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Development and validation of machine
learning algorithms based on
electrocardiograms for cardiovascular
diagnoses at the population level
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Artificial intelligence-enabledelectrocardiogram (ECG) algorithmsaregainingprominence for theearly
detection of cardiovascular (CV) conditions, including those not traditionally associated with
conventional ECGmeasures or expert interpretation. This study develops and validates such models
for simultaneous prediction of 15 different common CV diagnoses at the population level. We
conducted a retrospective study that included1,605,268ECGsof 244,077adult patients presenting to
84emergency departments or hospitals,whounderwent at least one12-leadECG fromFebruary 2007
to April 2020 in Alberta, Canada, and considered 15 CV diagnoses, as identified by International
Classification of Diseases, 10th revision (ICD-10) codes: atrial fibrillation (AF), supraventricular
tachycardia (SVT), ventricular tachycardia (VT), cardiac arrest (CA), atrioventricular block (AVB),
unstable angina (UA), ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), pulmonary
embolism (PE), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS),mitral valve prolapse (MVP),
mitral valve stenosis (MS), pulmonary hypertension (PHTN), and heart failure (HF). We employed
ResNet-based deep learning (DL) usingECG tracings and extremegradient boosting (XGB) usingECG
measurements. When evaluated on the first ECGs per episode of 97,631 holdout patients, the DL
models had an area under the receiver operating characteristic curve (AUROC) of <80% for 3 CV
conditions (PTE,SVT,UA), 80–90%for 8CVconditions (CA,NSTEMI, VT,MVP,PHTN,AS,AF,HF) and
an AUROC > 90% for 4 diagnoses (AVB, HCM, MS, STEMI). DL models outperformed XGB models
with about 5% higher AUROC on average. Overall, ECG-based prediction models demonstrated
good-to-excellent prediction performance in diagnosing common CV conditions.

The 12-lead electrocardiogram (ECG) is the most common, low-cost, and
accessible diagnostic tool for cardiovascular (CV) disease. It is performedon
nearly all acute care visits and commonly more than once. In the US alone,
over 100 million ECGs are obtained annually1. This is useful as the ECG
contains a large amount of information that provides insight into under-
lying cardiac physiology since morphological and temporal features are

produced from the electrical activity of the heart. However, standard
techniques used by physicians and by computer algorithms to interpret
ECGs are constrained, as many are rule-based and only consider a fraction
of the total information available on the ECG. Manual or computerized
approaches and even conventional statistical methods cannot account for
high-level interactions between ECG signals from multiple leads or
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imperceptible, yet informative, changes that may signal early disease. The
emergence of deep learning (DL) analyses offers an exciting opportunity to
identify clinically relevant but ‘hidden’ patterns in ECG signals and simul-
taneously assess complex interactive relationships from routinely captured
clinical data for diagnosis of various CV abnormalities2–5.

Prior investigations exploring machine-learned models for disease
prediction using ECGs have predominantly focused on cardiac condi-
tions that can be readily interpreted by physician experts based on
morphological changes in ECG patterns—e.g., arrhythmias (atrial
fibrillation [AF], ventricular tachycardia [VT], supraventricular tachy-
cardia [SVT])6, ST-elevation myocardial infarction (STEMI) or non-
STEMI (NSTEMI)7–9, or heart block conditions such as atrioventricular
blocks or branch blocks including left-bundle branch block and right-
bundle branch block10. While the number of machine learning (ML)-
based models using ECG data to predict CV conditions beyond those
traditionally associated with ECG patterns is currently limited, it is
steadily increasing. These models focus on conditions such as mitral
valve prolapse (MVP)1, cardiac arrest (CA)11,12, heart failure (HF)13,14,
pulmonary embolism (PE)15,16, aortic stenosis (AS)17–19, mitral valve
stenosis (MS)20, pulmonary hypertension (PHTN)21,22 and hypertrophic
cardiomyopathy (HCM)18,23,24. Furthermore, while existing studies have
mainly concentrated on individual labels, there hasn’t been any prior
research developing a predictive system for the simultaneous detection
of these specific conditions. The lack of large medical datasets that are
clinically annotated with an extensive set of diagnostic labels available
for supervised ML is a well-recognized problem, and large-scale vali-
dations at the population scale are critical to show trustworthiness for
the successful adoption of predictionmodels into clinical practice, where
early identification and treatment may potentially impact disease-
related complications, healthcare use, and cost.

Accordingly,weused a largepopulation-level cohort of patients, froma
single-payer universal health system, to develop and validate DL models
(basedon12-leadECGtracings) aswell as extreme gradient boosting (XGB)
models (based on routinely collected ECG measurements) to simulta-
neously predict 15 common CV diagnoses through a unified prediction
framework.

Results
Patient characteristics and outcomes
Baseline characteristics of the cohort have been described previously25. In
brief, the average age of patientswas 65.8 ± 17.3 years, and56.7%weremales
(SupplementaryTable 1). Themodels underwent training using ECGs from
146,446 patients and were subsequently evaluated on a holdout cohort of
97,631 patients (Fig. 1). The holdout dataset included 53,436 men and
44,195 women, used for sex-based performance evaluations. Additionally,
96,164 patients without pacemakers were evaluated separately to investigate
the impact of pacemakers on model performance. Anticipating the imple-
mentation of our prediction system at the point of care, we assessed our
models exclusively using the first ECG of each holdout patient in a specific
episode.

Frequency and percentage of ECGs with any of the selected CV con-
ditions in full, development and holdout splits as well as among the first
ECG per episode in the holdout set are presented in Table 1. The first ECG
per episode in the holdout set (used for the final evaluations) had some
differences in diagnostic labels compared to the full ECG data (e.g., fre-
quency for HF: 9.3% vs 15.5%; AF: 11.5% vs 18.2%).

Model performances and comparison
Comparison of model performances for DL and XGB models with ECG
traces (with versus without age and sex features) and measurements (with
age and sex features) for 15CVconditions is presented in Fig. 2, Table 2 and
Supplementary Table 2. The holdout validation of our main model (DL:
ECG trace, age, sex) showed that our model for STEMI had the best per-
formancewith a receiver operating characteristic curve (AUROC) of 95.5%,
and our model for pulmonary thromboembolism (PTE) was the worst

performancewith anAUROCof68.9%.Themodels for all diagnoses, except
for PTE, had AUROCs above 76%: with AUROCs <80% for two diagnoses
(SVT, UA, in increasing order); AUROCs in the 80–90% range for eight
diagnoses in (cardiac arrest [CA], NSTEMI, VT, mitral valve prolapse
[MVP], pulmonary hypertension [PHTN], aortic stenosis [AS], AF, HF, in
increasing order); AUROCs>90% for four diagnoses (atrioventricular block
[AVB], hypertrophic cardiomyopathy [HCM], mitral valve stenosis [MS],
STEMI, in increasing order). The model for AF had the highest area under
the precision-recall curve (AUPRC) score of 59.2% (F1 score: 51.6%), fol-
lowed by HF with 56.1% (F1 score: 46.6%) and STEMI with AUPRC of
54.3% (F1 score: 39.2%).

The DL model with (ECG trace, age, sex) performed better than the
XGBmodel with (ECGmeasurements, age, sex) for most diagnoses, except
for AVB, where both models performed comparably. DL models out-
performed XGBmodels with an average improvement in AUROC of 5.2%,
with notable increases of 11.8% for MS, 8.6% for MVP, 7.3% for NSTEMI,
and 7.1% for STEMI. Comparison of 95% confidence intervals from the
bootstrap results showed that there were significant differences betweenDL
model performanceswith versuswithout (age, sex) features for all diagnoses
except PTE, suggesting that age and sex features can add small but sig-
nificant improvements to diagnostic prediction. Similarly, bootstrap results
showed that DLmodels with ECG traces alone outperformed XGBmodels
withECGmeasurements, age, and sex for diagnoses other thanAVB,HCM,
and VT.

Sex-based model performance
We evaluated the DLmodel, which was trained using (ECG trace, age, sex)
separately formales and females in the holdout set, and found similar results
overall (Fig. 3, top panel). Themodels performedmarginally better formen
in 10 of out 15 conditions, with average AUROC increase of 1.0%. Five of
these—namely VT, STEMI, PTE, HF, and AS—showed significant differ-
ences. We found the highest difference in VT where the model performed
6.4% better for men compared to women (Men: 85.1%, Women: 78.7%),
and 14.8% in terms of AUPRC (Men: 37.5%, Women: 22.6%). In contrast,
prediction performance for AF was significantly better by 1.2% AUROC in
females than in males.

Pacemaker presence-based model performance
Similarly, evaluating the DL (ECG trace, age, sex) models on the holdout
ECGs, after excluding the ECGs of patients with pacemakers and other ICD
devices, showed performance that is comparable with overall evaluation,
with a very small average AUROC increase of 0.25% with vs without those
ECGs (Fig. 3, bottom panel). Again, VT showed the highest difference,
where performance dropped by 3.2% AUROC and 5.6% AUPRC when
pacemaker ECGswere excluded. Another diagnosis that showed significant
difference in the same direction was AVB (1.6% AUROC drop, 5.7%
decrease in AUPRC).

Leave-one-hospital-out validation
Our study utilized ECGs sourced from 14 hospitals. Notably, two of these
were tertiary care hospitals, contributing the highest ECG counts (487,042
and 453,085 ECGs, respectively). For each tertiary hospital (H1 andH2), we
performed a leave-one-hospital-out validation, training on ECGs from all
other hospitals, excluding the validation one (Supplementary Figure 1). The
performance of the DL: ECG, Age, Sex model with leave-one-hospital-out
validation was comparable to the results reported on the overall holdout set
(Supplementary Table 3). In comparison to the primary validation out-
comes, the average AUROC performance over 15 conditions exhibited a
slight increase of 1.38% in H1 validation but a decrease of 1.34% in H2
validation.

All-ECG holdout evaluation
As an added validation of ourDLmodel, we evaluated its performance in all
ECGs, rather than just the first ECG, acquired during each episode of care
for patients in the holdout set. The results, as outlined in Supplementary
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Table 4, exhibit performance that is either superior or comparable to that
achieved using only the initial ECGs.

The all-ECG evaluation revealed some fluctuations in AUROC and
AUPRC scores. There was an overall decrease of 2.04% in the average
AUROC(averaged across 15 conditions) andaconcurrent increaseof 2.15%
in AUPRC for the all-ECG assessment. Notably, F1-scores for all labels in
the all-ECG evaluation exhibited improvements ranging from 1.09% to
16.81%, with an average increase of 6.28%. Similarly, positive predictive
values (PPV or precision) for all labels showed an increase ranging from
0.56% to 15.32%, with an average improvement of 4.98%. Therefore, these
algorithms can be anticipated to exhibit comparable, if not superior, per-
formance when applied to ECGs conducted at any point during the course
of an episode of care.

Composite label evaluation
The prevalence of several of the diagnoses of interest in our sample was low
(e.g., 0.09% for MS among first ECGs), which is likely to impact PPV. We,

therefore, explored an alternative evaluation scheme based on a composite
label approach that has been previously employed for screening purposes to
enhance diagnostic yield20. We created a composite label such that it was
positive if any of our 15 conditions of interest were positive, and negative if
all of the conditions were negative.

We re-evaluatedourmulti-labelDLmodel’s ability topredict if anECG
is positive for the composite label. Results showed PPV of 31.64% with a
F1 score of 47.39%. We also trained a new model supervised with the
composite label using the same model architecture and assessed its per-
formance on the same holdout set. Results showed PPV of 57.9% with a
F1 score of 63.03%. These results suggest that a higher PPV could be
achieved when screening for the composite outcome.

Model explanations
Figure 4 depicts the results of GradCAM, highlighting areas of ECG with
higher contribution and relevance towards the model’s prediction of dif-
ferent CV conditions (see Supplementary Figure 2 for a full list of all

Fig. 1 | Flowchart of the study design showing the sample sizes for different
experimental splits.We divided the entire ECG dataset, allocating 60% for model
development (including fivefold internal cross-validation for training and fine-
tuning) and setting aside 40% as a holdout set for final validation. For evaluation, we
assessed our models using two approaches: first, exclusively on the first ECGs from

each episode captured during an ED visit or hospitalization, reflecting the intended
point-of-care deployment; second, on all ECGs from the holdout set. Additionally,
we evaluated our models’ performance within specific patient subgroups categor-
ized by sex and the presence of cardiac pacing or ventricular assist devices.
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15 diagnoses). Notably, the regions that contributed the most to the diag-
nosis were: PR intervals and QRS complexes in STEMI, T waves in
NSTEMI, QRS complexes in PHTN, VT beats in patients with non-
sustained VT, QRS complexes in AS, p waves in AVB, and ST segment
region in HF. Figure 5 shows feature importance analyses of XGB model
based on ECG measurements, depicting substantial information gain with
P-duration for predictionofAF, heart rate for SVT,RR interval forUA,QRS
duration for AVB, frontal T axis for HF, horizontal T axis for NSTEMI,
Bazett’s rate-corrected QT interval for CA, etc.

Discussion
In this large, population-level study with linked administrative health
records including millions of ECGs, we developed and validated ML-based
prediction models for diagnosing common CV conditions including those

previously not explored in ECG-based prediction studies and found both
DL and XGB models demonstrated good-to-excellent prediction perfor-
mance and that DLmodels performed better than XGBmodels for most of
the studied CV conditions.

Previous studies usingAI-enabled ECGdiagnosis have shown thatML
and DL models can accurately recognize ECG rhythm and morphological
abnormalities in ECG, however, they have not provided insights into per-
formance for detecting cardiac conditions that are not routinely diagnosed
via ECG26. Our study demonstrates how standardML techniques can learn
models that can use the simple and easy-to-obtain 12-lead ECG to accu-
rately predict not only CV conditions but also disorders not conventionally
diagnosed using ECGs. These models are potential tools for early screening
of CV conditions, particularly those that place considerable burden on the
healthcare system, and may help more proximal identification of clinically

Table 1 | Frequency and percentage of ECGs with selected cardiovascular conditions in cohorts used in the study

Full Data (n = 1,605,268) Development set
(n = 964,741)

Holdout set
(n = 640,527)

First ECG per episode in holdout set
(n = 297,773)

Non-ST-elevation myocardial
infarction

162,274 (10.11%) 96,828 (10.04%) 65,446 (10.22%) 10,713 (3.60%)

ST-elevation myocardial infarction 100,206 (6.24%) 60,381 (6.26%) 39,825 (6.22%) 5529 (1.86%)

Heart failure 249,325 (15.53%) 150,055 (15.55%) 99,270 (15.50%) 27,820 (9.34%)

Unstable angina 43,466 (2.71%) 26,223 (2.72%) 17,243 (2.69%) 3416 (1.15%)

Atrial fibrillation 302,146 (18.82%) 180,191 (18.68%) 121,955 (19.04%) 34,139 (11.46%)

Ventricular tachycardia 29,672 (1.85%) 17,385 (1.80%) 12,287 (1.92%) 1793 (0.60%)

Cardiac arrest 40,505 (2.52%) 24,100 (2.50%) 16,405 (2.56%) 2844 (0.96%)

Supraventricular tachycardia 24,146 (1.50%) 14,286 (1.48%) 9860 (1.54%) 2222 (0.75%)

Atrioventricular block 40,013 (2.49%) 23,936 (2.48%) 16,077 (2.51%) 2942 (0.99%)

Pulmonary embolism 32,485 (2.02%) 19,458 (2.02%) 13,027 (2.03%) 4763 (1.60%)

Aortic stenosis 30,120 (1.88%) 18,281 (1.89%) 11,839 (1.85%) 3210 (1.08%)

Pulmonary hypertension 36,331 (2.26%) 21,869 (2.27%) 14,462 (2.26%) 4017 (1.35%)

Hypertrophic cardiomyopathy 4485 (0.28%) 2904 (0.30%) 1581 (0.25%) 409 (0.14%)

Mitral valve prolapse 24,481 (1.53%) 14,270 (1.48%) 10,211 (1.59%) 1949 (0.65%)

Mitral valve stenosis 2925 (0.18%) 1743 (0.18%) 1182 (0.18%) 277 (0.09%)

Fig. 2 | Comparison of AUROC model performances for DL and XGB models
with ECG traces (with and without age and sex features) and measurements for
15 cardiovascular conditions. The height of the bars represents the performance in
external holdout validation, and the crosses represent the performance in each of the
fivefold cross-validation. For each condition, the models are ranked based on their
performance (statistically similar performances are assigned tied ranking), and the
model with the highest performance is indicated with a star. AF atrial fibrillation, AS

aortic stenosis, AUROC Area under the operating receiver curve, AVB atrioven-
tricular block, DL deep learning (ResNet), ECG electrocardiogram, HCM hyper-
trophic cardiomyopathy, HF heart failure, MS mitral stenosis, MVP mitral valve
prolapse, NSTEMI non-ST-elevation myocardial infarction, STEMI ST-elevation
myocardial infarction, SVT supraventricular tachycardia, PHTN pulmonary
hypertension, PTE pulmonary thromboembolism, UA unstable angina, VT ven-
tricular tachycardia, XGB XGBoost.
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importantCVconditions27–29.More importantly, the use of these automated
classification systems could enhance access to care in remote areas that have
limited access to qualified medical and cardiology specialists. Further
investigation is required to determine whether automatic ECG-based
screening interfaces can be deployed for early management and prevention
of disease progression and to provide cost-effective care.

DL models are complex algorithms with millions of parameters, and
likely to overfit when trained on small datasets30–32. Evenwhen largemedical
datasets are available, they are usually unlabeled or unannotated, which
poses further challenges for supervisedML approaches33. Our large Alberta
ECG dataset using the gold-standard 12 leads and its linkage to population-
level data25,34 represents a naturalistic population laboratory with a wide
array of demographic and clinical covariates, and hence, provides the ideal
setting for developing ECG-based ML algorithms for the prediction of
commonCVconditions.Additionally, the current study focusedon the very
first ECG captured in a healthcare episode, to emulate real-life scenarios of a
patient’s initial medical contact at the point of care.

OurDLmodel showed C-index or AUROC levels >80% for 12 out of
15 conditions, and >90% for 4 conditions (i.e., STEMI, MS, HCM, and
AVB). The DLmodel of ECG tracing provided better prediction than the
XGB model of ECG routine measurements for the prediction of all
included conditions (except for atrioventricular block where bothmodels
had comparable excellent performance), with up to 11.8% improvement
in performance for mitral valvulopathy and up to 7.3% improvement in
performance in detecting myocardial infarction. Importantly, we further
evaluated model robustness with respect to any potential biases towards
sex groups and ECGs acquired in the presence of cardiac pacing or left
ventricular assist device (LVAD), which can complicate ECG inter-
pretation. We found that our DL model remains robust and appears to
work equally well when evaluated on patients of either sex or pacing/
LVAD. In fact, our models showed even better performance when ECGs
with pacemakers were included in the testing data.

Our study has some limitations that require further discussion. First, all
ECGs were generated by machines from the same manufacturer (Phillips
Intelligence System), whichmight limit the generalizability and extrapolation
offindings to ECGs fromother systems. Second, ECGmeasurements used in
theXGBmodelswere provided throughPhillipsmachines, andwere not core
laboratory-read or human expert-curated. Third, our labels were derived
from ICD codes recorded in the ED and hospitalization record. Owing to the
nature of data collection in administrativemedical records, the precise timing
of condition’s presentation during a healthcare episode cannot be definitively
ascertained. Consequently, in rare instances where an acute condition
emerges after the collection of the initial ECG, our prediction task can be
interpreted as early detection rather than diagnostic prediction of an existing
condition. This distinction is noteworthy, as early detection remains valuable
in clinical management, offering insights into potential complications in the
near future that can be equally beneficial for inpatient care. Fourth, internal
testing, even on a substantial scale, may be considered secondary to external
validations. This is primarily because biases inherent to a single health system
can be perpetuated due to similarities in patient population, equipment, label
generation procedures, and other factors. Unfortunately, we were unable to
offer external validation for ourmulti-label models as there is no appropriate
external ECG dataset linked to selected 15 ICD-10-based diagnostic labels.
However, the performance of leave-one-hospital-out validation of our DL:
ECG, age, sex models demonstrates the robustness of our models across
hospitals. Fifth, our study is based on a real-world cohort of patients pre-
senting to emergency departments and hospitals with varying prevalence
rates of the diagnoses of interest. The variation in the positive rate of the
different labels could explain why predictions of some diagnoses were more
accurate than others.We did not augment ormanipulate the data as our goal
is to eventually deploy thesemodelswithin electronicmedical record systems.
Moreover, our training dataset of nearly a million ECGs, had a sufficient
number of positive cases, to develop effective predictive models. However,
some labels in ourmodelsmay exhibit PPV thatmight be lower thanoptimal,
necessitating careful consideration regarding their eligibility for clinicalT

ab
le

2
|E

va
lu
at
io
n
o
fd

ee
p
le
ar
ni
ng

:E
C
G
,a

g
e,

se
x
m
o
d
el

p
er
fo
rm

an
ce

s
fo
rd

iff
er
en

tc
ar
d
io
va

sc
ul
ar

co
nd

it
io
ns

ex
p
re
ss

ed
in

m
ea

n
(9
5%

co
nfi

d
en

ce
in
te
rv
al
)p

er
ce

nt
ag

e

A
U
R
O
C

A
U
P
R
C

F1
S
co

re
S
p
ec

ifi
ci
ty

R
ec

al
l

P
re
ci
si
o
n

A
cc

ur
ac

y
B
ri
er

sc
o
re

N
on

-S
T-
el
ev

at
io
n
m
yo

ca
rd
ia
li
nf
ar
ct
io
n

82
.4
16

(8
2.
41

2–
82

.4
20

)
39

.5
09

(3
9.
50

3–
39

.5
14

)
21

.6
11

(2
1.
60

7–
21

.6
15

)
83

.7
79

(8
3.
77

8–
83

.7
81

)
64

.7
81

(6
4.
77

2–
64

.7
91

)
12

.9
69

(1
2.
96

6–
12

.9
72

)
83

.0
96

(8
3.
09

5–
83

.0
97

)
3.
47

7

S
T-
el
ev

at
io
n
m
yo

ca
rd
ia
li
nf
ar
ct
io
n

95
.4
86

(9
5.
48

3–
95

.4
89

)
54

.3
23

(5
4.
31

6–
54

.3
29

)
39

.1
74

(3
9.
16

6–
39

.1
82

)
95

.4
71

(9
5.
47

1–
95

.4
72

)
82

.6
52

(8
2.
64

1–
82

.6
62

)
25

.6
71

(2
5.
66

5–
25

.6
78

)
95

.2
33

(9
5.
23

3–
95

.2
34

)
1.
12

6

H
ea

rt
fa
ilu
re

88
.7
58

(8
8.
75

6–
88

.7
60

)
56

.1
63

(5
6.
16

0–
56

.1
67

)
46

.6
68

(4
6.
66

4–
46

.6
72

)
84

.3
76

(8
4.
37

5–
84

.3
78

)
76

.5
77

(7
6.
57

2–
76

.5
82

)
33

.5
61

(3
3.
55

7–
33

.5
64

)
83

.6
48

(8
3.
64

6–
83

.6
49

)
6.
35

U
ns

ta
b
le
an

gi
na

79
.2
63

(7
9.
25

6–
79

.2
71

)
36

.5
83

(3
6.
57

5–
36

.5
91

)
5.
74

3
(5
.7
41

–
5.
74

5)
73

.7
58

(7
3.
75

6–
73

.7
59

)
69

.8
26

(6
9.
81

0–
69

.8
41

)
2.
99

5
(2
.9
94

–
2.
99

6)
73

.7
13

(7
3.
71

1–
73

.7
14

)
1.
23

3

A
tr
ia
lfi
b
ril
la
tio

n
88

.3
60

(8
8.
35

8–
88

.3
62

)
59

.2
28

(5
9.
22

5–
59

.2
31

)
51

.5
55

(5
1.
55

1–
51

.5
59

)
84

.1
99

(8
4.
19

8–
84

.2
00

)
77

.1
09

(7
7.
10

5–
77

.1
13

)
38

.7
23

(3
8.
71

9–
38

.7
26

)
83

.3
86

(8
3.
38

5–
83

.3
87

)
7.
15

4

V
en

tr
ic
ul
ar

ta
ch

yc
ar
d
ia

84
.4
30

(8
4.
42

0–
84

.4
39

)
33

.7
90

(3
3.
77

8–
33

.8
01

)
6.
07

6
(6
.0
72

–
6.
07

9)
88

.1
89

(8
8.
18

8–
88

.1
90

)
64

.1
75

(6
4.
15

3–
64

.1
97

)
3.
18

9
(3
.1
87

–
3.
19

1)
88

.0
44

(8
8.
04

3–
88

.0
45

)
0.
62

7

C
ar
di
ac

ar
re
st

82
.1
07

(8
2.
09

9–
82

.1
15

)
31

.2
70

(3
1.
26

0–
31

.2
80

)
8.
36

6
(8
.3
62

–
8.
37

0)
88

.2
33

(8
8.
23

2–
88

.2
34

)
57

.6
25

(5
7.
60

7–
57

.6
43

)
4.
51

0
(4
.5
08

–
4.
51

3)
87

.9
40

(8
7.
93

9–
87

.9
42

)
0.
94

2

S
up

ra
ve

nt
ric

ul
ar

ta
ch

yc
ar
di
a

76
.3
69

(7
6.
35

8–
76

.3
80

)
29

.0
31

(2
9.
02

0–
29

.0
42

)
4.
62

1
(4
.6
19

–
4.
62

4)
83

.1
69

(8
3.
16

7–
83

.1
70

)
55

.3
17

(5
5.
29

7–
55

.3
38

)
2.
41

1
(2
.4
10

–
2.
41

3)
82

.9
61

(8
2.
96

0–
82

.9
62

)
0.
68

3

A
tr
io
ve

nt
ric

ul
ar

b
lo
ck

90
.0
70

(9
0.
06

4–
90

.0
76

)
40

.5
44

(4
0.
53

6–
40

.5
53

)
11

.3
96

(1
1.
39

2–
11

.4
01

)
88

.6
63

(8
8.
66

2–
88

.6
64

)
74

.6
69

(7
4.
65

3–
74

.6
85

)
6.
16

9
(6
.1
67

–
6.
17

1)
88

.5
24

(8
8.
52

3–
88

.5
26

)
0.
87

4

P
ul
m
on

ar
y
em

b
ol
is
m

68
.9
90

(6
8.
98

3–
68

.9
98

)
31

.1
20

(3
1.
11

3–
31

.1
28

)
5.
57

2
(5
.5
71

–
5.
57

4)
68

.3
83

(6
8.
38

1–
68

.3
85

)
58

.6
55

(5
8.
64

1–
58

.6
69

)
2.
92

5
(2
.9
24

–
2.
92

6)
68

.2
28

(6
8.
22

6–
68

.2
29

)
1.
55

6

A
or
tic

st
en

os
is

85
.9
96

(8
5.
99

0–
86

.0
02

)
37

.6
40

(3
7.
63

2–
37

.6
48

)
8.
08

4
(8
.0
81

–
8.
08

7)
82

.8
17

(8
2.
81

5–
82

.8
18

)
70

.6
77

(7
0.
66

1–
70

.6
92

)
4.
28

7
(4
.2
85

–
4.
28

9)
82

.6
86

(8
2.
68

5–
82

.6
87

)
1.
03

4

P
ul
m
on

ar
y
hy

p
er
te
ns

io
n

84
.7
73

(8
4.
76

8–
84

.7
79

)
38

.0
91

(3
8.
08

3–
38

.0
98

)
9.
42

4
(9
.4
21

–
9.
42

8)
81

.8
05

(8
1.
80

4–
81

.8
06

)
70

.7
38

(7
0.
72

4–
70

.7
52

)
5.
04

9
(5
.0
47

–
5.
05

0)
81

.6
56

(8
1.
65

4–
81

.6
57

)
1.
29

6

H
yp

er
tr
op

hi
c
ca

rd
io
m
yo

p
at
hy

90
.2
04

(9
0.
18

8–
90

.2
19

)
35

.0
13

(3
4.
99

0–
35

.0
36

)
2.
47

1
(2
.4
68

–
2.
47

4)
92

.5
78

(9
2.
57

7–
92

.5
78

)
68

.7
24

(6
8.
67

9–
68

.7
70

)
1.
25

8
(1
.2
57

–
1.
26

0)
92

.5
45

(9
2.
54

4–
92

.5
46

)
0.
14

2

M
itr
al
va

lv
e
p
ro
la
p
se

84
.6
70

(8
4.
66

1–
84

.6
78

)
34

.6
46

(3
4.
63

5–
34

.6
56

)
5.
36

4
(5
.3
61

–
5.
36

7)
84

.8
20

(8
4.
81

8–
84

.8
21

)
66

.2
75

(6
6.
25

4–
66

.2
96

)
2.
79

5
(2
.7
94

–
2.
79

7)
84

.6
98

(8
4.
69

7–
84

.7
00

)
0.
64

5

M
itr
al
va

lv
e
st
en

os
is

90
.2
28

(9
0.
20

9–
90

.2
47

)
39

.2
92

(3
9.
26

8–
39

.3
17

)
1.
12

9
(1
.1
27

–
1.
13

0)
87

.2
89

(8
7.
28

7–
87

.2
90

)
77

.9
96

(7
7.
94

7–
78

.0
45

)
0.
56

8
(0
.5
68

–
0.
56

9)
87

.2
80

(8
7.
27

9–
87

.2
81

)
0.
09

4

A
U
P
R
C
A
re
a
un

d
er

th
e
p
re
ci
si
on

-r
ec

al
lc

ur
ve

,A
U
R
O
C
ar
ea

un
d
er

th
e
re
ce

iv
er

op
er
at
in
g
cu

rv
e,

E
C
G

el
ec

tr
oc

ar
d
io
gr
am

.

https://doi.org/10.1038/s41746-024-01130-8 Article

npj Digital Medicine |           (2024) 7:133 5



deployment. Sixth, we evaluated our models primarily using AUROC or
C-index, a common metric in biomedical literature. However, it has limita-
tions and does not consider misclassification costs of false positives or false
negatives. For model deployment, custom evaluations aimed at minimizing
expected cost, that consider misclassification costs and other resource allo-
cation factors should be prioritized35. Furthermore, despite the black-box
nature of some of theMLapproaches, we used techniques such asGradCAM
analysis of DL models (respectively, SHAP analysis of XGB models) to find
ECG patterns (or ECG measurements) that contribute to the diagnosis of
common CV conditions.

In conclusion, we demonstrate, using comprehensive linked adminis-
trative databases at the population level, that ECG-based DL and XGB pre-
diction models demonstrate good-to-excellent prediction performance in
diagnosing common CV conditions. The DL models of ECG tracing pro-
vided better prediction accuracy among the studied conditions than the XGB
models based on routine ECG measurements. Models performed compar-
ably between different sex groups and in patients with andwithout pacing or
LVAD. Future research is needed to determine how these models can be
implemented in clinical practice for early diagnosis and risk stratification.

Methods
Data sources
This study was performed in Alberta, Canada, where there is a single-payer
healthcare systemwith universal access and 100% capture of all interactions
with the healthcare system.

ECG data was linked with the following administrative health data-
bases using a unique patient health number: (1) Discharge Abstract Data-
base (DAD) containing data on inpatient hospitalizations; (2) National
AmbulatoryCareReporting System(NACRS)database of all hospital-based
outpatient clinic, and emergency department (ED) visits; and (3) Alberta
Health Care Insurance Plan Registry (AHCIP), which provides demo-
graphic information.

ECG data
We used standard 12-lead ECG traces (voltage-time series, sampled at
500Hz for the duration of 10 seconds for each of 12 leads) and ECG
measurements (automatically generated by Philips IntelliSpace ECG sys-
tem’s built-in algorithm). The ECGmeasurement included atrial rate, heart
rate, RR interval, P wave duration, frontal P axis, horizontal P axis, PR
interval,QRSduration, frontalQRSaxis in the initial 40ms, frontalQRSaxis
in the terminal 40ms, frontal QRS axis, horizontal QRS axis in the initial
40ms, horizontal QRS axis in terminal 40ms, horizontal QRS axis, frontal
STwave axis (equivalent to ST deviation), frontal T axis, horizontal STwave
axis, horizontal T axis, Q wave onset, Fridericia rate-corrected QT interval,
QT interval, Bazett’s rate-corrected QT interval.

Analysis cohort
The study cohort has been described previously25. In brief, patients who
were hospitalized at 14 sites between February 2007 and April 2020 in
Alberta, Canada, and includes 2,015,808ECGs from3,336,091EDvisits and

Fig. 3 | Comparison of AUROC performances for DL: ECG, age, sexmodel for 15
cardiovascular conditions for specific subgroups. Evaluations are performed
separately for the males and females of the holdout patients (a) as well as ECGs

without pacemakers and all ECGs in the holdout set (b). The height of bars repre-
sents the performance in external holdout validation and the models with statisti-
cally higher performance are indicated with a star.
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1,071,576 hospitalizations of 260,065 patients. Concurrent healthcare
encounters (ED visits and/or hospitalizations) that occurred for a patient
within a 48-hour period of each other were considered to be transfers and
part of the same healthcare episode. An ECG record was linked to a
healthcare episode if the acquisition date was within the timeframe between
the admission date and discharge date of an episode. After excluding the
ECGs that could not be linked to any episode, ECGs of patients <18 years of
age, as well as ECGs with poor signal quality (identified via warning flags
generated by the ECG machine manufacturer’s built-in quality algorithm),
our analysis cohort contained 1,605,268 ECGs from 748,773 episodes in
244,077 patients (Fig. 1).

Prediction tasks
We developed and evaluated ECG-based models to predict the probability
of a patient being diagnosedwith any of 15 specific commonCVconditions:
AF, SVT, VT, CA, AVB, UA,NSTEMI, STEMI, PTE, HCM,AS,MVP,MS,
PHTN, and HF. The conditions were identified based on the record of
corresponding International Classification of Diseases, 10th revision (ICD-

10) codes in the primary or in any one of 24 secondary diagnosis fields of a
healthcare episode linked to a particular ECG(SupplementaryTable 5). The
validity of ICD coding in administrative health databases has been estab-
lished previously36,37. If an ECG was performed during an ED or inpatient
episode, it was considered positive for all diagnoses of interest that were
recorded in the episode. Some diagnoses, such as AF, SVT, VT, STEMI, and
AVB, which are typically identified through ECGs, were included in the
study as positive controls to showcase the effectiveness of our models in
detecting ECG-diagnosable conditions.

The goal of the predictionmodel was to output calibrated probabilities
for each of selected 15 conditions. These learned models could use ECGs
thatwere acquired at any timepoint during a healthcare episode.Note that a
singlepatient visitmay involvemultipleECGs.When training themodel,we
used all ECGs (multiple ECGsbelonging to the same episodewere included)
in the training/development set tomaximize learning. However, to evaluate
our models, we used only the earliest ECG in a given episode in the test/
holdout set, with the goal of producing a prediction system that could be
employed at the point of care, when the patient’s first ECG is acquired

Fig. 4 | The GradCAM plots for the DL model in diagnosis of different cardio-
vascular conditions. Representative ECG traces were chosen for a selected group of
diagnoses. GradCAMresults do not extend to the entire population, but indicative of
the DL model’s prediction for a single representative case. The darker areas in each
trace on GradCAM denote the areas with the most contribution to DL model’s
diagnostic prediction. PR intervals and QRS complexes in STEMI, T waves in

NSTEMI, QRS complexes in PHTN, VT beats in patients with non-sustained VT,
QRS complexes inAS, pwaves inAVB, and ST segment region inHF contributed the
most to the diagnosis of each condition. AS aortic stenosis, AVB atrioventricular
block, DL deep learning, ECG electrocardiogram, HF heart failure, NSTEMI non-
ST-elevation myocardial infarction, STEMI ST-elevation myocardial infarction,
PHTN pulmonary hypertension, VT ventricular tachycardia.
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during an ED visit or hospitalization (See section ‘Evaluation’ below for
more details).

WeusedResNet-basedDL for the information-richvoltage-time series
and gradient boosting-based XGB for the ECG measurements25. To deter-
mine whether demographic features (age and sex) add incremental pre-
dictive value to the performance of models trained on ECGs only, we
developed and reported the models in the following manner: (a) ECG only
(DL: ECG trace); (b) ECG+ age, sex (DL: ECG trace, age, sex [which is the
primary model presented in this study]); and (c) XGB: ECGmeasurement,
age, sex.

Learning algorithms
We employed amulti-label classificationmethodology with binary labels—
i.e., presence (yes) or absence (no) for each one of the 15 diagnoses—to
estimate the probability of a new patient having each of these conditions.
Since the input for themodels that used ECGmeasurements was structured
tabular data, we trained gradient-boosted tree ensembles (XGB)38 models,
whereas we used deep convolutional neural networks for the models with
ECG voltage-time series traces. For both XGB andDLmodels, we used 90%
of training data to train the model, and used the remaining 10% as a tuning
set to track the performance loss and to “early stop” the training process, to
reduce the chance of overfitting39. ForDL, we learned a single ResNetmodel
for a multi-class multi-label task10, which mapped each ECG signal into
15 values, corresponds to the probability of presence of each of the 15
diagnoses. On the other hand, for gradient boosting, we learned 15 distinct
binaryXGBmodels, eachmapping the ECG signal to the probability for one
of the individual labels. The methodological details of our XGB and DL
model implementations have been described previously25.

Evaluation and visualization
Evaluation design: we used a 60/40 split on the data for training and eva-
luation. We divided the overall ECG dataset into random splits of 60% for
the model development (which used fivefold internal cross-validation for
training and fine-tuning the final models) and the remaining 40% as the
holdout set for final external validation. We ensured that ECGs from the

same patient were not shared between development and evaluation data or
between the train/test folds of internal cross-validation. As mentioned
earlier, sincewe expect the deployment scenario of our prediction system to
be at the point of care, we evaluated ourmodels using only the patient’s first
ECG in a given episode, which was captured during an ED visit or hospi-
talization. The number of ECGs, episodes, and patients used in overall data
and in experimental splits are presented in Fig. 1 and Supplementary
Table 5. In addition to the primary evaluation, we extend our testing to
include all ECGs from the holdout set, to demonstrate the versatility of DL
model in handling ECGs captured at any point during an episode.

Furthermore, we performed ‘Leave-one-hospital-out validation’ using
two large tertiary care hospitals to assess the robustness of our model with
respect to distributional differences between the hospital sites. To guarantee
complete separationbetweenour training and testing sets,weomittedECGs
of patients admitted to both the training and testing hospitals during the
studyperiod, as illustrated in Supplementary Figure 1. Finally, to underscore
the applicability of DL model in screening scenarios, we present additional
evaluations by consolidating 15 disease labels into a composite prediction,
thereby enhancing diagnostic yield20.

We reported area under the receiver operating characteristic curve
(AUROC, equivalent to C-index) and area under the precision-recall curve
(AUPRC). Also, we generated F1 Score, Specificity, Recall, Precision
(equivalent to PPV) and Accuracy after binarizing the prediction prob-
abilities into diagnosis/non-diagnosis classes using optimal cut-points
derived from the training set Youden’s index40.We also used the calibration
metric Brier Score41 (where a smaller score indicates better calibration) to
evaluate whether predicted probabilities agree with observed proportions.

Sex and Pacemaker Subgroups: We investigated our models’ perfor-
mance in specific patient subgroups, based on the patient’s sex. We also
investigated any potential bias with ECGs captured in the presence of car-
diac pacing (including pacemaker or implantable cardioverter-defibrillators
[ICD]) or ventricular assist devices (VAD) since ECG interpretation can be
difficult in these situations, by comparing themodel performances in ECGs
without pacemakers in the holdout set versus the overall holdout set
(including ECGs both with or without pacemakers) (Fig. 1). The diagnosis

Fig. 5 | Heatmap of feature importance analyses of XGBoost models with ECG
measurements, age, and sex. Information gain-based feature importance for var-
ious cardiovascular conditions with XGBoost models based on ECGmeasurements

showed substantial information gain with P-duration for prediction of AF, heart
rate for SVT, RR interval for UA etc. ECG electrocardiogram. Abbreviations for
ECG measurements and diseases are provided in Supplementary Tables 8 and 9.
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and procedure codes used for identifying the presence of pacemakers are
provided in the Supplementary Table 7.

Model comparisons: For each evaluation, we report the performances
from the fivefold internal cross-validation as well as the final performances
in the holdout set, using the same training and testing splits for the various
modeling scenarios. The performances were compared between models by
sampling holdout instances with replacement in pairwise manner, to gen-
erate a total of 10,000 bootstrap replicates of pairwise differences inAUROC
—i.e., each comparing without pacemakers versus the original. The differ-
ence in the model performances was said to be statistically significant if the
95% confidence intervals of the mean pairwise differences in AUROCs did
not include the zero value for the compared models.

Visualizations: We used feature importance values based on infor-
mation gained to identify the ECG measurements that were key con-
tributors to the diagnosis prediction in the XGB models. Further, we
visualized the gradient activation maps that contributed to the model’s
prediction of diagnosis in our DL models using Gradient-weighted Class
ActivationMapping (GradCAM)42 on the last convolutional layer. Also, we
used feature importance values based on information gain to identify the
ECG measurements that were key contributors to the diagnosis prediction
in the XGB models.

Data availability
The data underlying this article was provided by Alberta Health Services
under the terms of a research agreement. Inquiries respecting access to the
data can bemade directly to them.We have included an ECGdataset that is
artificially generated for the purpose of code demonstration only. They are
not expected to accurately represent real ECG signals, or the label dis-
tributions. The demo dataset is openly available, and can be downloaded at
https://figshare.com/s/b593e8d7bfe7cd8500b1.

Code availability
The code base for training the deep learning models used in this study is
available at: https://figshare.com/s/b593e8d7bfe7cd8500b1.
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