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ABSTRACT: 
Leveraging  artificial  intelligence  (AI)  for  the  analysis  of  electrocardiograms  (ECG)  has  the 
potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, 
non-cardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-
based  clinical  applications  in  the  early  detection,  diagnosis,  and  estimating  prognosis  of 
cardiovascular diseases (CVD) in the last five years (2019-2023). With advancements in deep 
learning and the rapid increased use of ECG technologies, a large number of clinical studies have 
been published. However, a majority of these studies are single-center, retrospective, proof-of-
concept studies that lack external validation. Prospective studies that progress from development 
toward  deployment  in  clinical  settings  account  for  <15%  of  the  studies.  Successful 
implementations of ECG-based AI applications that have received approval from the Food and 
Drug Administration (FDA) have been developed through commercial collaborations, with about 
half  of  them  being  for  mobile  or  wearable  devices.  The  field  is  in  its  early  stages,  and 
overcoming several obstacles is essential,  such as prospective validation in multi-center large 
datasets,  addressing technical  issues,  bias,  privacy,  data  security,  model  generalizability,  and 
global  scalability.  This review concludes with a discussion of these challenges  and potential 
solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set  
a foundation for future research directions, emphasizing the need for comprehensive, clinically 
integrated, and globally deployable AI solutions in CVD management.

Introduction:
The Electrocardiograms (ECG) has long been a cornerstone in the diagnostic and prognostic 
assessment  of  cardiovascular  diseases  (CVD),  the  leading  cause  of  death  globally.1 The 
significance  of  ECGs  in  clinical  diagnosis  stems  from their  simplicity,  low  cost,  and  non-
invasive  nature,  making  them  indispensable  in  detecting  and  managing  a  range  of  cardiac 
conditions,  including  arrhythmias,  myocardial  infarction  (MI),  and  coronary  artery  disease 
(CAD). This paper offers a comprehensive review of the use of Artificial Intelligence/Machine 
Learning  (AI/ML)  in  enhancing  ECG-based  diagnostic  and  prognostic  methods,  particularly 
focusing on the use of deep learning (DL) techniques and their application in clinical settings. 
Recent advancements in computational models and ML algorithms have significantly enhanced 
the potential of ECGs. Unlike traditional ECG analysis, which is limited by human expertise, 
reliance on knowledge-based features and decision-making rules, DL techniques facilitate more 
informative  feature  extraction,2 demonstrating  superior  performance  in  disease  detection  and 
prediction. The integration of AI/ML with ECG analysis has revolutionized the field, facilitating 
the development of sophisticated diagnostic and prognostic models.3,4



Figure 1: AI/ML ECG based models development to deployment process in clinical applications.

Existing review papers5–10 primarily focus on DL and ML strategies for detecting or predicting 
specific diseases; and none have comprehensively addressed prospective studies and deployment 
of  AI/ML-based  ECG models  in  clinical  settings.  Our  review  aims  to  bridge  this  gap  and 
includes the following four sections (Figure 1):  the first section is focused on AI/ML models for 
ECG analysis  developed  as  proof-of-concept  studies  using  retrospectively  collected  datasets, 
with  an  emphasis  on  their  roles  in  diagnosis,  prognosis,  and  early  detection  of  cardiac 
abnormalities;  the  second section  includes  both cohort  studies  and clinical  trials  focused on 
prospective evaluation of ECG-based AI/ML algorithms; the third section includes AI/ML ECG 
software or models that are deployed in the real world and have received regulatory approval; 
and the fourth and final  section discusses some of the major  challenges,  including technical 



issues, transparency and reproducibility, bias, privacy and security, and algorithmic fairness, and 
potential mitigation strategies in the development to deployment of ECG-based AI/ML models in 
healthcare settings. We hope this review highlights the combined potential of AI and ECG to 
improve clinical practice and inform the future direction of AI/ML applications in healthcare.

1: RETROSPECTIVE, PROOF-OF-CONCEPT STUDIES
The availability  of  DL methods  has  revolutionized  ECG analysis  by enabling  direct  feature 
extraction from raw data, eliminating the need for manual feature selection.11 This advancement 
enhances diagnostic and prognostic capabilities, as DL algorithms can detect complex patterns 
within large datasets more effectively than traditional methods.5 The number of publications on 
AI/ML-based ECG models for CVD detection and prediction has increased substantially over the 
last five years. (Figure 2).

Figu
re 2: Yearly trends in AI/ML ECG model publications and  prospective studies.

1.1: Early detection models of CVDs
One  of  the  most  remarkable  uses  of  AI/ML models  for  ECG  analysis  is  for  early  disease 
detection.12–14 AI  models  are  shown to be proficient  in  recognizing  some early  indicators  of 
cardiac  dysfunction,  especially  for  atrial  fibrillation  (AF),15 heart  failure  (HF),16 and  aortic 
stenosis  (AS)13 —conditions  that,  although potentially  severe,  can  be effectively  managed if 
detected early.  Furthermore,  these models show promise in forecasting future cardiac events, 
such as the onset of AF, a common yet serious heart rhythm condition that poses an increased 
risk of stroke.17,18 



Early detection of AF is crucial, but conventional methods often have a low detection yield.19 

Majority15,17,20–27 of  the early detection  methods use DL based models  while  focusing on AF 
detection during normal sinus rhythm (NSR). For example, Attia et al.15 demonstrated that the 
AI-ECG  algorithm  can  identify  AF,  whereas  Lee  et  al.24 use  DL  methods  with  attention 
mechanisms for early detection of AF based on P-wave location.  Recently,  Budaraju et  al.25 

stacked ML models to obtain insight into important clinical ECG aspects for early AF prediction.
 
In  addition,  some  papers12,28–32 have  focused  on  early  detection  of  ST-elevation  myocardial 
infarction  (STEMI),  mitral  regurgitation  (MR),  pulmonary  hypertension  (PH),  ventricular 
premature  complex  (VPC),  left  ventricular  ejection  fraction  (LVEF),  hypocalcemia  and 
hypercalcemia. For example, Zhao et al.12 developed an AI model for early detection of STEMI, 
demonstrating  capabilities  akin  to  cardiologist-level  diagnosis,  whereas  Kashou et  al.28 have 
shown that  the AI-ECG algorithm can serve as a rapid screening tool for early diagnosis of 
LVEF in a low resource setting. 

1.2: ECG based Diagnostic Models
The ECG's compatibility with DL approaches allows for the development of models that can 
interpret signals beyond human capabilities, identifying subtle indicators of conditions such as 
left ventricular dysfunction,33,34 silent AF, and hypertrophic cardiomyopathy (HCM),35 as well as 
physiological traits like age and sex.36,37 AI applications in ECG analysis promise more rapid and 
cost-effective  cardiovascular  phenotyping,  directing  further  investigations  based  on  detailed 
health assessments. The heatmaps in Figure 3 illustrate the distribution of papers categorized by 
disease type and ECG leads, indicating that studies focusing on arrhythmias and heart failure 
with 12-lead ECGs are the predominant topics within the research landscape. Many diagnostic 
studies aim to support  clinicians  to detect  and classify ECG abnormalities38–51 including AF, 
Atrial flutter (AFL), Supraventricular Arrhythmia, Ventricular Arrhythmia, Left bundle branch 
block (LBBB), and Right bundle branch block (RBBB). Diagnostic classification tasks are varied 
from binary disease classification to multilabel classification of different cardiac arrhythmias. 
For  example,  Ribeiro  et  al.52 applied  the  DL model  to  classify  six  ECG abnormalities  and 
compared results with the cardiologist's validation with a high specificity of 99%. Several other 
studies53–60 have  focused  on  heart  attack,  heart  valvular  disease,  CAD,  Congenital  heart 
disease (CHD) and related conditions. For example, Jahmunah et al.57 developed an AI 
based automatic tool to detect normal, CAD, myocardial infarction (MI) and congestive 
heart failure (CHF) classes using DL models whereas Elias et al.53 use AI/ML ECG-based 
models to detect moderate or severe AS, aortic regurgitation (AR) in combination with 
MR. While Grogan et al.61 developed an AI ECG model for cardiac amyloidosis detection, Kwon 
et al.54 developed an ensemble model to detect AS using ECGs. Recently, Kalmady et al.62 used 
DL and extreme gradient boosting to classify 15 different CVD diagnoses simultaneously using 
ECG  traces  and  measurements,  respectively.  Interestingly,  DL  models  demonstrate  strong 
discriminative potential in population-based ECG datasets, across a wide spectrum of diseases 



including non-cardiovascular conditions such as mental, neurological, metabolic and infectious 
conditions.63 

Figure 3: Number of papers studying various cardiac disease categories by ECG data type. 

1.3: ECG based prognostic models:
While the volume of research on AI/ML-based ECG models for CVD prediction and detection 
has surged in the last five years, prognostic studies in this area have grown at a slower pace. The 
majority34,64–70 of the prognostic studies have focused on heart failure including Left ventricular 
(LV)  dysfunction,  MI,  followed  by  mortality  prediction.  Among  studies  focused  on  LV 
dysfunction,34,64–67 Vaid et al.34 developed AI-enhanced ECG-based predictive tools for prognosis 
LV and RV dysfunction, enhancing how patients are prioritized for intervention. De la Garza et 
al.66 used ECG and C5.0 algorithm to predict  Echo-LVH, and Mahayni et al.67 developed an 
ECG-based  AI  algorithm  that  predicts  severe  ventricular  dysfunction  to  predict  long-term 
mortality among patients with left ventricular ejection fraction (LVEF) > 35% undergoing valve 
and/or  coronary  bypass  surgery.  Furthermore,  Dutta  et  al.71 proposed  a  two-layer  CNN 
demonstrating  balanced  class-specific  performance,  especially  in  large,  imbalanced  ECG 
datasets, for coronary heart disease (CHD). Kwon et al.72 implemented a DNN that learned a 
model that used ECG data to predict patients' 12- and 36-month mortality following acute heart 
failure. Van de Leur et al.73 developed models that performed well in predicting in-hospital all-
cause mortality of patients with COVID-19 with pre-trained DNN using age, sex, and the raw 
ECG waveforms. Raghunath et al.74 predicted 1-year all-cause mortality from ECG voltage–time 



traces  with  custom-designed  DL  architecture  that  utilized  CNNs  using  five  branches  to 
accommodate  varying durations  of  ECG acquisition  across  the  groups of  leads.  Sun et  al.75 

developed ECG-based ML models to predict 30-day, 1-year, and 5-year mortality risk among 
patients presenting to an ED or hospital at the population level. Lima et al.76 developed a DNN 
model for mortality risk prediction in broader patient populations.

Additionally,  recent  works77–80 have  introduced  novel  DL  models  for  detailed  prognostic 
predictions,  including  long-term  clinical  outcomes  and  risk  identification  for  CVD.  Some 
papers81–83 employed techniques such as pre-training and transfer learning for various prognostic 
predictions, from acute heart failure to the impacts of COVID-19 on patient mortality. Nademi et 
al.79 and Sun et al.80 developed a supervised feature extractor based on a pre-trained diagnostic 
DL model to predict patient-specific individual survival distributions using ECG.  Wouters et 
al.77 developed FactorECG,  an  end-to-end explainable  DL model  that  can  accurately  predict 
long-term clinical outcomes, including death,  left ventricular assist device implantation,  heart 
transplantation, and HF hospitalization. In addition, a few studies have used wearable or mobile 
device single lead ECG to predict left ventricular hypertrophy (LVH),84 and STEMI.40

1.4: Data, Methods, and Explainability
Access to large volumes of digitized ECG data is a critical and necessary step in the development 
of AI/ML models. To date, the evolution of AI/ML ECG techniques has been supported by the 
availability  of  public  datasets,85 primarily  the  MIT-BIH,86 data  released  as  part  of  Physionet 
challenges,87 and PTB databases.88 as well as private/proprietary datasets (Appendix A). Recent 
studies show that the success of AI/ML models in identifying CVDs depends on the data size and 
data quality. Seo et al.89 demonstrated the data dependency of ECG-based AI/ML models for 
detecting  atrial  fibrillation,  highlighting  performance  variations  when models  trained  on one 
dataset are tested on external datasets. While many public datasets are small in size and lack 
external  validation  data,  recently  published papers  used privately  curated  large  datasets.  For 
example, a few studies have used standard 12-lead large datasets (more than 1 million ECGs) for 
the diagnosis and prognosis task, including 2,322,513 ECG from 1,676,384 patients in Brazil;90 

2,015,808 ECG from 260,065 patients in Alberta;75 1,576,581 ECGs from 449,380 patients in 
Mayo clinic in US91 and 1,169,662 ECG from 253,397 patients by Geisinger, USA.74 Similarly, 
the  largest  dataset  for  smartwatch  or  wearables  is  from  multinational  eHealth  study92 with 
3,144,331 ECG from 66,788 patients.

The effectiveness of DL models in interpreting ECG data is influenced by both the quality and 
type of ECG data collected,  which can vary from digital  to paper-based formats and include 
wearable or remote ECG devices. These devices, which can record ECGs in formats ranging 
from single to 12 leads, heart rate variability (HRV), and photoplethysmography (PPG), offer 
simplified,  patient-operated methods for cardiac diagnostics and management,  thus enhancing 
healthcare outcomes and accessibility. As illustrated in Figure 3, the standard 12-lead ECG is 
most  commonly  used  in  research,  while  single-lead  ECGs  have  been  used  to  reduce 
computational  demands93–102 and  few  other  studies39,103–108 have  utilized  ECG  images. 



Additionally,  several studies109–111 have explored the use of heart rate variability features and 
ECG data extracted from the mobile app for detecting heart abnormalities and stress, further 
demonstrating the versatility and adaptability of ECG data in advancing cardiac care through 
AI/ML technologies.

A diverse array of methods have been employed in developing ECG-based AI/ML algorithms, 
spanning from conventional ML techniques like Logistic Regression (LR) and Support Vector 
Machine (SVM), to more recent advancements like gradient boosting trees, and cutting-edge DL 
models. The selection of algorithm methodology hinges on several factors including the size of 
the  dataset  for  training  and  testing,  the  nature  of  the  data  format  (e.g.,  summarized  ECG 
measurements  versus  ECG  signals  or  images),  and  the  specific  prediction  task  such  as 
classification, regression, or time-to-event modeling.

Conventional algorithm methodologies are typically favored for smaller datasets with a limited 
number of features. For instance, He et al.112 utilized SVM to detect new-onset postoperative 
atrial fibrillation with a dataset comprising 100 patients. Gradient boosting techniques such as 
XGBoost exhibit superior performance in tabular datasets containing ECG measurements and 
patient characteristics75,106,113 Meanwhile, DL models prove effective for semi- or unstructured 
datasets encompassing digitized ECG tracings or scanned ECG images.39,75,103,105,114 DL methods 
leverage automatic feature extraction and often outperform traditional ML methods, particularly 
in standard or large datasets. Various types of deep convolutional neural networks (CNNs) such 
as  ResNet,41,75,89,115–117 EfficientNet,39,118,119 DenseNet,120 multi-scale  CNNs,121–123 and  attention 
based transformers (cite) have been applied in ECG-based AI studies. Additionally, temporal or 
sequential  learning  algorithms  like  Long Short-Term Memory networks  (LSTMs),56,124,125 Bi-
LSTM  with  Attention,103,126–129 and  hybrid  combinations  of  CNNs  and  LSTMs129,130 are  also 
utilized. Methodological innovations extend to areas such as transfer learning,46,83,131 cloud-based 
frameworks for real-time analysis,45,48 and generative AI techniques including autoencoders43,49,132 

and Generative Adversarial  Networks (GANs).133,134 Many of these methods are coupled with 
solutions for addressing data imbalance, such as Synthetic Minority Over-sampling Technique 
(SMOTE)117 or multi-center data sharing issues such as Federated learning (FL).135 While some 
studies  focus  on  binary  classifications  with  two  classes,114,136 others  tackle  multilabel 
classifications  encompassing  several  classes.103,137 Additionally,  some  employ  personalized 
survival distributions for predicting time to death in censored datasets.79,80,138,139

Explainable AI (XAI) serves as a crucial bridge between the complex decision-making processes 
of AI models and the intuitive understanding required by users, particularly in critical fields like 
healthcare.140,141 It intends to ‘open’ the AI "black box," enhancing transparency and trust.141 In 
the context of medical image classification, XAI can pinpoint the image regions most pivotal in 
influencing its predictions.142 This also fosters generation of  hypothesis for future studies by 
identifying  relevant features. XAI's integration into healthcare ML/DL models promotes trust, 
acceptance, and continual performance improvements.143 However, less than a third of studies 



use an ECG-based XAI model to facilitate physicians’ comprehension of the ML model's results. 
The  Gradient-weighted  Class  Activation  Mapping  (GradCAM)144 appears  to  be  the  most 
employed  XAI  method  (Figure  4).  In  addition  to  GradCAM,  Saliency  maps,145 Heat  maps, 
SHapley  Additive  exPlanations  (SHAP),53,146 and  Local  Interpretable  Model-agnostic 
Explanations  (LIME)147 are frequently used, each contributing uniquely to the field of ECG-
based XAI. SHAP is valuable in healthcare for elucidating predictions on patient outcomes such 
as  mortality  and  admissions  For  example,  Ibrahim  et  al.146 used  SHAP  to  identify  highly 
contributing features from ECG in prediction of acute MI. GradCAM, effective in identifying 
key areas  in ECG traces, enhances interpretative capabilities at individual patient level.148–150 

GradCAM also has been used in diverse ECG formats for AF classification, MI classification or 
mortality prediction in various CV conditions.120,151,152 Conversely, LIME offers model-agnostic 
explainability, which has been utilized  in heartbeat classification.147 In algorithms for detecting 
valvular disease, saliency maps have been employed to emphasize the segments of the ECG that 
influenced the model's decision in chosen samples.13,54,145

Figure 4: Distribution of popular XAI methods used in the published ECG based AI/ML papers.

2: PROSPECTIVE STUDIES
To comprehensively evaluate the practicality and efficacy of emerging AI/ML models based on 
ECG in healthcare, it is crucial to undertake a series of planned prospective studies. Compared to 
the number of proof-of-concept or retrospective studies papers published in recent years, only 17 
papers are prospective studies, of which 15 are cohort studies and two are clinical trials. Among 
the two trials,  the EAGLE trial153,154 assessed an AI algorithm for identifying left  ventricular 
dysfunction in a large-scale study involving over 100 clinical teams and 24,000 patients across 
nearly 50 primary care practices. This trial evaluated the algorithm's effectiveness in detecting 
LVEF and assessed how clinicians interpret and act upon AI-generated information. Meanwhile, 
Noseworthy et al.155 conducted a non-randomized interventional trial which demonstrated that 
AI-guided screening significantly improves AF detection.

Among the 15 observational or cohort studies, three studies evaluated AI's capability in detecting 
low LVEF, and others concentrated on AF, AMI, HF, and other abnormalities.  In the LVEF 
context,  significant  contributions have been made.  For example,  Attia et  al.156 validate  a DL 
algorithm that predicts an LVEF less than or equal to 35% based on the 12-lead ECG in a large  
prospective  cohort.  Similarly,  Bachtiger  et  al.157 conducted  an  observational,  prospective, 
multicentre  study  for  LVEF  to  interpret  single-lead  ECG  input  with  an  ECG-enabled 
stethoscope. Additionally, Sangha et al.107 developed and externally validated a DL model that 



identifies LV systolic dysfunction from ECG images. These  approaches represent automated 
and  accessible  screening  strategies  for  LV systolic  dysfunction,  particularly  in  low-resource 
settings.

Another prospective study includes  Bumgarner et al.158 which demonstrated that integrating an 
AI algorithm with a wearable ECG recorder enhances AF detection across various conditions in 
a single-center dataset where two separate electrophysiologists and physician teams interpreted 
and compared the results. Similarly, Lee et al.159 developed a predictive model for AF in patients 
with  acute  ischemic  stroke,  effectively  validating  it  with  another  dataset.  Zhao  et  al.161 and 
Carpretz et al.162 have developed ML models for differentiating cardiac conditions using surface 
ECG  characteristics  and  predicting  AMI  or  death  in  emergency  department  patients, 
respectively. These models were validated with small external data (n=100) and a prospective 
cohort (n=50), respectively.  Surendra et al.163 introduced a CNN-based screening tool for HF 
detection,  emphasizing digital  ECG's potential  at  a population  level  and evaluating  it  with a 
single center  prospective  cohort.  Liu  et  al.103 introduced the  aggregation  attention  multilabel 
electrocardiogram classification model (AA-ECG), capable of identifying cardiac abnormalities 
in raw ECG images with image-level annotations, which was validated in a two-site prospective 
study.  It  involved  creating  large-scale,  real-world  ECG  datasets  annotated  by  experts  and 
comparing the model's performance against seven classifiers for 27 primary categories. Bouzid et 
al.164 made noteworthy advancements in detecting culprit lesions using temporal and spatial ECG 
features with a random forest classifier, surpassing traditional ST amplitude measurements. In 
subsequent  prospective  studies,165,166 they  identified  key  ECG  features  for  acute  coronary 
syndrome  (ACS)  detection  and  demonstrated  the  efficacy  of  random  forest  classifiers  in 
diagnosing non-ST-elevation ACS with out-of-hospital ECGs. In the wearable space, Poh et al.167 

developed a medical-grade continuous AF monitoring diagnostic tool for wrist-worn devices. 
Similarly, Fu et al.160 conducted a clinical study and demonstrated that wearing a dynamic ECG 
recorder integrated with an AI algorithm can detect AF effectively in different postures and after 
exercises.  In  addition,  Giudicessi  et  al.168 developed  a  DL model  using  smartphone-enabled 
electrodes for accurate QTc interval prediction, offering a cost-effective alternative for screening 
long QT syndrome. These studies underscore AI's role in enhancing diagnostic and prognostic 
accuracy in diverse clinical scenarios.

3: CLINICAL DEPLOYMENT
Experts  predict  that  AI/ML will  play  a  pivotal  role  in  the  diagnosis,  estimating  prognosis, 
management,  and treatment  of  a  diverse  array  of  medical  conditions.169 While  the  proof-of-
concept  performance  data  of  AI/ML  ECG  models  is  encouraging,  their  true  value  will  be 
measured by their tangible contributions to improving clinical practices and patient outcomes.170 

So  far,  several  AI/ML  models  have  been  tested  in  various  clinical  applications,  including 
algorithms to identify LV dysfunction,153 concomitant silent AF, or the risk of near-term AF.4,171 

Prior  to  deployment  in  the  real  world  clinical  settings,  AI  software  or  models  need  to  be 
approved by regulatory bodies such as the Health Canada, the Food and Drug Administration 



(FDA) and the European Union Medical Device Regulation (EU-MDR). Regulatory agencies 
often  classify  an  AI algorithm as  'Software  as  a  Medical  Device'  (SaMD),  which  is  widely 
recognized  as  software  designed  for  clinical  purposes  but  not  incorporated  as  a  component 
within a physical medical device.172–175 

Since 2019, the FDA has authorized a growing number of SaMD (marketed via 510(k) clearance, 
granted De Novo request,  or premarket approval)  that use AI/ML in healthcare settings.176,177 

Between  2008  and  October  2023,  77  AI/ML  based  SaMD  received  FDA  approval  in 
cardiovascular field, with only 19 SaMD being specifically ECG-based.178 Appendix B provides 
a  comprehensive  list  of  FDA-approved  ECG-based  AI/ML algorithms,  devices,  and  mobile 
applications deployed in clinical settings.

Among the current ECG-based AI/ML SaMDs, ten models are clinician-facing applications for 
medical  facilities  such  as  hospitals,  clinics,  or  doctor's  offices,  whereas  nine  models  are 
exclusively for mobile apps or mHealth devices. Most of the SaMD (n=18) assist with diagnostic 
tasks  to  detect,  identify,  or  assess  heart  rhythms,  while  one  algorithm is  intended  to  aid  in 
screening for LVEF less than or equal to 40% in adults at risk for heart failure. A majority (7/10) 
of  the  clinical-facing  applications  are  for  assessing  abnormal  heart  rhythms  and  arrhythmia 
detection,  focusing  on  AF,  including  asystole,  bradycardia,  atrial  tachycardia,  ventricular 
tachycardia,  NSR, and artifact.  Another  clinician  facing  application  is  the  AI-ECG Tracker, 
which is used for QRS detection, Supraventricular and Ventricular Ectopic Beat detection, QRS 
feature extraction, interval measurement and heart rate measurement. Similarly, the Analytic for 
Hemodynamic Instability  (AHI) software is  used by healthcare professionals managing adult 
inpatients  who  are  receiving  continuous  physiological  monitoring  with  ECG.  Most  of  the 
mHealth device applications (n = 7 out of 9) focus on diagnosing irregular heart rhythms, e.g., 
AF. The rest of the applications assess cardiac activity  and generate reports  for clinicians to 
review. 

4: CHALLENGES AND POTENTIAL SOLUTIONS
Even with the exponential growth of AI/ML within the field of cardiology, the number of models 
deployed in real-world clinical settings remains limited due to numerous challenges.179 Some of 
the  significant  challenges  in  deploying  AI/ML  models  in  daily  clinical  practice  is  the 
trustworthiness,  reliability,  and  regulation  of  such  technologies.  Moreover,  while  AI/ML 
methods are beneficial for capturing intricate patterns in data, they can pose challenges regarding 
interpretability,  generalization,  regularization,  robustness,  stability,  transparency,  and 
optimization.180 Healthcare providers need to understand the high-level decision-making process 
of AI models to trust and effectively use them in clinical practice.
Simplifying complex models without compromising performance, ensuring privacy, security and 
maintaining  regulatory  compliance  is  a  formidable  challenge.181 A summary  of  some of  the 
challenges and potential solutions for ECG-based AI/ML research are presented in Table 1, and 
discussed below.



4.1: Data Quality and Size: 
The success of AI/ML models in ECG analysis relies critically on high-quality data, which must 
be both accurate and representative of the target clinical population. Variability in data source, 
sample size, type, and format, notably between mobile and conventional ECG devices, can lead 
to inconsistencies due to format differences.182  Ensuring data is free from errors, biases, and 
inconsistencies is crucial. Although most studies use standard 12 lead ECG (Figure 3), models 
developed from high-quality databases and well-characterized patient cohorts may underperform 
when applied to ECGs from routine clinical practice due to real-world variability. The challenge 
lies in gathering comprehensive datasets of diverse populations, including various age groups, 
ethnicities, and underlying health conditions. Another major challenge is handling missing data, 
expert  data  annotation,  and  verification.5 Standard  ECG  data,  being  inherently  multi-
dimensional, have prompted some studies to focus on reducing dimensionality to boost algorithm 
performance.56 The  presence  of  nonlinearities  and  complex  transformations  within  ML 
algorithms can challenge the traceability of source data and its processing - which underscores 
the importance of code sharing and, whenever feasible, sharing datasets.

Challenges and potential Solutions

Challenges Potential solutions Phase 

1 Data Quality and Size

Digital voltage-time series traces instead of scanned 
images - preferably standard 12 lead for clinical 
settings, collected from a diverse population, including 
various age groups, ethnicities, and underlying health 
conditions. Ensure expert data annotation and 
verification.

Development, 
Validation

2 Data Imbalance
Weight balancing, SMOTE, Focal loss, N-folds, ECG 
generation, augmentation, balancing loss functions etc.

Development 

3 Model Reproducibility 
Follow standard reporting frameworks such as 
STARD-AI, TRIPOD-AI, CLAIM and open codebase 
for model replication. 

Development, 
Validation

4 Robustness
A well balanced, high quality data with good real-
world representation, data augmentation, synthetic 
data, noise induction, cross domain data 

Development, 
Validation

5
Transparency, Lack of 
explainability 

Standard XAI model and develop new methods for 
model interpretability  

Development, 
Validation, 
Deployment 

6 Generalizability and Bias Socio-demographically diverse datasets,  multi-center 
data; multi-national cohorts, sensitivity analysis for 
out-of-distribution shift or covariate shift, prospective 

Development, 
Validation,



studies and clinical trials; risk of bias assessment tool 
for prediction models such as PROBAST–AI183 

Deployment 

7 Privacy and security
Differential privacy, decentralized distributed  models, 
federated learning, swarm learning, blockchain 
technology

Development, 
Validation, 
Deployment 

8
Regulatory Compliance 
intellectual property concerns

Adaptive standards and streamlined regulatory 
approval process such as health Canada guidelines, EU 
guidance, FDA guidelines.

Deployment 

9
Human factors, uptake by 
healthcare professionals, 
personal liability

Train and educate healthcare professionals, integration 
with workflow, and the design of user interfaces; 
transparent, clinically validated AI system.

Deployment 

10 Scalability 
Comprehensive policy, logistics, technical, and 
financial planning from the government body.

Deployment 

Table 2: Challenges and potential solutions for ECG based AI/ML research.

4.2 Data Imbalance:
Data  imbalance  in  terms  of  class  proportions  refers  to  a  situation  where  the  training  size 
available for class of interest is disproportionately smaller compared to other classes.184 Models 
trained on imbalanced datasets with numerous features yet sparse observations per feature risk 
overfitting, leading to poorer performance on external datasets. Few papers have discussed the 
problem and adopted various data level or algorithm level approaches to handle data imbalance 
issues.  Approaches  such  as  weight  balancing,57 synthetic  ECG  generation,43 focal  loss,185 

Synthetic  Minority  Oversampling  Technique  (SMOTE),117 and  N-folds117,130,186 are  most 
frequently used.

4.3 Model Reproducibility
A  lack  of  standardized  scientific  reporting  and  external  reproducibility  has  hampered  the 
integration of DL models in ECG analysis.187 The inherent complexity of these models, coupled 
with  numerous  variations  in  development  and  design,  necessitates  a  precise  and  detailed 
description of methods. Yet, the field suffers from inconsistent methodological reporting and a 
lack of standardization, as evident in existing studies.188 Standards for Reporting of Diagnostic 
Accuracy Study-AI (STARD-AI) and Transparent Reporting of a multivariable prediction model 
of  Individual  Prognosis  Or  Diagnosis-AI  (TRIPOD-AI)  are  standard  guideline  for  AI/ML 
specific  reporting.189 Similarly,  the  Checklist  for  Artificial  Intelligence  in  Medical  Imaging 
(CLAIM) provides comprehensive guidelines for the wide-ranging use of AI in medical imaging, 
particularly focusing on aspects of model development.190 It's unclear to what extent existing 
studies have strictly complied with established guidelines.  Standard definitions,  including the 
characterization of cohorts used for assessment of model performance vary across publications, 



leading to ambiguity in discerning models that have undergone external testing from those prone 
to bias or overfitting.

Figure 5: Histogram of increasing number of AI-ECG publications with external validation. Data 
and source code availability for reproducibility and standardized scientific reporting.

Moreover,  unlike  traditional  clinical  predictive  models  where  the  publication  of  prognostic 
formulas is mandatory for clinical use,191 the reproducibility and external testing of ECG AI/ML 
models are significantly constrained. Increasingly, the models' external validation are included as 
part of the studies, with most of them demonstrating validity in independent, publicly available 
datasets  (Figure  5  –  left  panel).  However,  source  code  and  accompanying  documentation 
necessary for replicating model training and testing are often missing (Figure 5 - right panel). 
Some publications explicitly state that the codes are proprietary, while others are ambiguous, 
with several indicating potential code sharing upon request and others providing no information 
on code availability. 

4.4 Robustness:
Ensuring that the ECG-based AI model is robust when exposed to the changing environment 
expected during deployment is another major challenge. For example, the study of Han et al.192 

demonstrated that subtle perturbations, barely noticeable on an ECG, could mislead a model, 
highly accurate  in diagnosing AF, into incorrectly  identifying  NSR as AF with considerable 
certainty, despite the ECG appearing unchanged to a human expert. Establishing efficient data 
pipelines is essential  for the seamless flow and processing of ECG data.193 This involves the 
integration of data collection, preprocessing, and transformation processes that are scalable and 
secure. The challenge is to create efficient data pipelines that facilitate the rapid processing of 
large  volumes  of  data  while  ensuring  the  integrity  and  confidentiality  of  sensitive  health 
information.10 In addition,  the computational demands of AI/ML models, especially for those 
processing large datasets or employing complex algorithms, are substantial, and only a limited 
number of studies,194 have implemented and validated optimized frameworks while considering 
low-resource devices and computation power for real-time ECG analysis.

4.5 Transparency and Lack of Explainability



Although  existing  models  such  as  GradCAM  or  saliency  maps  partially  interpret  model 
decisions,195 no perfect method is available for explainability. Integration of ECG-based AI/ML 
models into clinical workflow risk automation bias and over-reliance. Lack of explainability may 
produce  algorithmic  aversion,  causing  clinicians  to  distrust  AI  recommendations  and 
necessitating  improved transparency  for  clinical  adoption.  While  XAI methods  can  interpret 
model outcomes at  a high level,  the utility  of current techniques  for model explainability  in 
clinical  tasks is  still  in question.140,196 In particular,  the underlying algorithms of commercial 
products  pose  significant  challenges  in  assessing  model  failures  due  to  intellectual  property 
concerns. The 'black box' nature of these algorithms, characterized by their use of millions of 
parameters and intricate fine-tuning processes, exacerbates this issue.197 So, developing a model 
that explains the model output is required for clinical applications. 

4.6 Generalizability and Bias
Lack of standardized digital ECG acquisition across clinical and consumer settings as well as the 
challenge of poor-quality data limits the model generalizability of the ECG-based AI/ML models 
in deployment environments. For example, current AI tools developed for digitized ECG traces 
may not translate well to the analysis  of ECGs stored in scanned image formats, restricting their 
use in certain clinical scenarios.4 Current research is probing algorithmic failure during out-of-
distribution (OOD) shifts, leading to inaccurate classifications and uncertainties, highlighting the 
complexity of maintaining model robustness across varying data distributions.198 For example, 
Vranken  et  al.199 investigated  uncertainty  estimation  in  DNN-based  ECG  classification, 
emphasizing the importance of accurate uncertainty estimation for quality control in clinical deep 
learning applications.

To avoid biases and ensure the generalizability of the AI models, prospective validation with 
multisite and multinational data is critical before incorporation into clinical practice.53 Only a 
few studies, such as Ulloa et al.200 validated their model across 10 clinical sites and with external 
temporal  data  testing  sets.  Yet,  as  AI  models  transition  across  sites,  their  performance  can 
diminish,  underscoring  the  importance  of  designing algorithms  that  maintain  efficacy  across 
diverse  populations.201 Predictive  models  must  mirror  the  characteristics  of  the  entire  study 
population to ensure that disease representations and interventions are unbiased and universally 
applicable. However, AI technologies often carry inherent biases, potentially exacerbating health 
equity disparities.202 Studies have demonstrated that AI algorithms can perpetuate racial  bias, 
with specific populations receiving preferential treatment based on skewed risk scores. The key 
question  is  whether  these  models  maintain  consistent  diagnostic  performance  irrespective  of 
racial  or  ethnic  backgrounds.203 Only a  handful  of paper4,204 have validated  their  model  with 
racially diverse cohorts, but validation of their AI-ECG model with multisite or multi-national 
data is still pending. Noseworthy et al.205 demonstrated that ECG characteristics vary by race, and 
the generalizability of the models can be affected by patient selection, with variable performance 
among diverse ethnic, racial, age, and sex groups. Harmon et al.206 used temporal evaluation as 
well as evaluated the algorithms with respect to age, sex, race, and ethnicity. Sun et al showed 



the performance of mortality prediction varied across patients with different primary diagnosis.75 

The potential of AI-ECG algorithms to mirror and intensify existing racial and ethnic disparities 
presents a significant challenge in clinical implementation.3 Furthermore, data used to train these 
algorithms  can   lack  diversity,  with  women,  minority  groups,  and  specific  socio-economic 
sections underrepresented, reflecting real-world biases in healthcare outcomes. The PROBAST-
AI tool, designed for evaluating the risk of bias and the applicability of diagnostic and prognostic 
prediction model studies, offers a structured approach to mitigate bias in AI-driven healthcare 
predictions.
 
4.7: Privacy and Security:
Privacy and security  concerns  are  heightened in  healthcare  data  due  to  the  potential  for  re-
identification, propelled by sophisticated analysis algorithms and vast datasets.207,208 Traditional 
privacy measures like pseudonymization and anonymization may falter, as evidenced by studies 
demonstrating high re-identification rates using demographic attributes.208 As medical data often 
require  handling  personal  or  sensitive  information,  ensuring  privacy  becomes  a  complex 
challenge. However, innovative approaches like differential privacy209,210 introduce random noise 
to  datasets,  safeguarding  individual  identities  while  maintaining  data  utility  for  algorithm 
training. 

Additionally, privacy-preserving AI technologies are evolving towards decentralized, distributed 
systems to ensure data security and protection of sensitive patient data.211–213 These systems, such 
as federated learning and Swarm Learning,214 keep data localized, reducing central vulnerabilities 
and promoting cooperative learning without a centralized command center. For example, Goto et 
al.135 use federated learning approaches to detect HCM and to differentiate it from other cardiac 
conditions  using  ECGs  with  robust  generalizability  across  multi-institute  and  multinational 
cohorts. Vikhyat et al210 use federated learning-based ECG models which allow collaborative 
model  training  without  sharing  data  between  multisite  hospitals  in  Canada.  Further 
advancements  in  cryptographic  techniques,  like  blockchain  technology,215 homomorphic 
encryption,  and  secure  multi-party  computation  (SMPC),211 provide  robust  layers  of  data 
protection. These methods, including cryptographic protocols, have shown promise in sensitive 
fields like cardiology, genetic sequencing, in maintaining participant privacy to a high degree.216 

Establishing  a  rigorous  ethical  framework  and  robust  regulatory  measures  to  address  these 
challenges is essential, ensuring that AI/ML models in healthcare provide equitable, secure, and 
unbiased clinical solutions.

4.8: Ethical and legal considerations
Incorporating  AI  into  clinical  practice  presents  significant  ethical  and  legal  challenges,217 

necessitating robust ethical frameworks and regulatory guidelines for its application to guarantee 
the integrity of data and models.218,219



Although Health Canada, the FDA and  EU-MDR have become increasingly active in advancing 
legislative initiatives on the ethical aspects of AI, the unique adaptability of AI in ECG-based 
diagnosis or prognosis poses distinct challenges.9 Recent studies220 have revealed that supposedly 
de-identified data can still  contain extractable patient information.  For example,  ECG signals 
could  be  sufficient  to   identify  an  individual,  especially  from the  wearable  ECG device  or 
mobile220 The FDA and EU-MDR apply rigorous guidelines to medical technologies, mandating 
that applications like the Apple Watch IRNF App and Samsung Watch ECG Monitor app, which 
pose  varying  levels  of  risk  to  user  privacy,  comply  with  established  regulatory  standards. 
Similarly,  Health  Canada  released  a  draft  premarket  guidance  for  machine  learning-enabled 
medical  devices  recently  which  guides  model  design  for  post-market  device  and  model 
monitoring.  However,  a  robust  legal  framework addressing AI ECG-based clinical  decision-
making is yet to be established.221 Additionally, compliance with data protection laws such as 
The Health Insurance Portability and Accountability Act (HIPAA)  and General Data Protection 
Regulation (GDPR) is critical, especially given the sensitivity of patient data used in AI models. 
Collaboration among AI developers, healthcare providers, and regulatory authorities is crucial in 
shaping clear,  adaptive standards and streamlined approval processes, ensuring AI's safe and 
ethical utilization in clinical care.

4.9. Professional liability and Human factors:
The  issue  of  professional  liability  may  arise  as  AI  influences  clinical  decision-making, 
potentially  obscuring  accountability  in  cases  where  AI-assisted  decisions  result  in  adverse 
outcomes.222 This situation is complicated by the reliance of less experienced clinicians on AI, 
which can lead to diagnostic discrepancies and increased liability risks.222,223 The opaque nature 
of  AI  'black  box'  models,  where  the  decision-making  process  remains  unclear,  further 
complicates responsibility attribution between clinicians and AI developers. For example, athlete 
participation in screening with ECG helps identify cardiovascular abnormalities that elevate risk 
effectively. Yet, institutions fear that standardizing such screenings could increase physician and 
institutional liability, especially if an undetected abnormality leads to an athlete's adverse event 
during competition.224 Thus, a transparent, clinically validated AI system that enhances patient 
outcomes is essential for overcoming skepticism and ensuring clinician acceptance.

Human factors, such as the acceptance of clinicians, integration with workflow, and the design of 
user interfaces, are critical for the successful deployment of AI/ML models in healthcare.225 It is 
crucial to have comprehensive and ongoing training programs to enable healthcare staff to adopt 
clinical applications and familiarize with AI systems. For instance, Sandhu et al.226 have reported 
that integrating AI can complicate clinical workflows and team dynamics, especially in high-
pressure  environments,  thus  highlighting  the  need  for  training  and  digital  literacy  among 
healthcare staff. Overcoming these socio-technical challenges is essential for bridging the gap 
between AI's potential and its practical application in clinical care. 

4.10: Scalability and Global Implementation:



Due to limited resources and diverse regulatory environments, AI/ML healthcare solutions face 
scalability  and  deployment  challenges  in  low-  and  middle-income  countries  (LMIC)s.227 

However, the reliance on specialized training for quality ECG diagnostics emphasizes the need 
for AI/ML implementation in these regions, where human expertise may often be lacking. FDA-
approved wearable AI/ML ECG tools offer a viable solution for monitoring cardiac patients at 
high risk in LMICs, particularly in remote areas with a scarcity of subspecialized cardiologists. 
Case studies,  such as  Krones  and Walker's  work in  rural  Brazil  using a  ResNet  model  and 
XGBoost  for  heart  disease  detection,228 alongside  initiatives  like  Wadhwani  AI229 in  India, 
Ubenwa AI230 in Nigeria, demonstrate the global effort to utilize AI in addressing healthcare 
challenges, including cardiovascular and neurological disorders. However, deploying AI/ML in 
LMICs  faces  challenges  such  as  limited  access  to  necessary  devices  like  smartphones  and 
wearables, affordability and availability of high-speed internet,  infrastructure and government 
support systems, training barriers, and more. The global disparity in physician distribution, the 
accessibility, and affordability is another major challenge, and the overall quality of healthcare 
services is linked directly to the economic status of these regions, influencing the scalability and 
effectiveness  of  AI  healthcare  solutions.231 Adopting  AI-enhanced  ECG solutions  in  LMICs 
requires comprehensive policy, logistics, technical, and financial support planning.

CONCLUSION
AI/ML ECG models are increasingly demonstrating value for diagnosis, prognosis and early 
detection purposes and have captivated the attention of the healthcare community as they can 
directly  impact  patient  care.  Despite  the  significant  advancement  of  AI,  the  successful 
development and deployment of AI/ML-enhanced ECG-based models into clinical applications 
remains relatively sparse, indicating that its full potential to enhance patient outcomes is yet to be 
fully realized. This review examines representative studies at various stages of workflow from 
proof-of-concept to FDA-approved deployed models for clinical applications and sheds light on 
the  essential  considerations  and  challenges  for  deploying  AI/ML  ECG  models  in  clinical 
applications.  The reporting of existing proof-of-concept publications in ECG deep learning is 
inconsistent, often lacking scientific reporting, and being primarily tested on internal or single-
site data. Our findings support the need for standardized pipeline and evaluation criteria to bridge 
the  gap  between  development  of  innovative  AI/ML ECG-based  models  and  their  practical, 
ethical  implementation  in  healthcare  settings.  In  addition,  compliance  with  standardized 
scientific  reporting  guidelines,  alongside  testing  with  external  datasets,  could  significantly 
enhance the field's credibility and reproducibility. However, the impact of AL/ML ECG-based 
models  on  cardiology  is  poised  to  expand  significantly.  To  ensure  that  investments  in  AI 
translate into meaningful clinical benefits rather than leading to disillusionment, it is crucial to 
maintain a balanced approach to developing and implementing these technologies. Standardized 
protocols,  guidelines  and  regulations  on  end-to-end  pipelines  from  development  to  clinical 
deployment can pave the way for ECG based AI/ML to fully realize its promise in enhancing 
patient health and shaping the future of cardiology.
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