
Opening the Valve on Pure-Data: Usage Patterns and
Programming Practices of a Data-Flow Based Visual

Programming Language
Anisha Islam

University of Alberta
Edmonton, Canada
aislam4@ualberta.ca

Kalvin Eng
University of Alberta
Edmonton, Canada

kalvin.eng@ualberta.ca

Abram Hindle
University of Alberta
Edmonton, Canada
hindle1@ualberta.ca

ABSTRACT
Pure Data (PD), a data-flow based visual programming language

utilized for music and sound synthesis, remains underexplored in
software engineering research. Existing literature fails to address
the nuanced programming practices within PD, prompting the need
to investigate how end-users manipulate nodes and edges in this
visual language. This paper systematically extracts and analyzes
6,534 publicly available PD projects from GitHub. Employing source
code parsing, pattern matching, and statistical analysis, we unveil
usage patterns of PD by the end-user programmers. We found that
most revisions of the PD files are small and simple, with fewer
than 64 nodes, 51 connections, and 3 revisions. Most PD projects
have less than 17 PD files, 31 commits, and only 1 author working
on the PD files. The median differences in the number of nodes
and edges between each commit and its parents, modifying the
same file, are 3 and 0, respectively, implying small changes across
various revisions of a PD file. Our findings contribute a valuable
dataset for future studies, addressing the dearth of research in PD.
By unraveling usage patterns, we provide insights that empower
scholars and practitioners to optimize the programming experience
for end-users in the realm of visual programming languages.

CCS CONCEPTS
• Software and its engineering→ Visual languages.

KEYWORDS
Visual Programming Language, Pure Data, End-User Programmers

ACM Reference Format:
Anisha Islam, Kalvin Eng, and Abram Hindle. 2024. Opening the Valve on
Pure-Data: Usage Patterns and Programming Practices of a Data-Flow Based
Visual Programming Language. In 21st International Conference on Mining
Software Repositories (MSR ’24), April 15–16, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3643991.3644865

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04
https://doi.org/10.1145/3643991.3644865

1 INTRODUCTION
Pure Data (PD) [1, 2], one of the most popular visual program-

ming languages for computer musicians, can be used for various
musical applications, such as creating smart tuners [3], musical
multi-agent systems [4], and real-time applications for speech pro-
cessing, sound synthesis, andmusic transcription [5–8]. In PD, these
diverse functionalities are achieved by placing multiple objects or
functions on a canvas linked by connections, allowing the transfer
of outputs from one object to the inputs of others. The arrangement
and nature of these connections dictate the flow of data, resembling
the structure of nodes and edges in graph theory. Figure 1 shows
an example of a PD program with multiple nodes and edges that
generates a triangle wave.

Figure 1: PD program for generating a triangle wave

A survey of 175 computer musicians, usually categorized as
end-user programmers, by Burlet et al. showed that PD was the
preferred language for 47.4% of them [9]. End-user programmers
surpass the number of professional programmers [10, 11]. However,
there is a lack of research on the specific needs of these end-user
programmers and the challenges they face in their disciplines [12].

Despite the popularity of PD among computer musicians, it lacks
publicly available datasets that can reveal usage patterns and help

https://doi.org/10.1145/3643991.3644865
https://doi.org/10.1145/3643991.3644865

MSR ’24, April 15–16, 2024, Lisbon, Portugal Anisha Islam, Kalvin Eng, and Abram Hindle

address the domain-specific needs of end-user programmers. In con-
trast, other visual programming languages like Scratch have public
datasets that can be explored and analyzed by researchers [13].
Therefore, creating a similar dataset for PD would enhance the
programming experience of end-users in visual programming lan-
guages. It would also be valuable for researchers and practitioners
who want to study how computer musicians use this visual pro-
gramming language and what challenges they face.

In this paper, we provide a dataset [14, 15] for PD comprising of
mirrors of the original git repositories, and an SQLite [16] database
of extracted metadata containing: revisions of the PD files; parsed
source code of PD files; and the commit information of the project
repositories, including author and committer information, commit
messages, and commit parents. We obtained PD project names
from the World of Code (WoC) [17] using maps, pattern matching,
and filtering. Subsequently, we recorded and parsed the revision
history of all the revisions of each PD file across the collected
projects. In addition, we retrieved details on authors, committers,
commit messages, and commit parents for all commits in our project
repositories. We recursively traversed the parent history of all
commits that altered a PD file in order to identify the commits that
directly influenced the file’s current state in the current commit.
Using the extracted data, we constructed a database, analyzed our
data, and addressed the following research questions.
RQ1: Are node changes in the revisions of a PD file typically lim-

ited to a small scale, involving only a single node?
RQ2: Are edge changes in the revisions of a PDfile typically limited

to a small scale, involving only a single edge?
We observed that most revisions of the PD files contain few nodes

and connections, with an average of approximately 3 revisions per
PD file. Most PD projects typically contain fewer than 17 PD files,
less than 31 commits, and involve only 1 author for the PD files. The
median differences in nodes and edges between each commit and
its parents, which modified the same file, are 3 and 0, respectively.

Our extracted data can help analyze the evolution of PD files in
a repository and give insights into the typical usage patterns of the
end-user programmers. Our data can also facilitate future research
that aims to improve the end-user programmer experiences using
visual programming languages like PD. The code and data used to
create the dataset, the mirrored PD repositories, and the dataset
itself are publicly accessible for future research [14, 15].

2 METHODOLOGY
We can describe the methodology of our paper in five stages:

project name collection, revision history extraction, parsing the con-
tents of the revisions of the PD files, commit information retrieval,
and dataset construction.

2.1 Project Name Collection
We used theWoC (version U) maps and datasets to get the names

of the PD projects. We found 309,964 blob IDs for files with .pd
extension using the b2f map. We filtered out the false positive blob
IDs by searching for the #N syntax of PD in the base64 decoded
contents of the files. After the first level of filtering, we got 273,166
blob IDs for the PD files and used the b2P map to get the fork
normalized project names from these blob IDs. We retrieved 8,454

project names and cloned the GitHub repositories linked to them.
Finally, we checked for PD files in the currently checked-out branch
in the repositories and got 6,534 PD projects for our dataset.

We selected the publicly available PD projects on GitHub because
of the widespread use of Git [18] as a version control system among
computer musicians. A survey by Burlet et al. showed that 54% of
175 computer musicians use version control systems, and Git is the
most favored one among them [9]. Our collection of projects reflects
the PD projects on GitHub within a specific time range, including
academic, personal, professional, and experimental projects.

2.2 Revision History Extraction
In the second stage, we extracted the revision history of the PD

files on the default branch, where the mirror version of the GitHub
repository is currently checked out, for all the cloned projects. Ini-
tially, we mirrored the git repositories in May 2023. In a September-
October 2023 update of the mirrors, 28 deletions were identified
since the last mirroring. For the deletions, we processed and ana-
lyzed the May 2023 mirrors.

We obtained the commit SHAs of the default branch of the PD
projects and used them to identify the PD file names with the .pd
extension. Then, we retrieved a detailed log of changes for each
PD file and the commit SHAs that changed the file. We linked the
commits with the revisions that modified the file, which gave us
the revision history of the PD files.

2.3 Parsing the Contents
Next, we accessed the contents of the revisions of a PD file linked

to a specific commit and preprocessed the generated contents of
the PD files, such as inserting a new line, when needed, before #N
or #X to make them compatible with our parser. Then, we parsed
the contents of the PD files into an Abstract Syntax Tree (AST) that
captures the essential information from the PD source code. The
AST contains information about the nodes or objects, such as their
ID, attributes, counts, and types. It also has information about the
edges or connections, such as their count, source, and destination
nodes, and, when serialized as JSON, has a content-based SHA-
256 [19] identifier.

2.4 Commit Information Retrieval
We extracted the authors’ and committers’ names and emails

linked to the commit SHAs using git commands. For privacy rea-
sons, we stored the author information as SHA-256 values of their
identifiers. We also extracted the commit messages from our PD
projects, which can explain the reasons behind specific changes
and identify the defect-fixing changes in visual code, as explained
by Eng et al. [20, 21]. Furthermore, we extracted the parents of all
commits of our projects so that we can generate the content parents
of the commits, which is a term we use to describe a commit that
changes a PD file in our repository and is part of the direct ancestry
of another commit that also changes the same PD file. For instance,
commit c0 has two parent commits, c1 and c2; c1 has a parent
commit: c3, and c2 has a parent commit: c4. If c0, c3, and c4 are
the only commits affecting a PD file, then c3 and c4 are the content
parents of c0 for that file. We obtained the content parents of all

Opening the Valve on Pure-Data: Usage Patterns and Programming Practices of a Data-Flow Based Visual Programming Language MSR ’24, April 15–16, 2024, Lisbon, Portugal

commits that modified the PD files in our projects by recursively
traversing the commit parents that we stored in our database.

2.5 Dataset Construction
In the final stage of our methodology, we used the revision meta-

data, the parsed contents of all the revisions of the PD files, the
author information, and the commit history obtained from the pre-
vious stages to construct our dataset [14, 15].We created a relational
database using SQLite, a portable and self-contained database sys-
tem that does not require a separate server [16].We opted for SQLite
as our database because it can execute complex queries involving
multiple tables, utilizing operations like filtering and joining, and
expedite data retrieval using indexes.

Our dataset can reveal the usage pattern of PD by end-user
programmers by utilizing the revision metadata to track the devel-
opment of PD files over time, the parsed source code to compare
the differences, and the information about the nodes and edges
to investigate the distribution and variety of objects. The commit
messages and author information provide valuable insights for the
researchers since they can use them to understand the rationale
behind each commit and the degree of participation in PD projects.

We can also use SQL queries to access the content parent infor-
mation and compare the changes in the same file across different
commits, which can help us understand how much PD files vary
from one commit to another. Moreover, we provide mirrored repos-
itories of the PD projects, which can serve as a reference and assist
researchers in examining the project in its original context.

Figure 2 illustrates the schema of our database. Our dataset
consists of seven tables, which are explained below.

Projects: This table houses 6,534 PD project names, the default
branch names, and the number of total commits in these projects.

Revisions: The Revisions table contains the metadata for each
revision of the PD files. It stores the project names, PD file names,
revision names, commit SHAs that modified the PD files, commit
dates, SHA-256 hash values of the parsed contents of the revisions,
and the number of nodes and edges in the revisions of the PD files.
The total number of rows in this table is 1,113,345.

Commit_Messages: This table stores the commit SHA and com-
mit messages of unique commit and commit message pairs (505,871).

Authors: The Authors table contains the commit SHAs and the
hashed author and committer names and emails for the 505,748
unique commit and author committer pairs.

Commit_Parents: The Commit_Parents table preserves infor-
mation about all commits and their parent commits in our projects.
There are 532,006 rows in this table.

Content_Parents: The Content_Parents table allows us to trace
the content parents of the commits that modified a PD file. This
table consists of the names of the PD projects and files, the commit
SHAs that modified the PD files, and the content parents of the
commits. This table has 1,154,438 rows, each representing one of
the commit and content parent pairs.

Contents: This table stores the actual parsed contents of the
revisions of the PD files and their hashed values. There are 203,324
unique hash values and parsed PD contents present in this table.

3 DATA ANALYSIS
In this section, we demonstrate the versatility of our constructed

dataset [14, 15] by illustrating how we can use our dataset to gain
deep insights into various aspects of PD projects. We queried our
database using SQL and analyzed our stored data, such as revisions,
nodes, edges, authors, commits, and files, to get a comprehensive
view of the development dynamics of PD projects. The summary
statistics of our extracted data are presented in Table 1.

Distribution of Nodes and Edges: We used the revision meta-
data stored in our dataset to analyze the distribution of nodes and
edges in the revisions of the PD files. Figures 3a and 3b depict the
node and edge counts in the revisions of the PD files in our dataset.
We observe that most revisions of a PD file have few nodes and
connections, with 647,157 files having a node count between 1 and
64 and 579,482 files having an edge count between 1 and 51.

In contrast, only six files have a high node count (≥ 30,000),
and twelve files have a high edge count (≥ 30,000). Interestingly,
the files with a high node count are the revisions of the same PD
file in one project. Additionally, 256,703 files lack edges, exceeding
those with zero nodes (189,480), suggesting that some PD files may
contain nodes but lack connections.

Distribution of Authors: The author distribution in Figure 3c
reveals that 80.39% of projects (5,253) involve a single author work-
ing on the PD files. In contrast, the project jptrkz_pd-macambira
stands out, with 58 authors and the highest PD file count (15,198) in
our dataset, with 10,131 commits. Based on this observation, we can
infer that most PD projects are likely not collaborative in nature,
with only a limited number of authors contributing to the PD files
in each project.

Distribution of PD Files: Figure 3d demonstrates the distribu-
tion of PD files (not including revisions) in our dataset. The majority
(75.43%) of projects (4,929) have fewer than 17 PD files. In contrast,
three projects titled jptrkz_pd-macambira, aidanreilly_pd_patches,
and collaborative-music-lab_NIME have a large number of PD files:
15,198; 12,531; and 11,875, respectively. These projects also have
high numbers of commits: 10,131; 265; and 340, indicating active,
long-lasting, and ongoing development in these repositories.

Distribution of Commits. The number of commits per project
can be extracted from our database to reveal the average activity
level of PD projects. Our analysis shows that 75.23% PD projects
(4,916) have at most 31 commits, indicating that the PD projects are
small and do not go through active development.

Distribution of Revisions. We extracted the number of revi-
sions per PD file from our dataset. We noticed that, on average, a
PD file has approximately 3 revisions, indicating that most PD files
are stable and do not frequently go through significant changes.

4 RESULTS
To answer our research questions, we used our dataset [14, 15]

to measure how the nodes and edges in each revision of a PD file

MSR ’24, April 15–16, 2024, Lisbon, Portugal Anisha Islam, Kalvin Eng, and Abram Hindle

Projects

Project_Name TEXT

Default_Branch TEXT

Total_Commits INTEGER

Commit_Messages

Commit_SHA TEXT

Commit_Message TEXT

Commit_Parents

Commit_SHA TEXT

Parent_SHA TEXT

Contents

Hash SHA-256

Content TEXT

Revisions

Project_Name TEXT

File TEXT

Revision TEXT

Commit_SHA TEXT

Commit_Date TEXT

Hash SHA-256

Nodes INTEGER

Edges INTEGER

Commit_DateTime DATETIME

Authors

Commit_SHA TEXT

Author_Name SHA-256

Author_Email SHA-256

Committer_Name SHA-256

Committer_Email SHA-256

Content_Parents

Content_Parent_SHA TEXT

Project_Name TEXT

File TEXT

Commit_SHA TEXT

Figure 2: Schema of the SQLite dataset

Table 1: Summary statistics of our extracted data

Total Mean Min Q1 Q2 Q3 Max

Nodes Per File 1,113,345 93.78 0 9 25 64 31,586
Edges Per File 1,113,345 84.78 0 3 16 51 35,932
Revisions Per PD File 484,555 2.29 1 1 2 3 246
Diff Nodes Per Revision of a PD File 1,113,345 23.95 -35,264 0 3 27 29,592
Diff Edges Per Revision of a PD File 1,113,345 21.17 -37,180 0 0 17 35,932
Authors Per Project 6,533 1.32 1 1 1 1 58
PD File Per Project 6,534 74.15 1 1 4 17 15,198
Commits Per Project 6,534 78.18 1 3 9 31 24,256

changed compared to that of the content parents. We can get the
content parents, revision metadata, and parsed content of each com-
mit that changed the PD file from our database, and the extracted
data can then be used to find the difference in nodes and edges
between commits that changed the PD file.

RQ1: The Change of Nodes in the Revisions of a PD File: To
quantify the structural evolution of a PD file in terms of nodes, we
calculated the difference between the node count of each revision
of a PD file and the node count of the content parent commits
that modified the file using our dataset. Figure 3e shows that this
difference is less than 27 for the majority (75.19%) of the revisions

of the PD files (837,149), with a median node count change of 3.
The positive median indicates that there are more nodes in a new
revision of a PD file than its content parents, and most revisions
involve more than 1 node count change.

RQ2: The Change of Edges in the Revisions of a PD File: A
similar trend is observed while comparing the differences in edges
or connections in different versions of a PD file. Most revisions
(75.06%) have less than 17 connection count changes from their
content parent versions. Additionally, the median value of edge
count difference is 0, indicating infrequent and generally minor
changes in the number of connections within the revisions of the

Opening the Valve on Pure-Data: Usage Patterns and Programming Practices of a Data-Flow Based Visual Programming Language MSR ’24, April 15–16, 2024, Lisbon, Portugal

0 5000 10000 15000 20000 25000 30000
Number of Nodes Per Revision of a PD File

100

101

102

103

104

105

106

Nu
m

be
r o

f T
ot

al
 R

ev
isi

on
s o

f P
D

Fil
es

 (L
og

 S
ca

le
)

Histogram of Number of Nodes Per Revision of a PD File

(a) Distribution of number of nodes per re-
vision of a PD file

0 5000 10000 15000 20000 25000 30000 35000
Number of Connections Per Revision of a PD File

100

101

102

103

104

105

106

Nu
m

be
r o

f T
ot

al
 R

ev
isi

on
s o

f P
D

Fil
es

 (L
og

 S
ca

le
)

Histogram of Number of Connections Per Revision of a PD File

(b) Distribution of number of connections
per revision of a PD file

0 10 20 30 40 50 60
Number of Authors Per Project For the PD Files

100

101

102

103

Nu
m

be
r o

f P
ro

je
ct

s (
Lo

g
Sc

al
e)

Histogram of Number of Authors Per Project For the PD Files

(c) Distribution of number of authors per
project

0 2000 4000 6000 8000 10000 12000 14000
Number of Pd Files Per Project (Without Revisions)

100

101

102

103

Nu
m

be
r o

f P
ro

je
ct

s (
Lo

g
Sc

al
e)

Histogram of Number of Pd Files Per Project (Without Revisions)

(d) Distribution of PD files per project

30000 20000 10000 0 10000 20000 30000
Difference in Nodes Per Revision of a PD File

100

101

102

103

104

105

106
Nu

m
be

r o
f T

ot
al

 R
ev

isi
on

s (
Lo

g
Sc

al
e)

Histogram of Difference in Nodes Per Revision of a PD File

(e) Difference in node count of a commit
and its content parents

40000 30000 20000 10000 0 10000 20000 30000
Difference in Connections Per Revision of a PD File

100

101

102

103

104

105

106

Nu
m

be
r o

f T
ot

al
 R

ev
isi

on
s (

Lo
g

Sc
al

e)

Histogram of Difference in Connections Per Revision of a PD File

(f) Difference in edge count of a commit
and its content parents

Figure 3: Distribution of nodes, edges, difference in nodes and edges, authors, and PD files (The Y-axis is on a base 10 log scale)

PD files. Figure 3f demonstrates the connection count differences
between a commit and its content parents.

5 CONCLUSION
In this paper, we examined the usage patterns of Pure Data

(PD) by collecting and analyzing 6,534 public PD projects from
GitHub. We provided a comprehensive open dataset with mirrored
git repositories, including metadata for PD file revisions, parsed
source code emphasizing nodes and edges information, and detailed
commit history, including author and committer details, commit
messages, commit parents, and content parents. This dataset serves
as a valuable resource for analyzing various aspects of PD projects.
Analyzing the data stored in our database, we discovered that most
PD projects are small in size, typically containing fewer than 17 PD
files with a limited number of nodes, connections, and revisions.
We also noticed that projects generally have fewer than 31 com-
mits and are associated with only 1 author who works on the PD
files, implying an individual rather than collaborative development
process for Pure Data. Moreover, we observed gradual and small
changes in node and edge counts between each commit and its con-
tent parents. Researchers can use our dataset to query information
about authors to identify collaboration within a project, extract
commit messages for purposes such as identifying defect-fixing
commits, and trace the change history of a file using the revision
metadata, content parents, and their parsed contents.

In conclusion, our dataset helps researchers and practitioners
to understand visual code development processes and facilitates
future research in visual programming languages.

ACKNOWLEDGMENTS
We acknowledge the support provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through their
Discovery Grant, which facilitated this research.

REFERENCES
[1] Miller Puckette et al. Pure Data: another integrated computer music environment.

Proceedings of the second intercollege computer music concerts, pages 37–41, 1996.
[2] IEM. Pure Data. https://puredata.info/. Accessed: 2024-01-20.
[3] Hsin-Ming Lin and Chin-Ming Lin. Harmonic Intonation Trainer: An Open

Implementation in Pure Data. In NIME, pages 38–39, 2015.
[4] Pedro Bruel and Marcelo Queiroz. A Protocol for creating Multiagent Systems in

Ensemble with Pure Data. In ICMC, 2014.
[5] Roger K Moore. On the Use of the ‘Pure Data’ Programming Language for

Teaching and Public Outreach in Speech Processing. In INTERSPEECH, pages
1498–1499, 2014.

[6] Gilberto Bernardes, Carlos Guedes, and Bruce Pennycook. EarGram: An Applica-
tion for Interactive Exploration of Concatenative Sound Synthesis in Pure Data.
In From Sounds to Music and Emotions: 9th International Symposium, CMMR 2012,
London, UK, June 19-22, 2012, Revised Selected Papers 9, pages 110–129. Springer,
2013.

[7] Marcos Alonso, Günter Geiger, and Sergi Jorda. An Internet Browser Plug-in for
Real-time Sound Synthesis using Pure Data. In ICMC, 2004.

[8] Marius Miron, Matthew EP Davies, and Fabien Gouyon. AN OPEN-SOURCE
DRUM TRANSCRIPTION SYSTEM FOR PURE DATA AND MAX MSP. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pages
221–225. IEEE, 2013.

[9] Gregory Burlet and Abram Hindle. An Empirical Study of End-user Programmers
in the Computer Music Community. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, pages 292–302. IEEE, 2015.

https://puredata.info/

MSR ’24, April 15–16, 2024, Lisbon, Portugal Anisha Islam, Kalvin Eng, and Abram Hindle

[10] Kathryn T Stolee, Sebastian Elbaum, and Anita Sarma. End-User Programmers
and their Communities: An Artifact-based Analysis. In 2011 International Sympo-
sium on Empirical Software Engineering and Measurement, pages 147–156. IEEE,
2011.

[11] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the Numbers
of End Users and End User Programmers. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05), pages 207–214. IEEE,
2005.

[12] Margaret Burnett. Software Engineering For Visual Programming Languages. In
Handbook of Software Engineering and Knowledge Engineering, volume 2. World
Scientific Publishing Company, 2001.

[13] Efthimia Aivaloglou, Felienne Hermans, Jesús Moreno-León, and Gregorio Robles.
A Dataset of Scratch Programs: Scraped, Shaped and Scored. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR), pages 511–
514. IEEE, 2017.

[14] Anisha Islam. Opening the Valve on Pure-Data Dataset. https://archive.org/
details/Opening_the_Valve_on_Pure_Data, 2023. Accessed: 2023-12-07.

[15] Anisha Islam, Kalvin Eng, and Abram Hindle. Opening the Valve on Pure Data
Dataset. https://doi.org/10.5281/zenodo.10576757, 2024.

[16] D. Richard Hipp. SQLite. https://www.sqlite.org/index.html, 2013. Accessed:
2023-11-12.

[17] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. World of code: enabling a
research workflow for mining and analyzing the universe of open source VCS
data. Empirical Software Engineering, 26:1–42, 2021.

[18] Scott Chacon. Git SCM. https://git-scm.com, 2005. Accessed: 2024-01-26.
[19] FIPS Pub. Secure Hash Standard (SHS). Fips pub, 180(4), 2012.
[20] Kalvin Eng, Abram Hindle, and Alexander Senchenko. Identifying Defect-

Inducing Changes in Visual Code. In ICSME. IEEE, 2023.
[21] Kalvin Eng, Abram Hindle, and Alexander Senchenko. Predicting Defective

Visual Code Changes in a Multi-Language AAA Video Game Project. In ICSME.
IEEE, 2023.

https://archive.org/details/Opening_the_Valve_on_Pure_Data
https://archive.org/details/Opening_the_Valve_on_Pure_Data
https://doi.org/10.5281/zenodo.10576757
https://www.sqlite.org/index.html
https://git-scm.com

	Abstract
	1 Introduction
	2 Methodology
	2.1 Project Name Collection
	2.2 Revision History Extraction
	2.3 Parsing the Contents
	2.4 Commit Information Retrieval
	2.5 Dataset Construction

	3 Data Analysis
	4 Results
	5 Conclusion
	Acknowledgments
	References

