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Abstract—We explore the challenge of learning models that use
electrocardiogram (ECG) data to diagnose various cardiovascular
diseases. Here, we explore whether classifiers trained on a dataset
of real labeled ECGs, augmented with synthetic ECGs, can
perform better than ones trained on unaugmented datasets.

We first used a dataset of ECGs, each labelled with one or more
of 15 diagnoses, from 244,077 patients to train an unsupervised
β–VAE model, that could generate time series of 12-lead ECG
signals for each of the diagnoses. We then used this generative
model to generate ECGs with the ST-segment Elevated (STE)
abnormality, which we added to the public dataset of ECG
abnormalities (n = 6877, over normal (Sinus Rhythm) and 8
different abnormalities) of China Physiological Signal Challenge
2018, and found a learner trained on this extended dataset
performed better than one trained on only the original data on
the targeted STE label but also enhanced its performance for the
classification of 4 other labels.

Index Terms—Electrocardiogram, Machine Learning, Varia-
tional Autoencoder, Data Generation

I. INTRODUCTION

Cardiovascular diseases (CVDs) are one of the leading
causes of mortality in recent decades, where 233.1 per 100,000
people died globally due to CVDs in 2017 [1], [22]. To
reduce mortality caused by such diseases, early diagnosis is
crucial. A widespread tool currently used for the diagnosis of
cardiovascular diseases is Electrocardiogram (ECG). However,
detecting cardiac abnormalities through ECG is not easy
and currently requires an expert. With the advancement of
machine learning in healthcare, many researchers are now
exploring ways to learn end-to-end diagnostic models using
ECGs [2], [3], [23]. The open-source ECG data from the China
Physiological Signal Challenge 2018 (CPSC 2018) has helped
researchers to develop various machine-learning models for
ECG abnormalities/ diagnosis. However, the prediction per-
formance of these models is not high for all labels. While
it is well-known that increasing the training dataset with real
ECG data can improve the prediction performance, whether
synthetic ECGs can do the same remains to be explored.

Since the ECG is routinely used at point of care, it is one
of the most common measurements; healthcare systems record
ECG scans of patients with various heart conditions/anomalies.
However, due to the need to protect patients’ privacy and
confidentiality, these data often cannot be shared, meaning it

is difficult to produce accurate ECG-based prediction systems
for cardiac conditions, especially for conditions that are not
prevalent nor commonly reported. However, using Alberta
data set, we might be able to produce ECGs with certain
abnormalities using a generative algorithm, such as variational
autoencoders (VAE), while retaining the privacy of individual
patient information [24]. We can then add these synthetic
ECGs to the real-world labeled ECG training set (such as
CPSC dataset [12]), to produce a model that (potentially)
performs better on an external (real) test set.

To diagnose an ECG abnormality, both morphologies of
a single beat (R peaks, presence of P wave, ..) and rhythm
(combination of multiple beats), it is useful to consider
both [7]. In this regard, Jang et al. [8] used unsupervised
convolutional VAE to encode input ECGs into 60 features
through the reconstruction of the rhythm of lead of ECG
(both morphologies of single beat and the rhythm) collected
from 1278 patients. van de Leur et al. [9] learned a VAE
(from 1.1 million ECGs) to encode 12-lead ECG signals
of a single beat into 21 learned features, then used these
learned features for downstream tasks of detection of reduced
ejection fraction, and 1-year mortality. However, the focus of
both studies was on using the extracted ECG embedding for
a downstream task. To the best of our knowledge, no study
explored ways to generate synthetic ECGs using VAE and
used them as a data augmentation method.

These studies reached good arrhythmia classification per-
formance using VAE-encoded features from ECGs. However,
their models can generate either multiple beats (rhythm) of a
single lead or a single beat of a 12-lead ECG signal. Both
morphologies and rhythms of ECG signals are important for
the diagnosis of ECG abnormalities as different abnormalities
express their characteristics in different leads or they are
related to rhythm rather than the morphology of a single
beat [10]. In our study, we use a generative model (VAE) to
learn the rhythm of 12-lead ECG signals using a large dataset
of 244,077 patients admitted to hospitals in the Alberta dataset
(described below) between February 2007 and April 2020,
each labeled with the cardiovascular diagnoses identified with
specified ICD-10 codes. We then use this trained model to
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generate new ECGs, each with one or more of these specified
diagnoses. We then identified ways to use this generated
ECGs to improve the performance of multi-label classification,
using publicly available 12-lead ECG dataset with various
abnormalities [12].

II. METHODS

The ECG data for this study received approval from the
Health Research Ethics Board of University of Alberta.

A. Alberta ECG Dataset

We have access to 244,077 patients, where each had 12-
lead ECG traces (each collected using 500 Hz frequencies for a
duration of 10 seconds) along with 22 common measurements
of ECG provided by the Philips IntelliSpace ECG system.
Sun et al. [4] provide additional details of this dataset. We
then applied the Butterworth pass filter (provided by Neurokit
library [11]) to remove baseline noise, then normalized the
ECG signals over time with the z-score normalization method.
This maps each (clean normalized) ECG signal to 4096 real
values. We divide the dataset into a 60% development set (train
+ validation) (964,741 ECG — 146,466 Patients) and a 40%
test set (640,527 ECG — 97,631 Patients-disjoin from the
training patients).

B. China Physiological Signal Challenge 2018 Dataset

A recent challenge competition provided the CPSC 2018
dataset [12] consisting of 12-lead ECGs collected from 11
hospitals using the frequency of 500 Hz, each with one or more
of 9 possible labels: Sinus Rhythm (SR), Atrial Fibrillation
(AFIB), First-degree Atrioventricular Block (I-AVB), Left
Bundle Branch Block (LBBB), Right Bundle Branch Block
(RBBB), Premature Atrial Contraction (PAC), Premature Ven-
tricular Contraction (PVC), ST-segment Depression (STD),
and ST-segment Elevated (STE). More detailed description of
the CPSC dataset is discussed in Supporting Information (SI)
(Section S1). We divided the training CPSC dataset into 80 %
training (5503 ECGs), 10 % validation (687 ECGs), and 10%
test set (687 ECGs). The test set was fixed for all experiments
(with and without data augmentation).

C. Variational Autoencoder Model

We used the VAE architecture and code provided by van
de Leur et al. [9], but modified it to train and reconstruct
the rhythm of 12-lead ECGs of the Alberta Dataset. The
architecture is based on β-VAE [13], which is a special case
of VAE that adds the hyperparameter of β to the loss function
(divergence loss term) to learn disentangled embeddings (see
Figure S2). Following van de Leur et al. [9], we set β-VAE’s
adjustable parameters, the number of embeddings and β, to
32 and 8, respectively. β-VAE’s consists of three components:
encoder, bottleneck and decoder. During the learning process,
the 12-lead ECGs were fed into the encoder section of β-VAE,
which compresses this signal into 32 means and 32 variances,

with the goal of being able to use this generated 32-tuple to
reconstruct the input ECG signal (in the decoder). 1

D. Data Generation

We will learn one set of 64 β-VAE parameters for each
cardiovascular diagnosis (32 [mean, variance] pairs) from
Alberta ECG Dataset. We will then use this learned model
to generate new (realistic) synthetic ECG signals. During data
generation (Figure 1), we froze the layers weights of both the
encoder and decoder. Then, we feed selected 12-lead ECGs X
with a specified abnormality into the encoder. Then, using the
means and variance, we draw a sample (Z) from the Gaussian
distribution and feed it into the decoder. This generates a new
12-lead ECG (associated with the same abnormality as the one
fed into the encoder), which we can then use to augment the
CPSC 2018 dataset.

Fig. 1. Schematic of ECG generation using trained β-VAE. The weights of
both the Encoder and Decoder layers were fixed during data generation.

E. Learning Algorithm

We use the InceptionTime model [14] for multi-label clas-
sification of ECG abnormalities of CPSC 2018 Dataset, based
on the TSAI [15] public library that implements many state-of-
the-art algorithms for time series tasks. Using a training data
set, the model was trained for 200 epochs with early stopping.
The mean F1 score was monitored for early stopping, and if
the validation’s F1 score was not improved for 50 epochs,
the training was stopped, and the model was stored for the
inference stage on the test set.

F. Evaluation

Our evaluations are divided into two parts: (1) Evaluation
of the quality of β-VAE’s learned embeddings using the
Alberta (AB) Dataset (discussed in SI, section S2), and (2)
Evaluation of different data augmentation methods based on
the downstream prediction error of the classifiers learned using
that data, for the task of multi-label classification of ECG
abnormalities of CPSC 2018. Here, we consider using ECGs
generated by a model learned from AB, data addition of AB
ECGs, and oversampling of ECGs of CPSC 2018 dataset.

G. Evaluation of Various Data Augmentation Methods

Since β-VAE is a generative model, we can use it to gener-
ate ECG instances, which we can use to augment an existing
dataset, to see if a classifier learned from this extended dataset
can improve the performance compared with the original real
dataset. To capture the role of generated ECGs on the perfor-
mance of the classifier, we design multiple experiments that
use various data augmentation techniques; see Table I. First,

1The code base for training the β-VAE model used in this study is available
at here
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we measure the performance of the classifier without any data
augmentation method as a baseline experiment (CPSC NA).
Then, we augment the train+validation dataset with various
augmentation; ECGs from AB dataset as a positive control for
the contribution of augmented ECGs (AB Orig STE), VAE
synthetic ECGs as a target experiment to evaluate the effect
of ECG generated data (ABVAE Gen STE), and oversampled
CPSC ECGs as a negative control (CPSC OS STE). These
generated ECG signals were then added with a ratio of 90 %
into training and 10 % into the validation set of the CPSC
2018 Dataset. For a fair comparison, we fixed the test set
for all experiments. For all experiments, we used the F1
score of the test set to evaluate the model’s performance.
To determine if the results of the multi-label classification of
ECG abnormalities of CPSC 2018 are statistically significant,
we used the bootstrapping method: The test set was sampled
10,000 times with random replacement sampling. Then, the
95% confidence intervals of the F1 score for each label
were calculated. Additionally, we calculated a bootstrapped
difference of means. We also calculated the 95% confidence
interval of the difference of means per abnormality and for
the means of abnormalities for each label and experiment to
check if the observations are statistically significant.

TABLE I
THE EXPERIMENTS PERFORMED IN THIS STUDY.

Experiment Name Training Sample
Size (# of ECGs)

Description

CPSC NA 6190 No data augmentation as
baseline experiment

AB Orig STE 6190 + 1072 AB
ECGs

1072 real ECGs with STE
from AB dataset as a pos-
itive control experiment

ABVAE Gen STE 6190 + 1072
VAE generated
From ABVAE

1072 AB VAE generated
ECGs with STE abnor-
mality as a target experi-
ment

CPSC OS STE 6190 + 1072
oversampled
ECGs from
CPSC

1072 oversampled ECG
from CPSC dataset as a
negative control experi-
ment.

III. RESULTS

In the following, we evaluate the role of synthetic ECGs
on the performance of a classifier for the task of multi-label
classification using CPSC 2018.

A. Performance of Multi-Label Classification of ECG Abnor-
malities for CPSC 2018

Figure 2 shows the models’ performance on the test set. As
a first data augmentation experiment (CPSC NA), we selected
the label with the lowest F1 score (STE), then selected new
raw instances from the AB dataset. In particular, we used AB
instances whose STEMI label was a negative diagnosis for all
other labels (72 cases had this condition), and 1000 samples
of STEMI that had a negative diagnosis for at least the labels
of the CPSC 2018 ECG dataset (AB Orig STE). Note that
our dataset labels are limited to only 15, and selected ECGs

might have other possible abnormalities not covered by our
set of labels.

The results show that the addition of synthetic data (gen-
eration or augmentation) increased the F1 score performance
of STE compared to the models trained on just the original
dataset. The addition of raw AB ECGs of patients with
STE ( AB Orig STE) labels had the highest performance
(0.0890[0.0597-0.1185], mean pairwise difference in F1 scores
followed by 95% confidence interval of the mean pairwise dif-
ference,) for STE diagnosis compared with ABVAE Gen STE
(0.0463[0.0267-0.0659]) or CPSC OS STE (0.0447[0.0135-
0.0760]) approaches. However, data addition had a mixed
effect on the model’s performance of other labels. For the
AB Orig STE experiment, we observed statistically signifi-
cant changes in SR, AFIB, 1-AVB, PAC, PVC, STD and STE,
an statistically insignificant difference in LBBB and RBBB.
AB Orig STE data has better performance in AFIB, 1-AVB,
PVC, STE and worse in SR, PAC, and STD.

For the AB Gen VAE, we observed statistically significant
changes in the performance of SR, AFIB, 1-AVB, LBBB,
PVC, STD, and STE labels. An insignificant difference in PAC
and RBBB, a significant decrease in the performance for the
STD label, and a slightly worse performance on AFIB labels.
For the CPSC OS STE experiment, we observed a significant
difference in performance for AFIB, 1-AVB, LBBB,SR, PVC,
STD, and STE. Performance was not significant for RBBB and
PAC. Oversampling significantly decreased the performance
for STD, but did improve performance for AFIB, 1-AVB,
LBBB, SR, PVC, and STE. Most performance increases were
small but LBBB had significant improvement of 0.03 to 0.05
in F-1. These results suggest that adding either β-VAE, or real
ECG signals of the AB dataset, to the training dataset led to
models that had an overall better performance improvement
compared with oversampling of STE ECG signals from the
CPSC 2018 ECG dataset.

Fig. 2. Model performance of classification of ECG abnormalities for CPSC
2018 dataset. The error bar shows the upper and lower 95% confidence
intervals.
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IV. DISCUSSION

We used β-VAE to develop a generative model of the
rhythm of 12-lead ECG signals. To the best of our knowledge,
this is the first study that was able to learn the rhythm of 12
lead signals using β-VAE. Using β-VAE, other studies were
able to learn either the rhythm of 1-lead ECG signals [8] or 1
beat of 12-lead signals [9]. (Note they also used the learned
embeddings for downstream tasks). Here, using generated
ECG data from learned β-VAE based on a large ECG dataset
of AB Hospitals, we investigate the role of synthetic data
to help learn models that can classify ECG abnormalities of
CPSC 2018 ECG dataset. We focused on the comparison of the
model’s performance under different numbers of AB β-VAE
generated ECGs, over-sampling of ECGs, and addition of new
ECGs obtained from the AB Hospitals Dataset (Figure 3). We
found that AB β-VAE generated ECGs with STE abnormality
not only were able to improve the model’s performance on
the STE label of the test set but also improve the model’s
performance on 4 other labels. The performance of oversam-
pling the STE label also improved the model’s performance
of the STE label, but its positive effect on the performance
of other labels was less than β-VAE generated data. For the
STE label, among AB dataset β-VAE generated ECG data and
the addition of AB original ECG data, the AB original ECGs
improved the model’s performance of the STE label by ∼9 %,
while the AB β-VAE generated ECGs improved it by ∼5 %.
We assume this lower performance (of AB β-VAE generated
ECGs compared with the AB original ECG data) is because
the reconstructed ECGs were not perfect and there was some
information loss. However, this reduction might be acceptable,
as it means the ECGs used do not compromise the patients’
privacy.

The beneficial effect of ECG data generation on the model’s
performance was previously introduced by other studies,
which used generative adversarial networks (GAN) to generate
synthetic ECG data. Wang et al. [17] used a modified ver-
sion of GAN called auxiliary classifier generative adversarial
network (ACGAN) to generate synthetic data. Their method
requires first identifying the R peaks of the signal and con-
catenation of 5 generated heartbeats as a sample (12 * 1500
[lead, datapoints]). They used the CPSC 2018 dataset, where
they segmented the original ECG data into lower lengths that
resulted in 13754 samples rather than original 6877 samples.
Then, they selected 50 instances from each label as a test set.
These generated ECG data improved the performance of the
classifier in the test set for all labels, compared with models
that were trained with no data-generated ECG. Since they
segmented the original dataset into short lengths, we cannot
directly compare our classifier performance with this study.
Others also used GAN-based methods to generate synthetic
ECG data and observe an improvement of data generation over
their baseline model using other ECG datasets [17] [18].

There are some limitations associated with our study. While
our β-VAE model was able to learn the 12-lead signals, the
predictive ability of these learned embedding was lower than

22 ECG Global Measurements. The focus needs to be shifted
to finding algorithms that are able to better encode ECG
domains, and it will eventually enhance the performance of the
classifier (using embeddings as features) for the downstream
task.

Also, we assessed the similarity between real and synthetic
ECG signals using a common metric, such as Mean Squared
Error (MSE). However, it may not adequately capture the
nuanced ECG waveform characteristics relied upon by ex-
pert ECG readers for traditional ECG interpretation. Future
work will involve collaboration with ECG experts who will
conduct a qualitative evaluation of the generated ECGs. This
collaboration aims to ensure that our synthetic ECG data
closely resembles real ECGs, particularly in relation to their
original labels or abnormalities. Furthermore, we intend to
include quantitative metrics (e.g., P-wave duration) to compare
synthetic ECGs with real ones, further validating the quality
of the generated ECGs.

Fig. 3. Mean F1 score (%) differences between data augmentation approach
and original real CPSC for each label. (NS represents “not statistically
significant”.)

V. CONCLUSION

Here, we have trained an unsupervised β-VAE to generate
12-lead ECG signals based on a large dataset of AB ECGs.
This framework can generate synthetic ECGs with a certain
abnormality. Then, we evaluated the quality of AB β-VAE
generated ECG data by seeing whether adding them as ad-
ditional training data of ECG abnormalities, to the publicly
available CPSC 2018 ECG dataset. We found that adding
generated AB ECG data not only improves the performance of
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the targeted label (STE label) but also significantly improves
the performance of 4 other labels, while having no effect or
slightly negative effect on the performance of other labels.
Future studies are required to evaluate the beneficial effect of
AB β-VAE generated ECG data on other datasets. Also, more
effort is required to develop stronger β-VAE frameworks that
can encode the ECGs into richer embeddings and eventually
help to build stronger classifiers.
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Supporting Information

VI. SECTION S1

As discussed in the Method section of the main manuscript,
CPSC 2018 dataset consists of 9 possible labels: Sinus Rhythm
(SR), Atrial Fibrillation (AFIB), First-degree Atrioventricular
Block (I-AVB), Left Bundle Branch Block (LBBB), Right
Bundle Branch Block (RBBB), Premature Atrial Contrac-
tion (PAC), Premature Ventricular Contraction (PVC), ST-
segment Depression (STD), and ST-segment Elevated (STE).
The dataset was previously divided into the training set (6877
instances (female: 3178; male: 3699)) and test set (2954
instances (female: 1416; male: 1538)) by the competition,
where the test set, which is still not public, was used to
rank participants. Table S1 shows the number of training set
recordings for each label. The majority of the ECG training
data has only 1 label (6400 samples), while 477 samples have
multiple abnormalities in their ECGs.

TABLE S1
TOTAL NUMBER OF ECGS IN THE TRAINING SET FOR VARIOUS LABELS.

Challenge
Set

Label Total Number of
Recordings

Training

SR 918
AFIB 1098
1-AVB 704
LBBB 207
RBBB 1695
PAC 574
PVC 653
STD 826
STE 202

Total 6877

VII. SECTION S2: EVALUATION OF β-VAE EMBEDDINGS

To evaluate the quality of learned embeddings, we use
the embeddings for the task of multi-label classification of
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Fig. S1. The architecture of β-VAE used in this study.

cardiovascular diagnosis of Alberta (AB) ECG dataset. To
generate the 32 ECG embeddings, we feed the 12-lead ECGs
of AB ECG dataset into the encoder section of trained β-
VAE (Figure S1), which produces 32 pairs [means, variances],
which we use the means to represent that signal. Afterwards,
we ran the gradient boosted tree ensembles (XGBoost) model
on these instances (from the train + validation set), along with
age and sex, to learn 15 models – for one versus all classifi-
cations of each label. We then evaluated the performance of
each model using the area under the receiver operating curve
(AUROC) and the F1 score of the test set.

A. Performance of Multi-Label Classification of cardiovascu-
lar diagnoses of AB ECG Dataset

The VAE reconstructed the AB 12-lead ECG signals with
various error levels for different training ECG signals. We
also calculate the correlation of these 32 embeddings with 22
ECG measurements provided by a Philips machine (Figure
S2). These correlations can provide an explanation for the
characteristics of learned embeddings and their relation with
well-defined ECG measurements. Due to the unsupervised
nature of β-VAE, the model might learn the characteristics
of some ECG labels more than other labels depending on
the number of training instances with that label. To evaluate
the quality of learned ECG features for different labels, we
used these features, as well as age and sex, for the task of
multi-label classification of cardiovascular diagnoses. To this
end, we used XGBoost to create 15 independent models, one
for each type of diagnosis (Table S2).

If we select AUROC = 0.70 as a threshold for reasonable
learning performance, 9 labels – ST Elevation Myocardial
Infarction (STEMI), Heart Failure, Unstable Angina, Atrial
Fibrillation, Ventricular Tachycardia, Atrioventricular Block,
Pulmonary Hypertension, Hypertrophic Cardiomyopathy, and
Hypertrophic Cardiomyopathy – have the performance above
this threshold, suggesting that based on this learned β-VAE,
these labels might be more suitable candidates for data gen-
eration as compared to other 6 labels.

TABLE S2
THE MULTI-LABEL CLASSIFICATION OF 15 CARDIOVASCULAR DIAGNOSES

USING THE ALBERTA ECG DATASET USING 32 TCN BASED β-VAE
EMBEDDINGS, 22 ECG GLOBAL MEASURMENTS(GMS) FROM PHILIPS

MACHINE. ALL FEATURES/EMBEDDINGS INCLUDE AGE AND SEX AS
ADDITIONAL FEATURES.

Label 32 Embeddings 22 ECG GMs

AUROC F1 AUROC F1

NSTEMI 0.65 0.22 0.77 0.33

STEMI 0.74 0.25 0.88 0.49

Heart Failure 0.77 0.33 0.83 0.35

Unstable Angina 0.73 0.14 0.76 0.18

Atrial Fibrillation 0.75 0.31 0.72 0.18

Ventricular Tachycardia 0.72 0.09 0.77 0.12

Cardiac Arrest 0.64 0.06 0.74 0.09

Supraventricular Tachycardia 0.62 0.10 0.60 0.08

Atrioventricular Block 0.84 0.23 0.89 0.31

Pulmonary Embolism 0.61 0.04 0.69 0.11

Aortic Stenosis 0.68 0.05 0.80 0.09

Pulmonary Hypertension 0.70 0.05 0.77 0.11

Hypertrophic Cardiomyopathy 0.70 0.03 0.86 0.11

Mitral Valve Prolapse 0.62 0.02 0.72 0.04

Mitral Valve Stenosis 0.61 0.01 0.76 0.02

VIII. SECTION S3: THE PAIRWISE DIFFERENCES BETWEEN
AUGMENTED MODELS AND THE BASELINE MODEL.

Tables S3 through S7 display the pairwise differences in
mean F1 scores for each label and pair of models. We also
computed the 95% confidence interval for the difference in
means for each abnormality, as well as the average difference
across all abnormalities for each label. If the lower and
upper bounds of the confidence interval have different signs,
indicating they crossed zero, it shows that the observation is
not statistically significant.
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TABLE S3
THE PAIRWISE DIFFERENCES BETWEEN AB ORIG STE AND CPSC NA

MODELS.

Label mean F1 CI upper CI lower
SR -0.0363 -0.0277 -0.0469
AFIB 0.0191 0.0243 0.0138
1-AVB 0.0537 0.0618 0.0457
LBBB -0.0033 0.008 -0.014
RBBB -0.0030 0.0008 -0.0068
PAC -0.0448 -0.0277 -0.0620
PVC 0.0497 0.0619 0.0376
STD -0.0631 -0.0536 -0.0726
STE 0.0890 0.1185 0.0597

TABLE S4
THE PAIRWISE DIFFERENCES BETWEEN ABVAE GEN STE AND

CPSC NA MODELS.

Label mean F1 CI upper CI lower
SR 0.0233 0.0296 0.0169
AFIB -0.0037 -0.0006 -0.0069
1-AVB 0.0398 0.0449 0.0348
LBBB 0.0388 0.0442 0.0334
RBBB -0.0025 -0.00001 -0.0005
PAC -0.0340 -0.0296 0.0169
PVC 0.0623 0.0698 0.0548
STD -0.1322 -0.1246 -0.1398
STE 0.0463 0.0659 0.0267

TABLE S5
THE PAIRWISE DIFFERENCES BETWEEN CPSC OS AND CPSC NA

MODELS.

Label mean F1 CI upper CI lower
SR 0.0046 0.0145 -0.0053
AFIB 0.0135 0.0188 0.0081
1-AVB 0.0130 0.0216 0.0044
LBBB 0.0390 0.0488 0.0293
RBBB -0.0085 -0.0047 -0.0122
PAC 0.0049 0.0222 -0.0123
PVC 0.0221 0.0344 0.0098
STD -0.0593 -0.0497 -0.0689
STE 0.0447 0.0760 0.0135

TABLE S6
THE PAIRWISE DIFFERENCES BETWEEN ABVAE GEN STE AND

CPSC OS MODELS.

Label mean F1 CI upper CI lower
SR 0.0187 0.0286 0.0088
AFIB -0.0172 -0.0118 -0.0226
1-AVB 0.0268 0.0349 0.0188
LBBB -0.0003 0.0079 -0.0084
RBBB 0.0060 0.0098 0.0022
PAC -0.0390 -0.0231 -0.0549
PVC 0.0402 0.0519 0.0285
STD -0.0729 -0.0621 -0.0836
STE 0.0016 0.0328 -0.0296

TABLE S7
THE PAIRWISE DIFFERENCES BETWEEN AB ORIG STE AND CPSC OS

MODELS.

Label mean F1 CI upper CI lower
SR -0.0409 -0.0306 -0.0513
AFIB 0.0056 0.0106 0.0005
1-AVB 0.0407 0.0487 0.0328
LBBB -0.0423 -0.0324 -0.0522
RBBB 0.0055 0.0093 0.0016
PAC -0.0498 -0.0335 -0.0661
PVC 0.0276 0.0397 0.0156
STD -0.0038 0.0062 -0.0138
STE 0.0444 0.0752 0.0135
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