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Abstract—Pure Data (PD) is a visual programming language
for computer music that allows users to create applications
through a graph-based, drag-and-drop interface, using objects
and connections to manage program flow. There is a lack of tool
support for computer musicians using PD, particularly for code
completion. In this paper, we introduce TriGraph, a graph-based
probabilistic model specifically designed for code completion in
PD. TriGraph uses statistical analysis of 2-node and 3-node
subgraph frequencies to predict nodes and connections in PD
graphs. Using a dataset of parsed PD files, we train and evaluate
5 TriGraph models, assessing their performance in predicting
nodes and edges in PD graphs. Our evaluations indicate that
the models achieve an average Mean Reciprocal Rank (MRR)
score of 0.39 for node prediction, placing the correct answer
within the top 3 suggestions, and outperforming the n-gram-
based KenLM model on similar tasks. For edge prediction, the
models achieve an average MRR score of 0.57, with results
showing that incorporating both 2-node and 3-node subgraphs
yields better results than using only 3-node subgraphs. These
findings suggest that TriGraph could enhance the productivity of
PD programmers by providing code completion support that may
speed up development, reduce errors, and assist in discovering
available options. These potential benefits highlight its promise as
a valuable support tool for end-user programmers in graphical
environments.

Index Terms—Visual Programming Language, Pure Data,
Probabilistic Models, Graph Analysis, Code Completion

I. INTRODUCTION

Pure Data (PD) [1], [2] is a popular visual programming
language (VPL) for computer musicians to develop musical
applications [3]–[8]. Unlike textual programming languages,
PD uses a graph-based structure where objects or nodes
are arranged on a plane and connected by connections or
edges, which manage the flow of instructions between objects.
Figure 1 shows a PD program that generates a 516 Hz sine
wave, reduces the signal’s amplitude by half, and outputs the
audio. In this PD program, each rectangular box represents
an object, and the connecting lines represent the edges that
communicate signals such as control or audio signals.

Computer musicians are categorized as end-user program-
mers [9], and end-user programmers exceed professional pro-
grammers in number [10]–[12]. Despite this, they receive
little support tailored to their needs in visual programming
languages like PD. Professional programmers using textual
programming languages benefit from code completion tools

Fig. 1: PD program for generating sound

to enhance productivity. In contrast, computer musicians lack
similar tools to help navigate the wide range of nodes and
connections in PD’s graph-like, graphical user interface (GUI)-
based environment, making existing code completion tools
unsuitable for their needs.

To address code completion in visual programming lan-
guages like PD, this paper presents TriGraph, a graph-based
probabilistic model that predicts nodes and connections in
PD graphs by analyzing subgraph frequency statistics. By
focusing on smaller components of the graph, such as 2-node
and 3-node subgraphs, TriGraph offers a granular approach
to understanding and predicting the overall structure and
relationships within the PD graph. We aim to address the needs
of computer musicians by providing a method for visual code
completion, assisting in predicting the nodes and edges of their
PD graphs, thereby potentially improving efficiency.

We use the PD dataset provided by Islam et al. [13],
partition and sample the PD projects into 5 different training
and testing sets, and extract parsed PD files for each dataset.
Subsequently, we construct graphs from the list of nodes and
connections in the parsed PD files. We next identify unique
nodes and count their occurrences. Following this, we extract
2-node and 3-node subgraphs, compute their frequencies, and



collect data on all three-node combinations observed in our
corpus, regardless of the connections between the nodes. Using
our corpus of unique tokens from the training set PD files
and the frequencies of the 2-node and 3-node subgraphs, we
develop TriGraph, a prediction model for Pure Data graphs
based on each of the 5 training sets. This model analyzes
the frequencies and connections of these subgraphs, predicting
both nodes and potential edges within a 3-node subgraph.

Finally, we assess the performance of our TriGraph models
on our test PD graphs by calculating the Mean Reciprocal
Rank (MRR) [14] score for each test graph, covering both node
prediction and edge prediction. We also compare TriGraph’s
performance in node prediction with that of the widely used
n-gram based KenLM Language Model Toolkit [15]–[18], to
highlight the effectiveness of our graph-based approach.

We address the following research questions in this paper:
RQ1: In the scenario of a PD graph featuring an unknown

node, how effectively can our TriGraph model pre-
dict which node will fill the unknown position?

RQ2: Given three nodes in a PD graph that could po-
tentially be interconnected, how effectively can our
TriGraph model identify the most probable edges
connecting these 3-node combinations?

We found that, our TriGraph models achieve an average
MRR of 0.39 for node prediction and 0.57 for edge prediction,
meaning the correct predictions typically rank within the top
2-3 positions. In contrast, the order 3 KenLM models, built
using paths from our PD files, score an average MRR of
0.30, placing correct node predictions around the 3rd or 4th
position. These results show that our graph-based TriGraph
model outperforms the KenLM model in node prediction
when given similar context. Additionally, we found that the
performance of edge prediction is enhanced when both 2-
node and 3-node subgraphs are used, as opposed to using
only 3-node subgraphs. This indicates that incorporating 2-
node subgraphs along with 3-node subgraphs provides a more
detailed understanding of the graph structure.

Our contributions can be described in three main points.
1) We introduce TriGraph, a novel graph-based probabilis-

tic model for PD graphs, which predicts nodes and con-
nections using subgraph frequency analysis. This model
has the potential to be used for visual code completion
in computer music, addressing a gap in support tools for
end-user programmers.

2) We empirically demonstrate that our TriGraph model
outperforms the n-gram based KenLM model in node
prediction ranking, based on evaluations with a PD
dataset.

3) We show that edge prediction is more accurate when
using both 2-node and 3-node subgraphs compared to
using only 3-node subgraphs.

Our findings show that probabilistic models effectively
predict PD graph structures, addressing challenges in capturing
the unique properties of PD graphs and laying a foundation
for future research in this area.

II. RELATED WORK

We categorize the relevant literature in four ways, as de-
tailed below.

A. End-User Programmers and Available Support Tools

Visual programming languages enable end-user program-
mers, who typically have limited or no programming back-
ground, to create multimedia applications tailored to their work
domains by using drag-and-drop components on a GUI instead
of writing textual code [19], [20]. Ko et al. [21] defines end-
user programmers as individuals who develop applications
mainly for personal use, unlike professional programmers
who produce code for public use. The number of such users
surpasses the number of professional programmers by a 30-
to-1 ratio [10], [22]. Despite not being professional program-
mers, end-user programmers encounter software engineering
challenges such as exploring available options in the VPL,
testing, and debugging [21].

Examples of visual programming languages designed for
specific applications such as game development, real-time and
interactive sound synthesis, music transcription, and speech
processing include Scratch, Pure Data, and Max/MSP. Recent
studies have concentrated on developing software engineering
tools tailored to these visual programming language domains.
For instance, Scratch users benefit from linters that identify
issues and offer suggestions on solving them [23], testing
frameworks [24], [25], and similarity measurement between
Scratch projects [26]. Studies have also explored clone detec-
tion and defect prediction models for VPLs like Max/MSP and
Pure Data [9], [27], [28]. While Scratch has hint generation
tools [29] and code completion tools [30], no such tools
currently exist for Pure Data, which is characterized by its
graphical layout.

B. Link Prediction

Link prediction aims to determine whether an edge should
exist between two nodes based on the current graph structure
and potential future connections [31], [32]. This is particularly
relevant to our second research question, as PD graphs are
directed, and predicting edges in these graphs aligns with link
prediction in graph theory.

Existing link prediction methods include techniques based
on similarity scores, probabilistic models, and dimensionality
reduction [33]. Wang et al. [34] examined knowledge graph
embedding models for link prediction to address challenges
in incomplete knowledge graphs. Neural networks have also
been applied to link prediction, with Cukierski et al. [31] using
similarity scores and supervised classification on extracted
graph features to distinguish real edges from fake ones in
social network graphs. Zhang et al. [35] utilized graph neural
networks to analyze enclosing subgraphs around the links for
link prediction.

While traditional approaches rely on similarity scores, graph
neural networks, or embeddings, our method prioritizes a
simpler, more interpretable edge prediction model aligned
with TriGraph’s subgraph-based node prediction methodology.



Future research could explore advanced techniques to further
enhance the performance of our edge prediction model.

C. Code Completion and Suggestion Using Statistical Lan-
guage Models

Source code is repetitive, making it statistically modelable
by language models for learning patterns that can be valuable
in code prediction and suggestion tasks [36]. In the realm
of code completion, there is a notable scarcity of tools
specifically designed for visual programming languages. A
commonly used model for code completion is the n-gram
model [37], which predicts the next tokens based on the
previous n - 1 tokens.

Recent studies have applied n-gram models for code com-
pletion [38]. Raychev et al. [38] used the history of API
method calls as training sentences for an n-gram and recurrent
neural network model to generate candidate program com-
pletions for partial programs, achieving 90% of predictions
in the top three results. However, their work did not address
code completion for graph-like visual programming languages,
focusing instead on API calls in textual languages. Other
probabilistic models, such as decision trees, have also been
employed to predict code fragments. For example, Raychev
et al. [39] used a decision tree model trained on ASTs of
programs to predict JavaScript and Python program elements.

Despite these advancements, no work has been done in the
visual programming language prediction domain, specifically
for Pure Data, using probabilistic graph-based models for code
prediction. Additionally, n-gram models generally struggle
with predicting code segments due to their reliance solely
on previous tokens, whereas source code, whether textual or
visual, has complex dependencies [40].

D. Code Completion and Suggestion Using Neural Language
Models

Representing source code as graphs or abstract syntax trees
(ASTs) significantly improves the performance of prediction
models [39], [41], [42], which can be beneficial for pre-
dicting nodes and edges in PD. However, existing textual
code completion tools that utilize ASTs often employ neural
networks [43] and deep learning frameworks, which require
substantial computational resources. For instance, Ciniselli et
al. [44], [45] used BERT [46] and transformer-based [47]
models for predicting single tokens, sentences, and blocks of
code. Kim et al. [42] used a transformer architecture based on
ASTs for next token prediction in Python. Wang et al. [48]
used a pre-order depth-first traversal of a flattened AST to
predict the nodes of an AST graph using a graph neural
network [49] and attention mechanism [50].

While neural networks, deep learning models, and large
language models (LLMs) have revolutionized code completion
for textual programming languages, they come with their
own challenges, such as high computational resource require-
ments and non-interpretability [51]. Using LLMs should be
approached with caution due to the potential for data leakage,
output variability, and other issues [52].

III. METHODOLOGY

We utilized the publicly available PD dataset from Islam et
al. [13], [53], [54] to construct our graph-based probabilistic
model for PD code completion. The dataset includes mirrors of
the original Git [55] repositories and an SQLite [56] database
containing extracted metadata of publicly available 6,534 PD
projects on GitHub. This metadata encompasses the revisions
of the PD files, parsed source code of PD files, and commit
related information from the project repositories [13].

Our goal is to predict nodes and edges in PD graphs by
analyzing 2-node and 3-node subgraphs. We divided the PD
projects into 5 training and test sets, extracting and parsing PD
files for each. From these files, we constructed graphs based on
nodes and connections, identified unique nodes like msg and
tgl, counted their occurrences, and stored this data in our
corpus. We also counted occurrences of 2-node and 3-node
subgraphs and added these to the corpus.

Using the corpus of unique tokens and observations of
the subgraphs, we developed TriGraph, a prediction model
for PD graphs that uses subgraph probabilities to predict the
content of unknown nodes. By analyzing the occurrences and
connections within 2-node and 3-node subgraphs, we also
predicted potential connections between nodes in a 3-node
subgraph, implementing two methods for edge prediction for
comparative analysis.

For our evaluation metric, we selected Mean Reciprocal
Rank (MRR) because it aligns with our model’s ranked output,
similar to the ranked suggestions in IDE code completion
systems. MRR prioritizes the rank of the correct prediction,
effectively measuring how quickly users find relevant sugges-
tions. It also inherently incorporates metrics like accuracy@k,
top-k, and recall@k while penalizing lower-ranked answers,
making it ideal for evaluating code completion models.

To evaluate our TriGraph model, we treated each PD file in
our test set as a graph, replacing each node with a blank to
predict the missing element, and predicting the most probable
connections for 3-node subgraphs. We assessed performance
across all 5 test sets, saving the top 10 predictions for each
node and subgraph to calculate the MRR score. Additionally,
we compared the node prediction performance of TriGraph
with the KenLM language model. For edge prediction, we im-
plemented two versions: one utilizing only 3-node subgraphs
and another combining both 2-node and 3-node subgraphs.

To address unseen node combinations in the test set, we
applied smoothing, a method that assigns small probabili-
ties to unseen words, preventing the model from assigning
zero probability to words missing from the training set but
present in the test set [51]. TriGraph adapts traditional n-
gram smoothing methods, such as Kneser-Ney smoothing [57]
and stupid backoff [58], by relying on lower-order subgraph
probabilities down to single nodes after discounting when a
3-node subgraph is missing. Unlike the traditional Kneser-Ney
smoothing, which uses lower-order n-gram probabilities when
higher order n-grams are missing, TriGraph utilizes lower-
order subgraph probabilities due to its graph-based nature. In



contrast, KenLM uses modified Kneser-Ney smoothing [59],
which is a variation of the original Kneser-Ney smoothing.

The code for TriGraph is publicly accessible to facilitate
future research [60]. The training process for our model is di-
vided into three stages: Data Preparation, Graph Construction,
and Subgraph Analysis. These stages are described in detail
in the following sections.

A. Data Preparation

We partitioned the PD projects into an 80-20 split for train-
ing and testing. This process was repeated 5 times, creating
different train-test sets each time with a randomly selected
set of projects for training and testing. Given the limited
availability of public PD datasets, this strategy helped evaluate
the generalizability of the model across different training and
test sets, making the results more robust.

For each set of train-test sets, we collected the SHA-
256 [61] hashes of the parsed PD file contents, which corre-
spond to the revisions of the PD files, for both the training and
test projects. Then, we refined the test hashes by eliminating
any matches found in the training set to assess our model’s per-
formances on paths generated from previously unseen parsed
contents. This process guarantees that our training and test data
originate from distinct projects, minimizing overlaps and data
leakage between them. Our training sets contain an average
of 168,912 PD files (graphs), while our test sets include an
average of 34,412 graphs across the 5 sets.

B. Graph Construction

Using the dataset provided by Islam et al. [13], we parsed
the contents of PD files to generate graphs from the PD source
code. We extracted a list of connections between the PD file
objects using the Contents table from the dataset for each
parsed content. We constructed a directed graph using the
connection information extracted from each parsed content.
Notably, in the reconstructed graph, nodes represent object
types rather than values or additional parameters.

Following that, we computed the frequency of each unique
node, as well as pairs and triplets of nodes within the graph,
and recorded the results. For instance, in the first model, our
training set includes 34,565 unique nodes, with msg being
the most frequent, appearing 2,880,151 times across all parsed
PD programs. Message boxes are containers for one or more
messages, which are transmitted to their designated outlets or
destinations upon activation of the box [1], [2].

C. Subgraph Analysis

We collected data on 2-node and 3-node subgraphs from
each PD file graph to build our training subgraph corpus. For
the 2-node subgraphs, we examined the graph’s nodes and
edges to understand their connectivity. Then, we applied a
depth-first search of length two from each node in the undi-
rected version of the graph to identify subgraphs containing 3
nodes. For instance, for the first model, our training corpus
contains 217,806 unique 2-node subgraphs and 1,285,324
unique 3-node subgraphs.

To uniquely identify the 2-node and 3-node subgraphs, we
generated a key for each subgraph using the indices of the
elements in the subgraph, concatenated with their adjacency
matrix. For example, for a subgraph where msg connects
to floatatom, with msg having an index of 100 and
floatatom having an index of 95 in our corpus of unique
tokens, the key to uniquely identify this subgraph would
be 95,100,0010. Here, 0010 represents the adjacency
matrix between these two nodes. For a 2-node subgraph,
we constructed a 2×2 matrix where the first row represents
connections originating from the node with the earlier index in
our unique tokens corpus, and the second row represents con-
nections from the subsequent node. Similarly, we constructed
3×3 adjacency matrices for the 3-node subgraphs. It should
be noted that, during the process of assigning indices to the
tokens in our unique tokens corpus, the tokens were sorted in
lexicographical order.

We recorded the frequency of each subgraph to facilitate
probability calculations. Additionally, we stored information
on all three-node combinations seen in the training graphs to
assist in our prediction stage.

For instance, Figure 2 illustrates the corpus creation process,
where a PD graph is reconstructed from the parsed content
stored in our dataset, along with the extracted subgraphs and
their frequencies. The depicted corpus contains 3 unique 1-
node subgraphs, 3 unique 2-node subgraphs, and 2 unique 3-
node subgraphs. Each subgraph’s occurrence count is recorded
to facilitate score calculations during prediction. Subgraphs are
uniquely identified using the indices of their nodes and their
adjacency matrix. For instance, the subgraph floatatom →
osc∼ is represented by the key 1,2,0100, where 1 and 2
correspond to the indices of floatatom and osc∼ in the
example corpus, respectively, and 0100 encodes the adjacency
matrix, indicating an edge from floatatom to osc∼.

IV. TRAINING AND EVALUATING THE BASELINE KENLM
MODEL

KenLM is a popular n-gram-based language model, com-
monly applied in speech recognition, processing, and re-
lated technologies, as well as in machine translation [62]–
[66]. It employs modified Kneser-Ney smoothing [59] and is
renowned for its efficiency and scalability [15]–[18].

We chose KenLM as the baseline for our node prediction
model since both models rely on statistical probabilities for
prediction. Unlike our graph-based TriGraph model, which
uses graph properties, KenLM predicts nodes based on sequen-
tial token context. Despite not being graph-based, KenLM is a
suitable baseline, since n-gram models have been successfully
applied to source code related tasks such as code completion,
API method call prediction, syntax error detection, and code
template generation [36], [38], [67], [68]. Comparing our
model to KenLM provides insights into traditional token-
based approaches in visual code completion, emphasizing the
benefits of our graph-based method.
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Fig. 2: Corpus creation

A. Choosing an Appropriate N-gram Order

We began by training the KenLM models using n-gram
orders of 3, 4, and 5 for all five training sets. After that,
we selected a random subset of 250 PD graphs from the
each of the 5 test datasets to evaluate the KenLM models’
performance. Figure 3 presents the MRR distribution for
models 1–5 across orders 3–5. We observed that the median
MRR values for the 3-gram models range from 0.27 to 0.30,
while for the 4-gram models, the median is between 0.29 and
0.31, and for the 5-gram models, it ranges from 0.29 to 0.32.

We found that the 4-gram and 5-gram models generally
outperformed the 3-gram models, though the difference in
median MRR between 3-grams and 4 or 5-grams was less
than 0.02 across all 5 models. Additionally, the performance
of the 4 and 5-gram models was quite similar, with minimal
or no improvement in median MRR. Considering the runtime
required to train and test higher-order models, and the rela-
tively small performance gain, we decided to use the 3-gram
models for comparison with our graph-based node prediction
models. Using a 3-gram model also ensures that KenLM and
TriGraph operate with a similar context size, as we used 2-
node and 3-node subgraphs for node prediction in TriGraph.

B. Training the 3-gram KenLM Model

To train the 3-gram KenLM model, we began by parsing our
training graphs and extracting paths by following the edges
between objects. Each path is a sequence of tokens separated
by spaces. By default, KenLM pads each sequence (or paths, in
our case) with start and end tokens. We then used these paths
from our training graphs to train an order-3 KenLM model.

C. Evaluating the 3-gram KenLM Model

To evaluate the KenLM model for the node prediction
scenario, for each test graph and each node within the test
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Fig. 3: Node prediction (KenLM) MRR distributions for 3 to
5-grams

graph, we extracted paths ending in that node containing at
most 3 nodes, ensuring fairness with our TriGraph model.

For each node in the test graph, we gathered the paths
ending in that node and replaced the node with a blank. We
then filled the blank with each word from our vocabulary of
unique tokens, scoring the paths using the score function
from KenLM. We maintained a heap of the top 10 tokens
with the highest scores and compared the index of the actual
node in this heap to calculate its reciprocal rank. This process
was repeated for all 5 training and testing sets.

V. DEFINING, TRAINING, AND EVALUATING THE
TRIGRAPH MODEL

After constructing our corpus of subgraphs, we aim to
explore and analyze the predictive capabilities and practical
applications of our TriGraph model. We want to understand
how well the model can predict missing nodes, and establish
the most probable connections between nodes in a PD graph.
The following sections describe our research questions in
detail, outlining the methodologies used to answer them.



A. RQ1: Predicting an Unknown Node of a PD Graph

Our first research question asks: “In the scenario of a PD
graph featuring an unknown node, how effectively can our
TriGraph model predict which node will fill the unknown
position?” This research question highlights the practical
application of our graph-based probabilistic model for visual
code prediction. By analyzing subgraph probabilities, we pre-
dict which nodes are likely to occupy an unknown position in
a PD graph, aiding end-user programmers in making informed
decisions during their work.

Our approach to node prediction is based on a common
method for adding nodes in a PD graph through the PD GUI.
In PD, nodes can be added in two ways: (i) selecting them
from a drop-down menu, or (ii) creating an empty object box
and manually entering the node name. Our work simulates
scenario (ii), where users create an empty box but are unsure
what to input. Despite a lack of user studies on the most
common approach, our node prediction strategy follows a
recognized method of adding nodes in PD. Future work could
use observations or surveys to confirm how often this method
is used to add new nodes.

We first identify all 3-node subgraphs involving the un-
known node and score them by their probabilities. By ag-
gregating the predictions from these subgraphs, we select the
top 10 candidates with the highest scores to fill the unknown
position. The probability of a subgraph is determined using
the probabilities of the 1-node, 2-node, and 3-node subgraphs
in our corpus.

The probability of an n-node subgraph Sn is calculated as:

Pn(Sn) =
Occurrences of Sn in our corpus∑
Occurrences of all n-node subgraphs

where, n can be 1, 2, or 3. If a node is not present in our
corpus, we assign it a small probability value ϵ. For our model,
the ϵ value is as follows:

ϵ = 0.5×
(

1∑
Occurrences of all unique nodes

)
Here, by occurrences, we refer to the number of times a

particular item has been observed in our corpus. Additionally,
the ϵ values across our 5 models range from 2.66 × e−8 to
2.92× e−8.

The algorithm for scoring a subgraph first checks if all nodes
in subgraph S exist in the unique token corpus. If they do, it
searches for the 3-node subgraph key; if found, the score is
set to the corresponding probability. If not, a discount factor δ
of 0.05 is applied to penalize the absence, and the algorithm
evaluates smaller 2-node subgraphs. The discount factor (0.05)
was selected arbitrarily, as it is a commonly used threshold
for p-values in statistical tests; however, future research could
investigate its impact. For each 2-node connection, it checks
for presence in the corpus, calculating the probability if found,
or applying the discount if not. If no 2-node subgraphs exist,
probabilities for individual nodes are computed, or a small
default probability is assigned if nodes are missing. The final

score is then returned. The scoring process is summarized by
the following equation.

P (Sn, n)

=


ϵ if n = 0

Pn(Sn) if Sn ∈ corpusn
δ ×

∏
x∈subgraphs(Sn−1,n−1)

P (x, n− 1) else

To identify potential candidates for an unknown node in
a subgraph, we search our corpus for nodes that have been
previously observed with the other two nodes. For example,
in the subgraph BLANK→ msg; BLANK→ floatatom, we
look for nodes seen with msg and floatatom. We compile
these nodes as candidates, place them in the unknown position,
and score the subgraph. If no candidates are found, indicating
that either or both of the other nodes have not been seen, we
iterate through all unique tokens to predict the unknown node.

We maintain a max-heap of size 10 to store the top-scoring
candidates from subgraphs containing the unknown node. We
store negative log scores to ensure the candidate with the
highest negative log score (lowest real score) stays at the top,
replacing it if the heap reaches capacity. Finally, we record
the index of the correct prediction to calculate the MRR score,
assigning -1 as rank if the correct node is not in the top 10.

The algorithm used to determine the rank of the node
prediction TriGraph model is outlined in Algorithm 1.

Algorithm 1 Predict an unknown node in a PD graph

Require: 3-node subgraphs containing the unknown node:
subgraphs

Ensure: Rank of predicted token: rank
1: Initialize heap H with size limit 10
2: for each S in subgraphs do
3: cunknown ← potential candidate nodes for unknown
4: for each c in cunknown do
5: S c← S with c in unknown position
6: P (S c)← −log(P (S c3, 3))
7: p← (c, P (S c))
8: if |H|>= 10 then
9: if P (S c) < biggest(H) then

10: popBiggest(H)
11: end if
12: end if
13: Insert(H, p)
14: end for
15: end for
16: Sort H by P (S c) (ascending)
17: rank ← index of original unknown node in H
18: if original unknown node not found in H then
19: rank ← −1
20: end if
21: return rank

For example, suppose we aim to predict the + node shown
in Figure 4. The process begins by replacing the node with



an unknown placeholder, which our model will attempt to
predict. First, we identify the 3-node subgraphs that contain
this unknown node. Then, potential candidates for the missing
node are selected based on nodes that have previously co-
occurred with the other nodes in the subgraph.

Using the corpus in Figure 2, consider the subgraph msg→
unknown → floatatom. The candidate node must be one
that has previously appeared with both floatatom and msg.
Since this specific node combination has not been observed in
the corpus, we iterate through the entire vocabulary to predict
the unknown node. Conversely, if we had encountered a known
combination, such as floatatom and *∼, the corpus would
suggest osc∼ as the candidate node.

Once candidate nodes are selected, they are inserted into
each extracted subgraph and scored using a predefined scoring
function. Finally, the 10 highest-scoring candidates are ranked
to determine the most likely prediction for the unknown node.
This procedure is illustrated in Figure 4.

B. RQ2: Predicting Edges between the Nodes of a 3-node PD
Subgraph

The second research question aims to identify the most
likely method of connecting three nodes within a PD graph.
We try to answer: “Given three nodes in a PD graph that
could potentially be interconnected, how effectively can our
TriGraph model identify the most probable edges connecting
these 3-node combinations?” By capturing structural relation-
ships between nodes, this research question helps end-user
programmers understand PD graph connections and guide data
flow based on observed node interactions.

We extract 3-node subgraphs from our test graphs to predict
possible connections among their nodes. Two distinct edge
prediction models are implemented based on the number of
nodes considered. We initialize a max-heap H of size 10. If
all nodes of a 3-node subgraph are found in the unique tokens
corpus, we retrieve their adjacency matrices and assign them to
H . The first model predicts edges based solely on previously
encountered 3-node subgraphs. If the heap is empty, indicating
the nodes have not been seen together or some nodes are
unknown, the model returns -1, signifying an inability to
predict unseen node connections.

The second model, however, incorporates both 2-node and
3-node subgraphs. If the heap is empty, it checks for adjacency
matrices between pairs of nodes within the subgraph using a
map linking 2-node pairs to their adjacency matrices. Potential
3×3 adjacency matrices are generated by combining these
matrices, which are then added to the heap. The rank of the
true adjacency matrix in the heap is determined and returned;
if not found, -1 is returned.

Additionally, to address node pairs in the test set with
no previously observed connections, we apply smoothing,
assuming a default scenario of no connections. This is treated
as if the connection appeared at least once (adjnode0,node1 =
“0000”, count adjnode0,node1 = 1). This strategy is utilized
in the second model, ensuring an adjacency matrix is present
for each node pair before calculating the score.

The negative log probability score of each generated matrix
is assigned as follows:

neg log prob

= − log

(
count adj01 × count adj12 × count adj02

(
∑

Occurrences of all 2-node subgraphs)3

)
where
count adj01 = occurrences of the adjacency matrix between

node 0 and node 1
count adj12 = occurrences of the adjacency matrix between

node 1 and node 2
count adj02 = occurrences of the adjacency matrix between

node 0 and node 2
The algorithms for predicting connections between the

nodes of a 3-node subgraph in both versions of the edge
prediction TriGraph model are detailed in Algorithm 2 and
Algorithm 3.

Algorithm 2 Predict edges in subgraph: 3-node subgraphs

Require: 3-node subgraph subgraph, 3-node-
to-adjacency matrix map 3 node map =
(key, list((adjacency matrix, neg log prob))),
Unique token corpus unique tokens, True adjacency
matrix: true matrix

Ensure: Rank of true matrix: rank
1: Initialize heap H with size limit 10
2: if all nodes of subgraph in unique tokens then
3: key ← generate key using node indices from

unique tokens
4: adjacency matriceskey ← 3 node map[key]
5: H ← adjacency matriceskey
6: end if
7: if |H|== 0 then
8: rank ← −1
9: return rank

10: end if
11: Sort H by negative log probability scores (ascending)
12: rank ← index of true matrix in H
13: if true matrix not found in H then
14: rank ← −1
15: end if
16: return rank

For example, suppose floatatom → osc∼ → *∼ is a
3-node subgraph with → indicating connections between the
nodes. The goal of our edge prediction model is to predict the
most likely connection between these three nodes using the
corpus, without prior knowledge of their actual connections.
The first edge prediction model, as described in Algorithm 2,
predicts edges based on previously observed 3-node sub-
graphs. It begins by searching for connections involving the
three nodes in the corpus. In this case, the model searches
for connections between *∼, floatatom, and osc∼, using
their indices, which are 0, 1, and 2, respectively, according
to the example corpus in Figure 2. The corpus shows two
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previously observed connections between nodes 0, 1, and
2, with adjacency matrices 000001100 and 000100100.
These matrices are placed in a heap, each assigned a score
based on the number of occurrences. The 10 highest-scoring
matrices are stored, representing the most likely connections
between the nodes. If the nodes have not been observed
together, the model returns -1 as the rank for the query.

The second model, as described in Algorithm 3, combines
2-node and 3-node subgraphs to predict possible connections
between 3 nodes. If the 3-node combination has not been
observed before, the model generates 3×3 adjacency matrices
by combining 2×2 matrices of the 2-node subgraphs that
involve the pairs of nodes in the 3-node subgraph. For instance,
in this case, the model will look for connections between nodes
0 and 1; 1 and 2; and 0 and 2. A default “no connection”
scenario is added, and 3×3 adjacency matrices are generated
by combining the 2×2 matrices. The model assigns a score
to each generated matrix and stores the 10 highest-scoring
matrices in the heap. The rank of the true adjacency matrix is
determined and returned. If the true matrix is not found, the
model returns -1 as the rank for this query. An example of a
3×3 matrix generated by combining the adjacency matrices
of nodes 0, 1, and 2 from the 2-node subgraph corpus in
Figure 2 is 000101100. This matrix is derived from the
2×2 adjacency matrices representing the connections between
nodes 0 and 1; 1 and 2; and 0 and 2.

VI. EVALUATION AND RESULTS

This section presents the results of our research questions.
For each parsed content from our test hashes, we construct
graphs using the methodology from Section III-B. We replace
each node with a blank to predict the missing node, following
the procedure in Section V-A. Additionally, we extract 3-
node subgraphs from our test graphs and predict connections

among nodes within each subgraph using the algorithms in
Section V-B. We record the index of the correct prediction
from the heap and calculate the MRR score for both node and
edge prediction scenarios using the following formula:

MRR =

∑N
i=1 RRi

N

where N represents the total number of nodes (queries)
in the graph for the node prediction scenario and the total
number of 3-node subgraphs (queries) in the graph for the
edge prediction scenario. The reciprocal rank (RR) of a node
is calculated as follows:

RR =

{
1

rank if rank > 0

0 else

In this context, rank represents the index of the correct
prediction in the heap.

Additionally, we used the Mann-Whitney-Wilcoxon
(MWW) test [69] to assess the statistical significance of
the differences in results between our models for node and
edge prediction. Specifically, the MWW test was applied
to compare the MRR scores of all 5 TriGraph models with
all 5 KenLM models for node prediction and to evaluate
the MRR scores of the two versions of our edge prediction
algorithms, determining whether the observed differences
were statistically significant. In the following sections, we
discuss our TriGraph model’s performance in node and
edge prediction and compare TriGraph’s node prediction
performance with the KenLM model.

A. RQ1: Node Prediction Performance

Table I shows that TriGraph achieves a mean MRR value
between 0.38 and 0.40 across the 5 test sets, indicating that the



Algorithm 3 Predict edges in subgraph: 2 and 3 node sub-
graphs

Require: 3-node subgraph subgraph, 2-node-
to-adjacency matrix map 2 node map =
(key, list((adj mat, neg log prob))), 3-node-
to-adjacency matrix map 3 node map =
(key, list((adj mat, neg log prob))), Unique token
corpus unique tokens, True adjacency matrix:
true matrix

Ensure: Rank of true matrix: rank
1: Initialize heap H with size limit 10
2: if all nodes of subgraph in unique tokens then
3: key ← generate key using node indices from

unique tokens
4: adjacency matriceskey ← 3 node map[key]
5: H ← adjacency matriceskey
6: end if
7: if |H|== 0 then
8: node0 node1, node1 node2, node0 node2 ← [], [], []
9: for each pair of nodes (i, j) in [(0, 1), (1, 2), (0, 2)] do

10: if both nodei and nodej in unique tokens then
11: key ← generate key using node indices from

unique tokens
12: nodei nodej ← 2 node map[key]
13: end if
14: end for
15: for each pair of nodes (i, j) in [(0, 1), (1, 2), (0, 2)] do
16: nodei nodej .push back({“0000”, 1})
17: end for
18: for item01 in node0 node1 do
19: for item12 in node1 node2 do
20: for item02 in node0 node2 do
21: adj mat ← 3×3 matrix from item01, item12,

item02

22: p← (adj mat, neg log probadj mat)
23: if |H|>= 10 then
24: if neg log probadj mat < biggest(H) then
25: popBiggest(H)
26: end if
27: end if
28: Insert(H, p)
29: end for
30: end for
31: end for
32: end if
33: Sort H by negative log probability scores (ascending)
34: rank ← index of true matrix in H
35: if true matrix not found in H then
36: rank ← −1
37: end if
38: return rank

TABLE I: Summary statistics of node prediction MRR by
KenLM and TriGraph model

Model Name Total Mean Min Q1 Q2 Q3 Max

KenLM

1 37,620 0.31 0 0.22 0.29 0.38 1.0
2 34,303 0.30 0 0.21 0.29 0.37 1.0
3 39,586 0.31 0 0.23 0.30 0.38 1.0
4 23,576 0.31 0 0.22 0.30 0.38 1.0
5 31,070 0.30 0 0.22 0.30 0.37 1.0

Average 33,231 0.30 0 0.22 0.29 0.37 1.0

TriGraph

1 37,620 0.39 0 0.29 0.39 0.48 1.0
2 34,303 0.38 0 0.28 0.39 0.48 1.0
3 39,586 0.39 0 0.31 0.39 0.48 1.0
4 23,576 0.40 0 0.31 0.41 0.50 1.0
5 31,070 0.39 0 0.31 0.39 0.47 1.0

Average 33,231 0.39 0 0.30 0.39 0.48 1.0

correct prediction usually ranks within the top 2-3 predictions.
Additionally, 0.09% to 0.17% of the graphs evaluated across
the test sets achieved an MRR of 1.0, while 1.59% to 2.25%
received an MRR of 0, highlighting instances where the model
failed to predict the nodes correctly. We also evaluated the
KenLM model on our test datasets, which yielded a mean
MRR score ranging from 0.30 to 0.31, suggesting that the
correct node typically ranks within the top 3-4 positions
predicted by the model.

Based on Figure 5, TriGraph clearly outperforms KenLM in
terms of node prediction performance as shown by the higher
median. We also observe that between 0.62% and 1.38% of
test graphs across the 5 test sets yielded an MRR score of 0
for KenLM. Additionally, TriGraph achieved an MRR score of
1.0 for 0.09% to 0.17% of test graphs, while KenLM achieved
this for only 0.008% to 0.04% of test graphs, indicating our
model’s superior ability to accurately predict nodes across
more test graphs.

We also conducted the MWW test to evaluate whether the
difference in MRR scores for node prediction between our
TriGraph model and KenLM is statistically significant. Our
null hypothesis, H0: There is no significant difference between
the node prediction MRR scores of the TriGraph model and
KenLM, was tested at a significance level of α = 0.05. The
resulting p-values for MRR scores across all 5 test sets were
less than 2.2 × e−16, which is below the α threshold. Thus,
we reject the null hypothesis and conclude that the MRR
scores of the TriGraph model and KenLM are from different
distributions. This result suggests that our TriGraph model
outperforms KenLM in node prediction, likely due to its use
of subgraph analysis instead of a linear path structure.

B. RQ2: Edge Prediction Performance

Table II shows that our second TriGraph model for edge
prediction achieves a mean MRR value between 0.55 and 0.61
across the 5 test sets, indicating that the correct prediction
typically ranks in the second position according to our model.
Additionally, among the evaluated graphs by this model,
3.58% to 5.68% test graphs achieved an MRR of 1.0, while
2.83% to 6.84% graphs received an MRR of 0, indicating
instances where the model did not correctly predict the edges.

Furthermore, our first TriGraph model for edge prediction,
which considers only 3-node subgraphs, exhibits similar per-
formance, with a mean MRR ranging from 0.54 to 0.60 across
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TABLE II: Summary statistics of edge prediction MRR by
TriGraph models

Subgraphs Considered Model Name Total Mean Min Q1 Q2 Q3 Max

3-node subgraphs

1 37,178 0.55 0 0.38 0.60 0.76 1.0
2 33,963 0.54 0 0.33 0.59 0.74 1.0
3 39,101 0.57 0 0.42 0.61 0.76 1.0
4 23,273 0.60 0 0.48 0.65 0.77 1.0
5 30,780 0.56 0 0.41 0.60 0.74 1.0

Average 32,859 0.56 0 0.40 0.61 0.75 1.0

2- & 3-node subgraphs

1 37,178 0.56 0 0.39 0.61 0.76 1.0
2 33,963 0.55 0 0.35 0.60 0.75 1.0
3 39,101 0.58 0 0.43 0.62 0.76 1.0
4 23,273 0.61 0 0.49 0.66 0.78 1.0
5 30,780 0.57 0 0.42 0.61 0.75 1.0

Average 32,859 0.57 0 0.41 0.62 0.76 1.0

the 5 test sets, with 3.03% to 7.48% of test graphs achieving
an MRR score of 0, while 3.47% to 5.6% achieving an MRR
score of 1.0. This suggests that using both 3-node and 2-node
subgraphs for edge prediction improves the results, although
the difference is small.

Figure 6 compares the performance of the two versions of
models in our edge prediction scenario, demonstrating that
the second edge prediction model performs slightly better
by incorporating the 2-node subgraphs along with the 3-
node subgraphs from our corpus. This could imply that 2-
node subgraphs capture simpler patterns of connections and
complement the information from 3-node subgraphs, offering
a more comprehensive understanding of the graph structure.

In addition, we performed the MWW test to determine
if the difference in MRR scores between these two models
is statistically significant. We tested the null hypothesis H0:
There is no significant difference between the MRR scores of
the two edge prediction models with a significance level α of
0.05. The p-values from the tests for the MRR scores of both
models range from 1.74× e−8 to 3.35× e−5, all of which are
below α for all 5 test sets. Thus, we reject the null hypothesis
and conclude that the MRR scores from the 3-node subgraph-
based edge prediction model and the combined 2-node and
3-node subgraph model come from different distributions.
This indicates that using both 2-node and 3-node subgraphs
improves performance over using only 3-node subgraphs for
edge prediction.

VII. LIMITATIONS

There are some limitations to our TriGraph model which
are listed below:

Model 1 Model 2 Model 3 Model 4 Model 5 All Models
Model Name

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 P
re

di
ct

io
n 

M
RR

Edge Prediction MRR for Models 1, 2, 3, 4, and 5

Subgraphs Considered
3-node
2- & 3-node

Fig. 6: Comparison of edge prediction MRR distributions
based on the type of subgraphs considered (3-node vs. 2- &
3-node subgraphs)

A. Model Lacks Integration with PD GUI

Currently, TriGraph functions independently using data
from a PD dataset. PD features a GUI that computer musicians
use to build musical applications. This model is an initial effort
to assist end-user programmers with predictions commonly
available to professional programmers through IDE-integrated
code prediction models. Integrating TriGraph into the PD
GUI is a crucial next step to enhance end-user programming
efficiency by providing real-time suggestions. Figure 7 depicts
a potential integration of our TriGraph models within the
PD GUI for node and edge prediction. In both cases, the
displayed predictions represent the actual outputs generated
by our model.

For instance, Figure 7a presents a conceptual integration of
our node prediction model within the PD GUI, illustrating a
scenario in which a user seeks suggestions for an unidentified
node. In this example, the *∼ node has been replaced with a
BLANK, and the predictions generated by our model represent
potential candidates for the missing node. This scenario aligns
with the motivation behind our first research question, which
addresses situations where users create an empty object but are
uncertain about the appropriate object to use. By utilizing our
model’s predictions, users can make informed decisions about
the object type to use. Notably, in this example, the correct
prediction appears as the top-ranked suggestion, demonstrating
the model’s capability to provide relevant recommendations.

Similarly, Figure 7b illustrates the edge prediction pro-
cess within a 3-node subgraph, where the nodes osc∼,
floatatom, and *∼ have the potential to be interconnected.
This example directly relates to our second research question,
which investigates how our model can predict the structural
relationships between nodes in a PD graph. The blue edges
represent the actual connections between these nodes, while
our model generates a ranked list of predicted edges. In this
particular case, the correct edge configuration appears as the
second-ranked suggestion, highlighting the model’s ability to
capture underlying graph structures effectively.

In this way, by integrating our model with the PD GUI, PD
programmers could benefit from live suggestions, enhancing
their programming efficiency.
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B. Corpus Limited to 2- and 3-Node Subgraphs
Our corpus is constructed solely from 2-node and 3-node

subgraphs. However, the model’s performance might have seen
improvement had we incorporated larger subgraphs since do-
ing so would have provided additional contexts for predicting
unknown tokens. However, in statistical language models like
n-grams, 3-grams have proven effective for code completion
tasks [36]. Rosenfeld et al. [70] mentioned that 3-grams are
commonly used for models with millions of tokens, while 2-
grams are often used for smaller models. Given that our PD
corpus contains approximately a million 3-node subgraphs, we
utilized a combination of both 2-node and 3-node subgraphs
for our node and edge prediction tasks.

C. Assumptions Regarding Node Connections in a PD Graph
In TriGraph, we assumed that two connected objects have

only 1 connection between them. However, PD objects can
have multiple inlets and outlets, leading to multiple connec-
tions between two objects. While our model simplifies this for
code completion, future models could improve upon this.

D. Prediction Limitations of Nodes and Edges
Our current TriGraph model predicts nodes and edges within

3-node subgraphs. While PD nodes are typically associated
with additional parameters like text and canvas positions, our
model currently focuses on predicting the object type of each
node. Future versions could enhance its ability to predict nodes
and edges in smaller subgraphs and incorporate parameter
predictions for each node.

E. Statistical Language Model-Based Predictions
We build a corpus using subgraph frequencies and predict

nodes and edges based on a scoring system derived from
subgraph occurrences. This method sets a foundation for
predicting visual code structures, and future research could
enhance prediction accuracy using neural language models.

VIII. CONCLUSION

This paper introduces TriGraph, a subgraph-based proba-
bilistic model that presents multiple code completion strate-
gies for the visual programming language Pure Data (PD).
TriGraph utilizes statistical analysis of subgraph patterns to
predict nodes and connections within PD graphs, with a
focus on both 2-node and 3-node subgraphs. By training and
evaluating our TriGraph model on a dataset of PD files, we
demonstrate its effectiveness in both node and edge prediction.
Our TriGraph model achieves an average Mean Reciprocal
Rank (MRR) score of 0.39 for node prediction, meaning that
the correct suggestion often appears within the model’s top
3 recommendations, surpassing the 3-gram KenLM model,
which yields an MRR of 0.30. For edge prediction, our
TriGraph model attains an MRR of 0.57, suggesting that
the correct answer is typically within the top 2 suggestions.
Our analysis further indicates that edge prediction accuracy
improves when combining 2-node and 3-node subgraphs
rather than relying solely on 3-node subgraphs. Furthermore,
TriGraph’s approach has the potential to be beneficial for
other graph-based visual programming languages where edges
represent data flow between nodes, such as Unreal Engine’s
Blueprint or Max/MSP. By offering code completion support
designed for visual, graph-based programming environments
like PD, our TriGraph model explores the potential to enhance
support tools for end-user programmers, representing a step
toward improving workflow efficiency for computer musicians.
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