud-orchestras without
the hassle that the authors went through to get the cloud-
orchestra to run.
A dockerfile is provided with synth-cloud-orchestra and

acts as instructions to setup hosts consistently so they can
act as synth hosts. This implementation currently makes
some assumptions:

• The cloud-orchestra user has write access to a home
directory of the hosts they will employ.

• The hosts already have the main software synthesizers
needed installed (Csound, Chuck, Supercollider, Pd).

• The hosts allow for passwordless login via ssh or ssh-
agents.

• The hosts can access each other over ports used by
jack and jacktrip.

• The hosts need bash and ruby installed.
• The head node needs ansible, bash, and ruby installed.

The current implementation generates a series a bash
scripts that allows for the synchronization of files, deploy-
ment, and the startup and connecting of synthesizers. Once
generated all an end-user needs to run is gen/run.sh which
will execute all of the steps described in Section 3.2 on de-
ployment.
Throughout this section we will use an example of a FM

synthesizer and microphone (ADC) chained through a low-
pass filter to a DAC. While these are not expensive opera-
tions they can be run on separate machines. Figure 1 (b)
shows a graphical configuration the full webUI and shows
some of the JSON definition of the synthdef.

2Demo and source code: https://archive.org/details/
CloudOrchestraDemo http://github.com/abramhindle/
synth-cloud-orchestra

Defining resources:.

A slaves.json (an example is in Figure 1) lists all ma-
chines potentially under the cloud-orchestra’s control. Each
definition is named and also details the ssh username used
for access, the hostnames, and the number of cores.

4.1 Defining the cloud-orchestra
By seperating the cloud-orchestra definitions from the re-
sources, the model optimizer is enabled to come up with
many solutions and choose the best ones based on the re-
sources available and the optimization heuristics which em-
phasize locality preserving configurations. Figure 1 shows
how the webUI represents and generates a JSON definition.
The user can define cloud-orchestras in either pure JSON
or with the webUI that comes with synth-cloud-orchestra.
Figure 1 depicts part of the web-based user interface pro-

vided by synth-cloud-orchestra. The boxes are instances
of synthesizers, synthBlocks, and the arrows are the direc-
tional links between the synthBlocks. By dragging from the
boxes on the synthBlocks to the other synthBlocks them-
selves one can connect the synthBlocks together. The syn-
thBlocks are specified by first specifying a name of that
instance of the synthesizer and then the kind of synthesizer
it is. Double clicking deletes connections and synthesizers.
New synthBlocks are added by clicking the new button.
This method is flexible and allows optional parameters to

be specified. For instance the host parameter in the Syn-
thBlocks can be specified, this allows the user to override
the optimizer and assign a particular synthblock to a par-
ticular host, perhaps for performance reasons. Hosts that
do not reference particular slave hosts will be automatically
allocated from the slaves.json file.
Synth-cloud-orchestra comes with some default synthesiz-

ers including ADC and DAC, these are meant to represent
general inputs and outputs that might be in the cloud or
actual computers. Audio maybe exported from this cloud-
orchestra using jacktrip, but cloudorch [10] – the soundcard
in the cloud – or icecast can also be used. Currently syn-
chronization is the responsibility to the audio transport:
jack and jacktrip. Control signals can use OSC but are not
synchronized.

4.2 Adding synthesizers
Each custom synthesizer is considered a synthModule or
module. An optional manifest file, manifest.json defines
module’s name and the synthesizers source code. For in-
stance the example fm synthesizer is a csound synthesizer
with the fm.csd as the synthesizer to run and its module
name is fm.
A user can add a custom synth to their cloud-orchestra by

creating a directory that will serve as their module. This di-
rectory will contain all assets and code required by their syn-
thesizer including Csound orchestras, SuperCollider source
code, and sound assets. These modules will be synchronized
to the appropriate hosts and executed as needed.
By using templates one can avoid hard-coding IP ad-

dresses in the synthesizer’s definition one can treat the syn-
thesizer source code as a template to parameterize. Thus
at generation time, the appropriate configuration will be
inserted into the source code of the synthesizer, as well as
dynamicly into environment variables.
This pattern of user-defined synthesizers allows for the

computer musician to rely on their own synthesizers and
also leverage the hard work of the makers of CSound, Su-
perCollider, Chuck, Pd, and other software synthesizers.

4.3 Deploying a cloud-orchestra

124

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

The program synthdefrunner is run within the directory
defining the cloud-orchestra. This program reads the def-
initions of the cloud-orchestra and available resources. It
then optimizes the network according to heuristics meant
to improve locality. If there are not enough cores for all
of the synthesizers then it tries not overload the cores too
much and tries to increase locality. The current implemen-
tation is naive and assumes at peak utilization 1 synthesizer
needs at least 1 core, and cores are not shared. Regard-
less, the best suggested network configuration is chosen and
recorded. Based on this configuration, the Templater that
generates the gen directory from the gen.erb templates.
These are shell scripts, written as very portable bash scripts
that define how to run the synthesizers and how to connect
the audio links together.
Once gen is created the user can simply run gen/run.sh

to synchronize, deploy, instantiate and use their cloud-orch-
estra as per Section 3.2 on deployment. The WebUI lets a
user define a cloud-orchestra synthdef and deploy it in one
step, clicking submit query in part 2 of Figure 1 causes the
generation, deployment and running of the cloud-orchestra
– the execution of steps 3 to 5 in Figure 1. In this implemen-
tation we provide a means of listening by quickly starting
up a jacktrip connection with the cloud, and connecting all
of the synths connected to the DAC to the this connection.
teardown.sh will shutdown the cloud-orchestra.

4.4 Experience with the cloud-orchestra
Connecting to the cloud-orchestra with jacktrip [6] results
in relatively low latency. The overhead is not excessive and
like jack, jacktrip was well made, with the concerns of the
music community in mind. Streaming over websockets [10]
increases latency considerably as any jitter or fluctations in
the network can harm the latency of the TCP connection.

4.5 Recommendations
It is recommended [10] to maintain master and slave im-
ages that can be easily duplicated and deployed as instances
(synth-cloud-orchestra includes a dockerfile). Debugging
is often best done locally using docker (http://docker.io)
and/or vagrant (http://vagrantup.com) to build local clouds.
Locality tends to improve performance so network audio
links should be avoided to reduce latency; star-network for-
mations [6] for audio can flood switches and knock out local
network abilities while tree formations do not. We empha-
size the value of optimizing for locality as latency within
VMs is less than latency between VMs.

5. CONCLUSIONS AND FUTURE WORK
Leveraging the cloud is di�cult and leads to complicated
orchestration and deployment. To address this di�culty we
have described an abstract and concrete framework that en-
ables computer musicians to define, create, and run cloud-
orchestras. By leveraging model driven development one
can allow end-user programmers, such as computer musi-
cians, to focus on programming synthesizers rather than
administering the cloud computers they rent. Model driven
development allows musicians to avoid tedious manual con-
figuration, and define their cloud-orchestra as a network of
connected synthesizers and then deploy an optimized ver-
sion of that network to existing resources.
Abstractly a method of assigning resources to a cloud-

orchestra has been presented. Concretely, the example im-
plementation synth-cloud-orchestra allows single-click de-
ployment of cloud-orchestras defined by drag and drop. This
work provides a novel user interface to design, define, de-
ploy, and run cloud-orchestras.
This work opens up new areas for computer music per-

formance related to cloud-orchestras, and the exploitation
of cloud computing in computer music. One area of re-
search includes optimal and near optimal resource allocation
heuristics that could potentially optimize according to psy-
choacoustic models with respect to latency. The integration
of other sources of information into the models is another
area. Work should be done to create real-time/run-time
configuration and re-configuration of the cloud-orchestra
much like modifying a max/MSP or Pd patch live, except
with numerous machines. OSC support should be included
in the model as well. More work should be done on system
liveness and awareness as well as enabling the distribution
of user interfaces. Currently there is much work to be done
on easing the provisioning of a cloud-orchestra and estimat-
ing the minimum resources needed to provision a cloud-
orchestra. This current approach generates a static cloud-
orchestra, further work could be done to generate dynamic
and fail-safe cloud-orchestras. Synchronization of audio and
control signals within the cloud should be investigated.

6. REFERENCES
[1] J. Allison. Distributed performance systems using html5

and rails. In Proceedings of the 26th Annual Conference of
the Society for Electro-Acoustic Music, 2011.

[2] J. Allison, Y. Oh, and B. Taylor. Nexus: Collaborative
performance for the masses, handling instrument interface
distribution through the web. In NIME, 2013.

[3] Á. Barbosa. Displaced soundscapes: A survey of network
systems for music and sonic art creation. Leonardo Music
Journal, 13:53–59, 2003.

[4] S. D. Beck, S. Jha, B. Ullmer, C. Branton, and
S. Maddineni. Grendl: Grid enabled distribution and
control for laptop orchestras. In ACM SIGGRAPH
Posters, 2010.

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the
5th utility. Future Generation computer systems,
25(6):599–616, 2009.

[6] J.-P. Cáceres and C. Chafe. Jacktrip/soundwire meets
server farm. Computer Music Journal, 34(3):29–34, 2010.

[7] A. Carôt, T. Hohn, and C. Werner. Netjack–remote music
collaboration with electronic sequencers on the internet. In
Proceedings of the Linux Audio Conference, 2009.

[8] L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams:
Making music with the audience and the world using
real-time twitter data. In International Conference on New
Interfaces For Musical Expression, Oslo, Norway, 2011.

[9] A. V. Deursen, E. Visser, and J. Warmer. Model-driven
software evolution: A research agenda. In International
Workshop on Model Driven Software Evolution, 2007.

[10] A. Hindle. Cloudorch: A portable soundcard in the cloud.
Proceedings of New Interfaces for Musical Expression
(NIME), London, United Kingdom, 2014.

[11] S. Jordà. Multi-user Instruments: Models, Examples and
Promises. In NIME’05, pages 23–26, 2005.

[12] S. W. Lee and G. Essl. Models and opportunities for
networked live coding. Live Coding and Collaboration
Symposium 2014, 1001:48109–2121, 2014.

[13] J. Oh and G. Wang. Audience-participation techniques
based on social mobile computing. In Proceedings of the
International Computer Music Conference 2011 (ICMC
2011), Huddersfield, Kirkless, UK, 2011.

[14] S. Smallwood, D. Trueman, P. R. Cook, and G. Wang.
Composing for laptop orchestra. Computer Music Journal,
32(1):9–25, 2008.

[15] D. Trueman. Why a laptop orchestra? Organised Sound,
12(02):171–179, 2007.

[16] P. Venezia. Review: Puppet vs. chef vs. ansible vs. salt.
http://www.infoworld.com/article/2609482/data-center/

review--puppet-vs--chef-vs--ansible-vs--salt.html, 2013.
[17] N. Weitzner, J. Freeman, S. Garrett, and Y.-L. Chen.

massMobile - an Audience Participation Framework. In
NIME’12, Ann Arbor, Michigan, May 21-23 2012.

125

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

