
Noname manuscript No.
(will be inserted by the editor)

IRJIT: A Simple, Online, Information Retrieval
Approach for Just-In-Time Software Defect
Prediction

Hareem Sahar · Abdul Ali Bangash ·
Abram Hindle · Denilson Barbosa

Received: date / Accepted: date

Abstract Just-in-Time software defect prediction (JIT-SDP) prevents the in-
troduction of defects into the software by identifying them at commit check-in
time. Current software defect prediction approaches rely on manually crafted
features such as change metrics and involve expensive to train machine learn-
ing or deep learning models. These models typically involve extensive training
processes that may require significant computational resources and time. These
characteristics can pose challenges when attempting to update the models in
real-time as new examples become available, potentially impacting their suit-
ability for fast online defect prediction. Furthermore, the reliance on a complex
underlying model makes these approaches often less explainable, which means
the developers cannot understand the reasons behind models’ predictions. An
approach that is not explainable might not be adopted in real-life development
environments because of developers’ lack of trust in its results. To address these
limitations, we propose an approach called IRJIT that employs information
retrieval on source code and labels new commits as buggy or clean based on

Hareem Sahar
Department of Computing Science
University of Alberta, Edmonton, AB, Canada
E-mail: hareeme@ualberta.ca

Abdul Ali Bangash
Department of Computing Science
Queen’s University, Kingston, ON, Canada
E-mail: abdulali.b@queensu.ca

Abram Hindle
Department of Computing Science
University of Alberta, Edmonton, AB, Canada
E-mail: abram.hindle@ualberta.ca

Denilson Barbosa
Department of Computing Science
University of Alberta, Edmonton, AB, Canada
E-mail: denilson@ualberta.ca

2 Hareem Sahar et al.

their similarity to past buggy or clean commits. IRJIT approach is online and
explainable as it can learn from new data without expensive retraining, and de-
velopers can see the documents that support a prediction, providing additional
context. By evaluating 10 open-source datasets in a within project setting, we
show that our approach is up to 112 times faster than the state-of-the-art ML
and DL approaches, offers explainability at the commit and line level, and has
comparable performance to the state-of-the-art.

Keywords Defect Prediction, · Just-in-time, · Information Retrieval

1 Introduction

The later a defect is identified in the software development life cycle, the higher
its impact and maintenance cost [30]. To identify and prevent defects early on,
Just-in-time (JIT) software defect prediction (SDP) [27,19] is proposed to
identify risky commits at check-in time. Identifying risky commits at commit-
time allows practitioners to dedicate their limited testing resources to review
and fix the riskiest commits while the context and changes are still fresh in
the authors’ minds.

JIT-SDP models are commonly built using machine learning (ML) and
deep learning (DL) techniques. Once trained, these models rely on a static un-
derstanding of the data distribution they were trained on. However, as we show
later, over time, these models can become outdated, resulting in a decline in
their performance. Consequently, retraining becomes necessary. Nevertheless,
retraining models from the ground up can be a resource-intensive and time-
consuming process [48,5]. In practice, these overheads can render such models
impractical for JIT-SDP, which is inherently an online learning problem [6,
43].

ML and DL models are not only cost-prohibitive due to the time and re-
sources needed for training but often lack explainability. Explainability is a
desired property of a prediction model designed for deployment in a real life
development environment. An explainable approach must provide insights into
the reasoning behind its decisions. For a JIT approach to be called explain-
able, the developers shall be able to trace back predictions to their originating
documents [10]. An example would be highlighting parts of a change that re-
semble a past buggy change. The state-of-the-art JIT-SDP approaches such
as DeepJIT [17] and CC2Vec [18] are not explainable because of reliance on a
complex underlying learning model such as a deep neural network model.

To address these limitations of prior work, in this paper, we propose IR-
JIT, a simple, online, and explainable information retrieval (IR) approach for
JIT defect identification. Unlike existing methods [6,31] that may offer these
features independently, IRJIT integrates these advantages into a single model.
Additionally, IRJIT employs a unique classification strategy and classifies a
new commit (as clean or buggy) based on its similarity to past commits, com-
puted using the BM25 algorithm [42].

Title Suppressed Due to Excessive Length 3

For each identified buggy commit, IRJIT also estimates its buggy lines us-
ing term frequency × inverse document frequency (tf–idf) term weights [38]. By
relying on traditional document indexing using source code token frequencies
instead of hand-crafted features such as code change or review metrics [26], we
make our approach readily deployable for any project with an active version
control system and an issue tracker. Our approach offers several advantages
over recent JIT approaches [17] [18]:

– IRJIT operates in an online manner, which means that it can adapt over
time by learning from new changes. IRJIT incrementally updates indexes as
new commits arrive without undergoing frequent and extensive retraining,
which can slow down the overall prediction process. Being able to update
online and react promptly to changes is desirable for the adoption of a JIT
approach [45]. By reducing the costs associated with retraining models,
IRJIT quickly reacts to changes, making it ideal for JIT-SDP.

– IRJIT is explainable as it links predictions to their originating docu-
ments. It also ranks source code lines of identified buggy commits by risk-
iness, making it easier for developers to inspect source code documents
that were used in prediction and understand why a commit was classified as
buggy. These characteristics enhance transparency and increase practition-
ers’ trust in predictions [10], while potentially simplifying the bug-fixing
process.

– IRJIT is simple as it operates directly on source code without requir-
ing additional hand-crafted features. It does not rely on complex machine
learning or deep learning prediction models. Instead, it draws conclusions
by matching current changes against the past source code documents that
developers are already familiar with; hence, the results are also simpler to
understand.

To establish the strengths and weaknesses of our approach, we conduct a
comparison with four state-of-the-art methods, including Oversampling Rate
Boosting (ORB) [6], JITLine [31], JITFine [29] and N-gram approach of Yan
et al [49]. ORB is a leading online JIT-SDP approach that produces balanced
recalls for both defective and clean classes by automatically adjusting the
resampling rate to mitigate class imbalance. Conversely, JITLine engages in
extensive tuning through SMOTE [9] and Differential Evolution (DE) to di-
rectly optimize metrics and word vectors for AUC. This process could delay
the online predictions [44][6] making the approach less suitable for the continu-
ous integration pipelines. Furthermore, as a consequence of JITLine’s reliance
on SMOTE to create new training examples, it cannot retrieve originating
commits to be blamed for a bug. In other words, it cannot explain the predic-
tions by linking to the original documents causing the classification, although
it can rank lines by defectiveness. Despite JITLine’s high performance, it was
outperformed by JITFine [29] which uniquely combined defect prediction and
localization into a unified deep learning (DL) model leveraging both semantic
and expert features of the source code.

4 Hareem Sahar et al.

2 Research Question and Contributions

This paper investigates when and to what extent information retrieval can be
helpful in a realistic online JIT-SDP scenario. We answer following Research
Questions (RQs) in this paper:

RQ1. Is the CPU run time of IRJIT less than (or equal to) that
of a state-of-the-art machine learning approach?
Motivation. For this RQ, cost is measured as CPU run time of building a
model. The cost of using IR methods in JIT-SDP is not thoroughly studied.
Additionally, the existing literature does not provide a clear answer regarding
the trade-offs between simple versus heavily-trained SDP models. Answering
RQ1 builds a clearer understanding of cost differences and allows organizations
to allocate their resources more wisely, especially when budgets are limited.
The insights could also drive the SDP research towards more cost-effective
methods.

RQ2. Does the predictive performance of IRJIT exceed (or re-
main equal to) the performance of a state-of-the-art machine learn-
ing approach?
Motivation. This work introduces a JIT-SDP approach that adapts with-
out retraining. The question arises: How does the simplicity of our approach
translate to its performance? Does a straightforward approach hold its ground
when compared against a sophisticated model? To answer this, we analyze
the predictive performance of our approach and compare it with a machine
learning baseline to see if it improves, deteriorates or retains similar predic-
tive performance as the baseline approach. The insights from RQ2 will help
stakeholders in choosing between our IR approach and the ML based state-of-
the-art approach.

RQ3. For fine grained line level SDP, does IRJIT performance
exceed (or remain equal to) that of a state-of-the-art machine learn-
ing approach?
Motivation. Fine-grained SDP helps developers identify bugs quickly with
less effort. If our approach can predict buggy lines upon commit, it might
expedite the bug-fixing process, enhancing the overall software development
life cycle. On the other hand, if buggy lines are not ranked on top, developer
effort may go to waste, and the bugs may still go unnoticed. Therefore, in this
research question, we measure the performance of our approach in terms of
correctly ranking buggy lines. The contributions of this work include:

– a JIT-SDP approach based on IR to detect buggy commits at commit
check-in time;

– an approach to identify associated buggy lines for each identified buggy
commit;

– a realistic evaluation of our approach on 10 open-source software defect
prediction datasets using various metrics and its comparison with a mature
machine learning baseline.

Title Suppressed Due to Excessive Length 5

Our replication package is available at https://github.com/Hareem-E-Sahar/
eseval_online.

3 Background and Related Work

3.1 JIT-SDP

JIT-SDP emphasizes the identification of risky changes just-in-time, i.e., before
they reach repository. Existing JIT approaches detect bugs based on past
information such as change histories [22] or by relating past defects to software
metrics [37][19]. CLEVER [28] identifies new defects by comparing new code to
known cases of buggy code. It uses a clone detection to improve the accuracy
of buggy change identification which was originally based solely on a metric-
based model. Kamei et al. [19] performed a longitudinal case study on two
open-source systems, Openstack and Qt, and found that fluctuations in the
properties of fix-inducing changes can impact the performance of JIT models.
They also showed that JIT models typically lose power after one year, so they
should be updated with more recent data.

Figure 1 illustrates an example of one such machine learning based SDP
model, trained on the initial 10% project data. The plot reveals a notable de-
cline in the model’s performance over time, a phenomenon known as concept
drift in the literature [19,6], which underscores the importance of retraining
models to ensure prediction accuracy. This need for regular updates brings
into question the costs of retraining. If these costs are high, they could hinder
the model’s practical application, emphasizing the necessity for computation-
ally efficient models. In this context, the contributions of Pornprasit et al.
are particularly significant. Notably, Pornprasit et al. [31] demonstrated that
their machine learning model outperforms complex deep learning methods like
JITFine [29] DeepJIT [17] and CC2Vec [18], which require significant compu-
tational resources. Our proposed method also offers reduced computational
costs by eliminating the need for full retraining, making it a practical solution
for JIT-SDP.

3.2 Online JIT-SDP

Online learning has been extensively studied and applied in recent years [5,43].
It refers to learning from data streams where data arrives continuously and a
timely response is required. Strictly speaking, online learning algorithms pro-
cess each training example once “on arrival” without the need for reprocessing,
and maintain a model that reflects the current state to make a prediction at
each time step. Tan et al. [44] investigated JIT-SDP using batches of train-
ing examples arriving over time to update the prediction models. They used
resampling techniques to deal with the class-imbalanced data issue and updat-
able classification to learn over time. They also considered the fact that the

https://github.com/Hareem-E-Sahar/eseval_online
https://github.com/Hareem-E-Sahar/eseval_online

6 Hareem Sahar et al.

0.
6

0.
7

0.
8

0 250 500 750 1000 1250

BroadleafCommerce

0.
0

0.
1

0.
2

0.
3

0.
4

0 250 500 750 1000 1250

JGroups
0.

2
0.

4
0.

6

0 250 500 750 1000 1250

Tomcat

0.
70

0.
75

0.
80

0.
85

0 250 500 750 1000 1250

Nova

0.
2

0.
3

0.
4

0.
5

0 250 500 750 1000 1250

spring−integration

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 250 500 750 1000 1250

npm

0.
85

0
0.

87
5

0.
90

0

0 250 500 750 1000 1250

Neutron

0.
4

0.
5

0.
6

0.
7

0 250 500 750 1000 1250

brackets

0.
4

0.
6

0.
8

1.
0

0 250 500 750 1000 1250

Fabric8

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0 250 500 750 1000 1250

camel

Fig. 1: Performance evolution of a typical JIT-SDP approach over time showing
a declining trend. x-axis shows time step and y-axis shows G-mean values. The
model was trained once and the subsequent predictions were made without
retraining the model.

labels of training data may arrive much later than the commit time, a concept
named verification latency in literature [6]. Cabral et al. [6] were the first to
propose an online approach for JIT-SDP. Their approach called Oversampling
Rate Boosting (ORB) tackles concept drift (change in the proportion of defect-
inducing and clean examples) in an online JIT-SDP scenario, while taking ver-
ification latency into account. ORB automatically adjusts the re-sampling rate
to tackle class imbalance, which improved its predictive performance over JIT
approaches that assume a fixed level of class imbalance. Tabassum et al. [43]
evaluated ORB in a cross-project (CP) defect prediction setting and showed
that CP models trained together on CP and within project (WP) data have
a higher performance than WP models trained only on WP data.

Title Suppressed Due to Excessive Length 7

3.3 Explainability

Explainability in SDP aims at making the outputs of defect prediction models
more understandable to humans. This aspect is crucial to JIT-SDP models be-
cause developers favor simple, explainable, and online models, as highlighted in
the survey conducted by Wan et al. [45]. Traditional defect prediction models
leverage ML algorithms to identify potential defects based on historical data.
However, the complexity and “black box” nature of these models often make it
difficult for practitioners to understand and trust their predictions. Pornprasit
et al. [31] addressed this critical shortcoming of ML and DL models i.e., their
lack of explainability, by utilizing a model agnostic technique, LIME [36], to
explain the reasoning behind the decisions of their commit level random forest
classifier. Wattanakriengkrai et al. [47] applied the same technique to explain
a file level defect model. The recognition of the need for explainable mod-
els is growing among researchers. In line with this, our goal is to develop an
approach that enhances explainability by highlighting the historical instances
that inform its predictions.

3.4 Verification latency in JIT-SDP

Verification latency refers to the fact that the labels of training examples
may arrive much later than their input features. Ignoring such delay in an
online learning scenario means training models on data that is not available
in practice. In JIT-SDP a commit could receive its true label early if a defect
associated to it is quickly found. Alternatively, it can receive label at the end
of the waiting time (if the commit is believed to be clean) or after the waiting
time (if an example previously considered clean is found to actually be defect-
inducing after the waiting time has passed). This waiting time should reflect
the time it takes for one to be confident enough that software changes are
not defect-inducing. Tan et al. [44] introduced this concept and found that
ignoring latency could lead to false performance estimates. Cabral et al. [6]
investigated how long it typically takes for software changes to be revealed as
defect-inducing. Later, Tabassum et al. [43] and our work followed the same
methodology for the evaluation of JIT-SDP.

3.5 Leveraging source code similarity

DeepBugs[32] detects incorrect code by reasoning about identifier names, and
training a binary classifier on correct and incorrect examples. We leverage code
similarity between past buggy and clean changes to explain why a new change
is classified as buggy. This line of work is inspired by the success of code search
and recommendation engines [25][21] which employ IR techniques. IR-based
methods work by matching shared vocabulary between query and corpus doc-
uments, and are effective for code retrieval [24][51] and bug localization [34].

8 Hareem Sahar et al.

Due to the repetitive nature of source code [16], statistical language models
can also spot defective code effectively [35,7,39]. Yan et al. [49] use several
change level features and software naturalness with the N-gram model to lo-
calize buggy changes. Their proposed framework ranks buggy lines in order of
suspiciousness. In this work, we also estimate the riskiness of the source code
lines based on the number of occurrences of buggy tokens in each line.

4 IRJIT in Practice

Here we are going to share the story of how IRJIT fits into Ada’s workflow
who is a software developer at TechFlow1. Every day, Ada faces a challenge
to ensure that her code commits are defect-free. While comprehensive test-
ing processes and code reviews are a part of TechFlow’s quality control, the
idea is to catch potential issues as early as possible, minimizing disruptions
and maximizing efficiency. IRJIT is seamlessly integrated into the developers’
workflow using a commit hook, preventing potential defects from sneaking into
the codebase, hence making Ada’s life easier. Imagine Ada had just finished
writing a feature that involved intricate logic. As she prepared to commit her
changes, the newly-integrated JIT prediction model sprang into action. Be-
hind the scenes, the IRJIT model analyzes various aspects of her commit such
as the source code changes made to different files in commit. These changes,
along with the historical commit data continuously collected by IRJIT, serve
as the foundation for the model’s prediction. By analyzing previous commits
and their labels, the model learns characteristics that make a commit more
or less likely to introduce defects. A moment later, a notification popped up,
suggesting that there might be a potential issue with Ada’s commit. Intrigued,
Ada decided to investigate further by looking at the past changes that matched
the new changes, and the ranked buggy lines. She realized that she had missed
handling an edge case in her code. Grateful for the timely alert, she made the
necessary modifications before proceeding with the commit.

For this scenario to work, IRJIT must be online and update itself in real-
time as new commits and defect labels arrive. To accomplish this, IRJIT op-
erates in the background, automatically retrieving data from various sources,
including version control and issue-tracking systems. The new commits are
placed in a queue and wait for a defect to be linked to them or for a set time
period to pass, after which we assume the commit is clean. As Ada’s team
fixes bugs that arise post-commit, IRJIT updates its understanding of which
commits led to defects. Once IRJIT obtains a new labeled commit, its pre-
diction model is updated incrementally without requiring complete retraining
from scratch. This online approach taken by IRJIT ensures that developers’
workflow remains uninterrupted.

As days turned into weeks, Ada, along with her colleagues at TechFlow,
found the IRJIT becoming an indispensable part of their workflow. There were

1 It is a hypothetical name

Title Suppressed Due to Excessive Length 9

Indexing past
source code

changes

Extracting buggy
& clean commits

SZZ

Extraction and Indexing

New
commit

Querying to
retrieve matches

 Classification

more-like-this

Extracting source
code changes
from commits

Project repo

Elasticsearch Index

candidate
matching
changes

Determining
label from
matches

Rank lines
according to

bugginess

Top buggy
lines

Find buggy
tokens using

tf–idf weights

Ranking buggy Lines

Issue tracker

Fig. 2: An overview of IRJIT operation. IRJIT extracts past changes using
SZZ and indexes them using inverted indexes. On arrival of a new commit,
IRJIT classifies the commit based on its similarity with the past changes in
the index. Finally, IRJIT ranks changed lines according to bugginess.

moments of affirmation where the model caught potential issues. While the
model was not infallible, it allowed Ada and her team to commit code with an
added layer of confidence. There were also moments when Ada disagreed with
the model’s prediction, and in such cases, Ada could ignore the prediction and
still push the commit. This balance between automated insights and human
judgment ensured that the tool remained an assistant, not a gatekeeper.

5 IRJIT Methodology

IRJIT can be integrated into git either through a commit hook [3] or a pull
request bot. As soon as a developer pushes a new commit, IRJIT analyzes
the new source code changes and compares them against past changes in the
project’s version control system. The developer is alerted if IRJIT predicts
the new commit as buggy. This way, IRJIT can ensure that bugs are iden-
tified and resolved before the changes reach the main branch of the project
repository. Figure 2 shows the backend design of IRJIT framework. IRJIT ex-
tracts past project commits (Section 5.1) and associated source code changes
(Section 5.2). The source code changes are stored into an inverted index for
querying (Section 5.3). IRJIT intercepts new commits, queries an index for
matches in the indexed corpora, and flags changes that match known buggy
changes (Section 5.4). Lastly, for each buggy change, IRJIT ranks source code
lines that are part of the change according to their riskiness (Section 5.5).

10 Hareem Sahar et al.

5.1 Extracting buggy and clean commits

As a first step, IRJIT requires a corpus of buggy and clean commits to make
predictions. To obtain buggy commits from a project’s history IRJIT relies
on SZZ algorithm [40,23], which operates on the data available in the version
control and issue tracking system. In the first step, the algorithm identifies a
defect-fixing commit. A commit is fixing if it fixes a defect, i.e., it refers to
an issue labeled as fixed in the issue tracking system. In the second step,
SZZ traces back through the version control to identify the associated buggy
commit i.e. the one responsible for inducing the defect that the fixing commit
addressed. For this purpose, SZZ algorithm leverages diff and annotate/blame
functionality. The diff helps identify lines that were changed between a defect-
fixing commit and its immediately previous commits. These are the lines that
potentially fixed the bug. The annotate/blame functionality identifies commits
that originally introduced or modified those lines in the past. SZZ flags those
original changes as defect-introducing or buggy if the commit was made be-
fore filing the issue in project issue tracker. Once the algorithm completes its
execution, the buggy commits are identified. Similar to prior work [49][50], we
include the remaining commits in IRJIT’s analysis as clean commits. From
here onwards, we only use the terms buggy and clean to refer to commits.

5.2 Extracting source code changes from commits

A commit may introduce source code changes across multiple files. A change
refers to committed code in a single file. IRJIT extracts changes using the git
diff utility and pre-processes them to remove blank lines.

The processed source code changes for each file are subsequently stored in
a JSON document representing that file. To facilitate the retrieval of specific
modifications later, we opt not to consolidate changes from different files, main-
taining the separation of changes specific to individual files instead. Within
each JSON document, essential metadata such as lines added, commit hash,
file name, and label are included. Currently, IRJIT collects and uses lines

added by default because SZZ algorithm only flags changes that introduce new
lines as buggy [26]. Purushothaman et al. [33] also suggests that the probability
of introducing a bug is higher with the addition of new lines. Hence, only lines

added field might be enough to spot bugs. Our preliminary experiments 2 also
showed that analyzing lines deleted did not lead to a significant gain in the
predictive performance of our model. Therefore, we only use the lines added

field to build the IRJIT model.

2 https://github.com/Hareem-E-Sahar/eseval_online/tree/main/eseval_timewise_

batched/results_commit_level/results_lines_added_deleted_camel

https://github.com/Hareem-E-Sahar/eseval_online/tree/main/eseval_timewise_batched/results_commit_level/results_lines_added_deleted_camel
https://github.com/Hareem-E-Sahar/eseval_online/tree/main/eseval_timewise_batched/results_commit_level/results_lines_added_deleted_camel

Title Suppressed Due to Excessive Length 11

5.3 Indexing past source code changes

To make the classification of a new commit scalable and efficient, IRJIT em-
ploys an inverted index, a data structure designed to maintain a terms to
documents mapping. In information retrieval tasks, inverted index helps to
optimize search and retrieval from a large corpus of documents. To build in-
verted indexes, IRJIT leverages Elasticsearch, which is a real-time full-text
search engine built on top of the Apache Lucene library [1].

The historical source code changes are tokenized and indexed based on user
specified settings. As mentioned Section 3.5, prior works employ source code
as features for various tasks. IRJIT uses a whitespace tokenizer [14] which
is part of our custom camel-case analyzer [13] to tokenize the past source
code changes, specifically the lines added to a change. It splits the words
into tokens when a case change is encountered using a method provided in the
ElasticSearch documentation. The choice of a camel-case analyzer was initially
influenced by Campbell’s work [8]. However, the final selection was based on
the finding that it performs slightly better than other analyzers, such as simple
analyzer and the shingle analyzer 3

In practice, one index per project can serve the purpose of a repository for
all prior changes. The index is initially empty, resembling a predictive model
that will always predict clean until a buggy commit arrives. It is then updated
incrementally by adding changes when they arrive, eliminating the need of re-
indexing any previous documents. However, when a software change arrives, it
is saved in a queue for an arbitrary amount of time, referred to as the waiting
period. This waiting period serves to establish confidence that the change is
clean. If a bug is associated with the change during the waiting period, it im-
mediately becomes a buggy example. Otherwise, the change becomes a clean
example at the end of the waiting period. IRJIT’s approach empowers devel-
opers to query against the new changes right away, unlike existing approaches
that necessitate model retraining when new data arrives. The ability to remain
online makes IRJIT suitable for repositories of any size.

5.4 Classifying a new commit

5.4.1 Retrieving similar commits

When a new commit arrives to be checked-in to a version control system,
IRJIT treats it as a test commit. The camel-case analyzer is used to pro-
cess the commit, similar to the indexed commits, before classifying it as ei-
ther buggy or clean. This classification is based on the extent to which the
new commit’s changes match with those from past commits. The classification
process involves several steps. First, IRJIT extracts source code changes from

3 https://github.com/Hareem-E-Sahar/eseval_online/tree/main/eseval_timewise_

batched/results_commit_level/results_lines_added_shingle

https://github.com/Hareem-E-Sahar/eseval_online/tree/main/eseval_timewise_batched/results_commit_level/results_lines_added_shingle
https://github.com/Hareem-E-Sahar/eseval_online/tree/main/eseval_timewise_batched/results_commit_level/results_lines_added_shingle

12 Hareem Sahar et al.

the new commit. Second, for each extracted change it formulates a query us-
ing the lines added field from the corresponding change. Third, it executes
the query and retrieves matches from the past source code changes. Specifi-
cally, IRJIT formulates a more like this (MLT) query [12], which finds indexed
training documents that are “like” a given test document. MLT query4 utilizes
corpus-level and document-level term statistics, i.e., tf–idf to compute similar-
ity between a query and documents in the corpus. tf represents the frequency
that a source code token appears in a specific document, and idf represents
the universal importance of a source code token for the entire collection of
documents. IRJIT utilizes BM25 algorithm[42] to calculate similarity. BM25
is a scoring function that considers term frequencies, document frequencies,
and document length to generate a relevance score.

Notably, the query document and the indexed documents are processed
using the same analyzers before computing similarity. Although Elasticsearch
allows for customization of similarity algorithms, we found the default BM25
algorithm to be adequate for our study. Based on the BM25 similarity results,
Elasticsearch returns the top-K most similar training documents for a given
test document along with their respective relevance scores.

IRJIT may issue multiple queries for each test commit, depending on the
number of changes within that commit. The matching documents from all MLT
queries are combined into a set called candidate matches and sorted according
to relevance score. The Elasticsearch scoring formula [2] is originally based on
tf–idf and BM25, but contains adjustments to allow for comparison of scores
across different queries [8]. Next, IRJIT’s classifier determines a final label for
the test commit.

5.4.2 Determining the label from matches

IRJIT currently implements a K-nearest neighbor (KNN) classifier which classi-
fies a commit as buggy or a clean based on the majority label of the candidate
matches. If the majority of K neighbors are buggy, the test commit is labeled
buggy; otherwise, it is considered clean. The choice of K is crucial and can
be fine-tuned for each project to optimize performance. Alternatively, the user
can provide this value as input. Currently, IRJIT uses a default value of K = 3
which was set empirically after experimenting on K = 1, 3, 5, 7, 9, 11.

5.5 Generating a ranking of buggy lines for a commit

If a new change is identified as buggy, IRJIT provides developers with a rank-
ing of modified lines based on their level of bugginess. Prior work [16][35][49]
exploits N-gram models to find most entropic source code tokens. However,
we adopt a slightly different approach to estimate the buggy tokens, i.e., to-
kens that contribute towards overall bugginess of the document. We rely on

4 min term freq=1, and min doc freq=1

Title Suppressed Due to Excessive Length 13

Table 1: Details of the studied projects

Projects #Commits % Defective Period Language

Brackets 17,310 23% 12/2011 - 12/2017 Java script
BroadleafCommerce 14,910 17% 09/2003 - 12/2017 Java
Camel 30,517 20% 03/2007 - 12/2017 Java
Fabric8 13,003 20% 12/2011 - 12/2017 Java
JGroups 18,316 17% 09/2003 - 12/2017 Java
Neutron 19,451 24% 12/2010 - 12/2017 Python
Nova 48,937 25% 08/2010 - 01/2018 Python
Npm 7,892 18% 09/2009 - 11/2017 Java script
Spring-integration 8,691 27% 11/2007 - 01/2018 Java
Tomcat 18,877 28% 03/2006 - 12/2017 Java

the BM25 term weights obtained while executing more like this query (Sec-
tion 5.4.1). These term weights highlight the significance of individual terms
when predicting a document as buggy. The terms with highest weight when a
document is predicted buggy are considered buggy tokens. These tokens are
indicative of potential sources of bugs. After extracting buggy tokens, we rank
lines based on the number of occurrences of buggy tokens within each line. Fi-
nally, we show the ranked buggy lines to the developer. Our ranking approach
allows for a unified model for JIT prediction and localization, eliminating the
need for separate models for each task. This integration ensures that expla-
nations are generated promptly alongside predictions, essential for real-time
application in development workflows.

6 Experimental Setup

6.1 Dataset

We used a dataset extracted by Cabral et al. [6], which contains ten exist-
ing open-source projects. The dataset is available at https://zenodo.org/

record/2594681. The size of the datasets range from 74k to over 1.3m lines
of code, and their development periods span from 6 to 14 years. The defect
datasets contain commit-level metrics proposed by Kamei et al. [19] and used
to describe a software change. The metrics can be divided into five categories
including i) diffusion, ii) size, iii) purpose, iv) history, and v) developer ex-
perience. All the datasets were extracted using CommitGuru. Table 1 shows
the number of commits, percentage of defective commits, development time
period, and programming language for each project.

6.2 Training and Prediction

JIT-SDP is an online process that involves dealing with commits that arrive
continuously over time. Each commit has a software change associated with

https://zenodo.org/record/2594681
https://zenodo.org/record/2594681

14 Hareem Sahar et al.

it, which allows us to classify the commit as defect-inducing or clean. A time
step associated with the commit indicates the order of arrival of commit based
on the author’s timestamp. The model’s predictive performance is measured
at a specific time step t by training it on commits received before t and then
evaluating it on the commit that arrives at t. During the initial phase of a
project, the model predicts a test commit as clean until it encounters a defect-
inducing example. Therefore, one must update the model as new commits and
their labels become available.

We evaluate our approach in the context of within-project defect predic-
tion [43] setting. We use past data from the same project to build our models,
or in other words, each model is trained and tested on the same project. We
ensure that our evaluation avoids time-travel [4] by preserving the chronologi-
cal order of data. This is achieved by making certain that our test data always
follows the training data. For a JIT model, it’s essential to adapt online [6,43],
which means learning from new data as soon as it becomes available without
the need to retrain on the old data. IRJIT has the ability to update in real
time with new data.

6.3 Baselines

We compare IRJIT with four state-of-the-art approaches from the literature,
the online method known as Oversampling Rate Boosting (ORB) [6], two of-
fline approaches — JITLine [31], JITFine [29], and Yan et al’s N-gram based
defect localization model [49]. Cabral et al. were the first to address JIT-SDP
as an online learning problem considering verification latency. ORB [6] auto-
matically adjusts its resampling rate to mitigate the evolving class imbalance,
thus ensuring balanced recall rates for both buggy and clean classes.

Pornprasit et al. proposed JITLine [31] which constructs a ML model on
source code changes plus expert features. To counteract the data imbalance
problem caused by a low percentage of buggy commits, JITLine generates new
documents leveraging SMOTE technique that is optimized using the Differ-
ential Evolution algorithm. We selected JITLine as our baseline because of
its superior performance, surpassing various deep-learning methods such as
CC2Vec [18], and DeepJIT [17], as well as Yan et al’s. [49] N-gram model. To
the best of our knowledge there is no other ML approach that has outper-
formed JITLine. Additionally, JITLine provides fine-grained predictions by
ranking buggy lines of an identified buggy commit. It uses LIME to build a
local model around the predicted instance which then generates ranking of
risky lines. In contrast, IRJIT uses the importance score of terms involved in
the prediction of a commit to identify buggy lines.

Yan et al’s [49] notable contribution was a fine-grained model for ranking
source code lines by their defect proneness. They used an existing JIT-SDP
technique based on expert features to identify buggy commits and then apply
their N-gram based defect localization model to rank lines within the identified
buggy commits. We include a comparison of their N-gram model with IRJIT

Title Suppressed Due to Excessive Length 15

in this paper. Ni et al. introduced JITFine [29], a unified model that integrates
semantic and expert features of source code through a deep learning technique,
CodeBERT, thus eliminating the need for a separate defect localization model.
JITFine outperformed JIT-Fine and all other models on both defect prediction
and localization tasks. Similar to JITFine, IRJIT uses a single model to achieve
both defect prediction and localization.

6.4 Evaluation Metrics

In JIT-SDP, which is an online learning problem, the most frequently used
metrics are Recall0, Recall1 G-mean [6].

Recall0 (R0) measures the proportion of clean class examples that are
correctly classified as clean. It is also called true positive (TN) rate. It is
calculated as:

Recall0 =
TN

TN + FN
,

Recall1 (R1) measures the proportion of buggy class examples that are
correctly classified as buggy. It is also called true positive (TP) rate. It is
calculated as:

Recall1 =
TP

TP + FN
,

G-Mean is the geometric mean of positive accuracy (TP rate) and negative
accuracy (TN rate). A good classifier will exhibit high accuracies for both
classes, resulting in a high G-mean. G-mean is calculated as shown below:

G−mean =

√
TP

TP + FN
∗ TN

TN + FP

For imbalanced learning problems, such as defect prediction, it’s recom-
mended to use metrics that are not sensitive to class imbalance, such as G-
mean and the difference of recalls |R0-R1|. According to Wang and Minku [46]
G-mean helps ensure fair evaluations. It is important to note that metrics sen-
sitive to class imbalance, like Precision and F-measure, can lead to inconsis-
tent performance evaluations [15] as class distribution varies across datasets.
In other words, the performance measure will change as class distribution
changes, even though the underlying performance of the classifier does not.
Lastly, the AUC (Area Under the Curve) metric relies on varying the classi-
fication decision threshold for separating positive and negative classes in the
testing dataset. In other words, calculating AUC requires a set of confusion
matrices [46]. Therefore, unlike other measures based on a single confusion ma-
trix, AUC cannot be used as an evaluation metric in online learning without
memorizing data. For this, reason we do not use AUC in our evaluation.

16 Hareem Sahar et al.

For line-level evaluation, we employ the performance metrics used in the
previous fine-grained software defect prediction studies [31,29,49]. TopK ac-
curacy measures the ratio of actual buggy lines to the Top K lines. A high ratio
suggests that many actual buggy lines are ranked at the top. Recall@20%Effort
measures the ratio of actual buggy lines that can be found given only top 20%
changed lines of code. In other words, the top K% of lines are ranked by their
defect-proneness. Effort@20%Recall measure the amount of effort made by
the developers to identify top20% of buggy lines in a commit. A higher value
means that more effort is needed. Initial False Alarm (IFA) measures the
number of clean lines in a commit that need to be inspected before identifying
an actual buggy line. This means developers need to spend effort on IFA num-
ber of lines until the first buggy line is found once lines are ranked by their
bugginess. Ideally buggy lines should be within the first few inspected lines.

6.5 Evaluation methodology

IRJIT uses information, known by time step t only, to predict a commit at t.
Correspondingly, our models update in real-time with the recent information
available at each time step. The time step is just a sequential number signifying
the order in which we receive project data. To predict a commit that arrives
at t, the prediction model incorporates all previously labeled training data
available by the Unix timestamp corresponding to t. For an online learning
problem [43] such as JIT-SDP, this kind of evaluation is more realistic than an
80:20 split. It aims to replay an online setting where changes continuously ar-
rive over time, and predictions are only based on past changes. Consequently,
performance estimates align more closely with what developers may encounter
in a real-world software development environment. We ran our experiments 10
times on each project shown in Table 1. We evaluated IRJIT following Cabral
et al’s [6] online methodology, which takes verification latency into considera-
tion. Algorithm 1 presents our evaluation methodology. The algorithm accepts
three inputs, d: Incoming training examples,K: number of nearest neighbors
to consider in the KNN classification, and, w: the waiting period in the queue
for the arrival of labels.

Initially an Elasticsearch index is created with no data in it. When a new
change dt is received at time step t (line 4), it is presumed to be non-defect-
inducing. For this change dt, IRJIT retrieves matches by executing a more like
this query (line 5) based on the source code lines added to a change, represented
by xt. Then, the KNN algorithm (line 6) is applied to the matches to obtain
a prediction for the change based on the majority consensus of the retrieved
matches. The queue is also updated to store dt. The change dt remains in
the queue waiting for its label to be assigned. The labels are assigned to the
stored examples when the queue is processed (line 8 to 21). During queue
processing, the algorithm iterates over each change qi and determines whether
it has received its label. If a defect is linked to qi within the waiting period
(w), it is labeled as buggy and indexed (line 9 to 11). Alternatively, if no bug is

Title Suppressed Due to Excessive Length 17

Algorithm 1 IRJIT’s Approach

1: Input: d = incoming training examples, w = waiting period, K = # of neighbors to
consider for the Knn algorithm,

2: Create index idx
3: ŷ = ‘False’
4: for each training example dt = (xt, yt), t← 0 to ∞ do
5: matches = MLT query(xt)
6: ŷ = KNN clf(matches,K)
7: update WFLQ(dt) // incoming example stored in queue, waiting to be used for

training
8: for each item qi in WFLQ do
9: if a defect was linked to qi at a timestamp ≤ t then

10: create a buggy training example for qi
11: index(idx, training example)
12: remove qi from WFLQ
13: else
14: if qi is older than w then
15: create a clean training example for qi
16: index(idx, training example)
17: remove qi from WFLQ
18: update CLQ(training example) //CLQ stores clean training examples
19: end if
20: end if
21: end for
22: if a defect was linked to a training example in CLQ
23: at a timestamp ≤ t then
24: Swap the label of training example to defect-inducing
25: index(idx, training example)
26: remove training example from CLQ
27: end if
28: end for

linked to qi during the waiting period, it is then considered clean, indexed and
also stored in the clean queue (CLQ) (line 14 to 18). The algorithm examines
the CLQ to determine if a stored change is later found to be linked to a defect.
In that case, its label is swapped to buggy and it is re-indexed with the new
correct label (line 22 to 25).

The goal of the aforementioned online evaluation is to obtain a comprehen-
sive performance profile for the model, showcasing its capabilities in a genuine
online learning scenario where it predicts commits based on all prior data up
to each time step. However, when it comes to JITLine and JITFine evaluation,
given the high computational cost associated with retraining these model, it
was not feasible to retrain them at each time step. Therefore, we conducted a
batched evaluation which was recently used by Cabral et al. [5] for JIT-SDP.
To carry out batched evaluation, we randomly sampled n time steps from all
time steps, at which we retrain the batched model. In this paper, we use n = 10
considering our time budget, which means we update the model (or retrain in
case of JITLine) at 10 different time steps.

To evaluate batched models, we first update the model using a training
set that contains only commits with labels known by t. After training the
model, we evaluate it on the commits from 100 subsequent time steps. As

18 Hareem Sahar et al.

mentioned earlier, our training data is collected while keeping verification la-
tency in account. To ensure a fair comparison between the two approaches,
we re-evaluated IRJIT under this batched evaluation methodology, allowing
us to directly compare its performance with that of JITLine under similar
constraints.

6.5.1 RQ1 setup.

The RQ1 focuses on analyzing the CPU or GPU run time of the evaluated
approaches. We measure the CPU run time in seconds for all evaluations of the
ORB, IRJIT, and JITLine models. For the JITFine model, we measure the
GPU run time. The CPU-based experiments were conducted on a machine
equipped with Intel® Core™ i7-10610U CPU @ 1.80GHz × 8 and a 16GB
RAM. For JITFine, experiments were performed on a machine featuring an
Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz, RAM 64GB, and 2 GPUs:
NVIDIA GeForce RTX 3090 (24GB) and NVIDIA GeForce RTX 4090(24GB).

For JITLine, and JITFine we only measure the training time of the models.
For IRJIT, we measure the duration of the entire experiment. This includes
the time spent on indexing commits and the time taken to predict incoming
commits through querying the indexed data(section 5.4.1). Our aim in doing so
is to include the time associated with query execution and search processes in
our evaluation. To estimate the run time distribution we repeat our experiment
10 times. As we used the dataset of Cabral et al. [6] we also use the waiting
period suggested by them, i.e., 90 days.

6.5.2 RQ2 Setup

The RQ2 focuses on analyzing the predictive performance of IRJIT and its
comparison with the evaluated baselines: ORB, JITLine and JITFine using
popular online learning metrics such as G-mean, recall, and difference of re-
calls. Given the inherent differences in operation between online and batch
processing models, our experimental setup required a methodological adjust-
ment to facilitate a fair comparison with batch-oriented approaches like JIT-
Line and JITFine. Therefore, IRJIT is evaluated in both online and batched
mode for comparison with ORB and JITLine/JITFine respectively.

To build models for batched evaluation, we segmented the data into n
batches at randomly picked time steps. We then retrain and evaluate our
models on these batches, and measure performance. In our evaluations, the
value of n is set to 10, so we train and evaluate on 10 time steps. We ensure
that IRJIT and baseline models were evaluated on the same time steps so they
could be comparably evaluated against each other.

6.5.3 RQ3 Setup

The RQ3 focuses on evaluating the effectiveness of fine-grained line-level pre-
diction. To accomplish this, we first acquire line-level ground-truth data using

Title Suppressed Due to Excessive Length 19

the methodology outlined in prior work [31,29,49]. We identify buggy lines as
those altered by defect fixing commits. We used PyDriller [41] to retrieve all
defect-fixing commits. Subsequently, we extracted the modified or deleted lines
from these commits and categorized them as buggy lines, while the remaining
lines were labeled as clean.

Once the data was collected, we proceeded to rank the buggy lines within
each predicted buggy commit from a batched model. To rank lines, we utilized
BM25 term weights or importance scores of tokens obtained from the Elastic-
search Explain API. The API generates an explanation for queries and specific
documents, detailing why a particular document matches (or doesn’t match)
a query. We parsed the output from the Explain API to identify tokens con-
tributing to the prediction of a buggy commit. Subsequently, we searched for
all these identified tokens within the lines added to a buggy commit and ranked
them based on the occurrence frequency of distinct tokens within each line.
The resulting ranked lines were then provided to developers for inspection.

7 Experimental Results

7.1 RQ1. Cost-effectiveness of IRJIT

This section discusses the findings related to RQ1, focusing on the CPU or
GPU computational time of the evaluated approaches. Table 2 presents a
comparison of the mean run time costs for the online models, specifically
IRJITonline in relation to ORB, as well as the offline models including JITLinebatched
and JITFinebatched, and their comparison with IRJITbatched. From the Table 2,
we can observe that the highest cost is associated with DL-based approach,
JITFine, followed by the ML-based approach, JITLine. ORB is the most cost-
effective approach as its computational cost is less than a minute per project.
This speed can be attributed to its truly online nature and its reliance solely
on change metrics instead of source code.In contrast, IRJIT relies on changes
to the source code, and on average, indexing these changes takes about four
times as long as querying does.

The computational cost of JITLine is 3 to 23 times higher than that of
IRJIT under comparable conditions, indicating that adopting IRJIT could po-
tentially reduce CPU run times by a factor of 3 to 23. The mean computational
cost of JITLine consistently surpasses the maximum values of IRJIT, indicat-
ing a persistent trend of higher CPU run time requirements for JITLine across
all projects. Furthermore, JITLine’s scalability issues become evident as the
dataset size increases. This is illustrated through Figure 3, where we observe a
sharp increase in the height of the bar for the Nova project. These scalability
issue stems from JITLine’s reliance on SMOTE to generate synthetic minority
class samples to balance the class distribution. The parameters of SMOTE
are tuned via the Differential Evolution (DE) algorithm, which accounts for
majority of processing time. With larger datasets, the complexity of identi-

20 Hareem Sahar et al.

Table 2: Mean run time in seconds for all evaluated approaches. JITFine ex-
periments were run on GPU. All other experiments were executed on CPU.

Online Batched
Project IRJIT ORB IRJIT JITLine JITFine

Brackets 5444.29 4.97 4107.71 16000.47 40061.84
BroadleafCommerce 3904.26 3.54 2973.80 19302.67 36338.51
Camel 7874.40 5.79 7043.70 19645.57 57354.90
Fabric8 801.60 2.38 1016.03 23182.17 49431.29
JGroups 611.39 3.74 607.84 13544.64 38360.11
Neutron 3279.62 3.56 2544.35 17173.35 37833.65
Nova 12443.82 13.90 12221.37 55909.59 77206.80
Npm 353.32 2.29 290.73 4097.68 34963.38
Spring-integration 659.48 3.07 779.14 8736.78 34220.75
Tomcat 2057.91 4.42 1792.93 15108.53 32040.22

fying the parameters and generating synthetic points increases underscoring
JITLine’s struggle to handle larger datasets effectively.

Similarly, the DL-based approach, JITFine, is 7 to 112 times more costly
than IRJIT. The computation time for JITFine could be significantly higher
when using a CPU. Moreover, running such an approach might not be feasible
without high-end GPU hardware. For example, it is noteworthy that we were
unable to execute this approach on a machine equipped with only 8GB of GPU
memory; consequently, we had to upgrade to a machine that offers 24GB of
GPU memory. Despite utilizing a high-end machine, the model training time
for JITFine on a GPU is substantially higher than the training time for our
approach on a CPU. This highlights that a cost-effective JIT-SDP approach
can not only bring budgetary benefits for companies by reducing operational
expenditures but might also enhance the scalability.

Our study also identified that the most resource-intensive tasks within IR-
JIT’s workflow is the indexing of source code changes. We observed that on
average, indexing is four times more time-consuming than the combined query-
ing and prediction process. To further illustrate this difference, we measured
the time required to process a single commit, finding that indexing requires
an average of 0.1 seconds per commit, whereas querying and prediction takes
only 0.04 seconds per commit. These significant bottlenecks—indexing in IR-
JIT and parameter tuning in JITLine—suggest key areas for improvement for
future work. Given that indexing frequency directly influences processing time,
an optimized indexing strategy could potentially reduce these costs, making
the system more economically viable for companies looking to implement it.

To conclude, while the computational costs of IRJIT, both in online and
batched modes, are closely aligned, these costs are very high in comparison to
the online approach ORB. On the other hand they are significantly lower com-
pared to JITLine and JITFine. This suggests that researchers should focus on
designing JIT-SDP approaches that operate in an online manner, eliminating
the need for retraining.

Title Suppressed Due to Excessive Length 21

0

20000

40000

60000

br
ac

ke
ts

Bro
ad

lea
fC

om
m

er
ce

ca
m

el

fab
ric

8

JG
ro

up
s

ne
ut

ro
n

no
va

np
m

sp
rin

g−
int

eg
ra

tio
n

to
m

ca
t

R
un

 ti
m

e
in

 s
ec

on
ds

IRJITbatched

IRJITonline

JITFinebatched

JITLinebatched

Fig. 3: Comparing CPU/GPU run time of the evaluated approaches in seconds.
Only JITFine was evaluated on GPU. ORB is not included in the plot because
of its negligible run time.

RQ1: IRJIT is significantly more costly than ORB, which has a run time
of less than 60 seconds for each dataset. However, IRJIT reduces the CPU
run time in comparison to the state-of-the-art ML and DL approaches,
JITLine and JITFine, by a factor of 3 to 112 times. This makes IRJIT a
more cost-effective option compared to the evaluated ML and DL models.

7.2 RQ2. Commit level predictive performance

This section discusses the results of RQ2 and presents the findings of commit
level predictive performance of IRJIT in online and batched evaluation. The

22 Hareem Sahar et al.

IRJIT G−mean ORB G−mean IRJIT |R0−R1| ORB |R0−R1|

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

BroadleafCommerce

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

Tomcat

0.00

0.25

0.50

0.75

1.00

0 3000 6000 9000

JGroups

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 40000 50000

Nova

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500

Spring−integration

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000 20000

Neutron

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000 8000

Npm

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

Brackets

0.00

0.25

0.50

0.75

1.00

0 5000 10000

Fabric8

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000

Camel

timesteps

P
er

fo
rm

an
ce

Fig. 4: Comparing G-mean and difference of recalls (|R0-R1|) performance of
IRJITonline and ORB for all datasets. X-axis shows timesteps

IRJITonline models are compared with ORB, which is an online approach,
whereas IRJITbatched models are compared with JITLine and JITFine.

Figure 4 presents a comparison of IRJIT and ORB on the basis of G-
mean and |R0 − R1| metric. The G-mean values start at 0 but go up to 0.75
across the projects for both approaches. Most projects achieve a G-mean of
0.5 or higher in the very early time steps and maintain a stable G-mean such
as Brackets, JGroups and Nova. On the other hand, Spring-integration and
Npm see a decline obtaining the lowest G-mean around time step 2K. In
case of Spring-integration this drop aligns with a decrease in ratio of buggy
class examples. This class imbalance in turn affects the performance of ORB,
although IRJIT remain unaffected. However, we do observe a constant decline
in IRJIT’s performance for the Nova dataset. In the remaining projects it
shows a relatively steady G-mean, and surpasses ORB in 5 out of 10 projects

Title Suppressed Due to Excessive Length 23

including: Npm, Spring-integration, Tomcat, JGroups, and Fabric8. However,
the median difference of recalls (|R0 − R1|) for IRJIT is generally very high.
Although, some projects such as JGroups and Spring-integration exhibit very
low |R0 − R1| with median being 0.17 and 0.19 respectively, but it grows
across datasets with the highest value (0.60) observed for the Nova project. In
contrast, ORB achieves the lowest |R0 −R1| for BroadleafCommerce whereas
the highest value 0.32 was observed for Brackets. This suggests ORB can
maintain a good recall for both buggy and clean classes across various datasets,
whereas, IRJIT fails to do so in some cases.

The overall G-mean distributions of the batched evaluation of IRJIT, JIT-
Line and JITFine is presented in Figure 5. The density plot suggests that
IRJIT’s distribution leans towards a unimodal pattern, predominantly center-
ing around a G-mean value of 0.63. IRJIT plot is slightly skewed to the right,
indicating a concentration of values around the mode with a tail extending
towards the higher values. However, the tail is relatively short, suggesting a
lower variability and that the values of G-mean are more consistently close to
the mode. In contrast, JITLine’s distribution is bimodal, with a substantial
presence of data across a broader range of G-mean values, suggesting a higher
level of variability because the values of G-mean are not clustering around a
central value. In case of JITFine, there are no distinct peaks in the distri-
butions, and we observe a relatively smooth variability rather than clustered
performance. As expected, the standard deviation of IRJIT (0.11) is lower than
both JITLine (0.17) and JITFine (0.19), confirming our observations from the
plot. Nevertheless, the overlapping regions in the distributions in both Fig-
ure 5a and 5b hint at situations where both methods offer comparable results
to IRJIT.

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
G−mean

D
en

si
ty

IRJITbatched JITLinebatched

(a)

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
G−mean

D
en

si
ty

IRJITbatched JITFinebatched

(b)

Fig. 5: Density plot comparing the G-mean distribution of IRJITbatched with
(a) JITLinebatched and (b) JITFinebatched.

24 Hareem Sahar et al.

IRJITbatched JITFinebatched JITLinebatched

0.00

0.25

0.50

0.75

1.00

BroadleafCommerce

0.00

0.25

0.50

0.75

1.00

Tomcat

0.00

0.25

0.50

0.75

1.00

JGroups

0.00

0.25

0.50

0.75

1.00

Nova

0.00

0.25

0.50

0.75

1.00

Spring−integration

0.00

0.25

0.50

0.75

1.00

Neutron

0.00

0.25

0.50

0.75

1.00

Npm

0.00

0.25

0.50

0.75

1.00

Brackets

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000 1250

Fabric8

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000 1250

Camel

timesteps

G
−

m
ea

n

Fig. 6: Commit level performance of IRJITbatched, JITLinebatched and
JITFinebatched models across 10 datasets. X-axis represents time steps and
Y-axis represents G-mean(↗) performance across time steps.

Figure 6 presents a per project comparison for both approaches to reveal
performance differences under specific conditions. In the figure G-mean metric
is represented on the y-axis while x-axis shows time steps. Both IRJIT and
baseline approaches exhibit performance peaks, but they differ in terms of mag-
nitude and frequency. Specifically, IRJIT outperforms JITLine and JITFine
on the basis of G-mean and |R0 − R1| in 6 out of 10 projects shown as bold
in Table 3. For the Camel and BroadleafCommerce datasets, the performance
trajectories of IRJIT and JITLine overlap, making it challenging to differenti-

Title Suppressed Due to Excessive Length 25

Table 3: Performance comparison of IRJIT with JITLine and JITFine using
G-mean, Recall of buggy class (R1), Recall of clean class (R0), difference of
recalls |R0 −R1|, and False Alarm Rates (FAR).

Approach Project G-mean R0 R1 |R0 −R1| FAR

IRJIT 0.46 0.81 0.26 0.55 0.19
Brackets JITLine 0.68 0.92 0.51 0.41 0.08

JITFine 0.76 0.86 0.67 0.20 0.14
IRJIT 0.54 0.87 0.34 0.53 0.13

Npm JITLine 0.36 0.97 0.13 0.84 0.03
JITFine 0.37 0.96 0.14 0.82 0.04
IRJIT 0.73 0.70 0.77 0.07 0.30

Camel JITLine 0.71 0.91 0.56 0.35 0.09
JITFine 0.73 0.82 0.66 0.17 0.18
IRJIT 0.58 0.84 0.40 0.44 0.16

Nova JITLine 0.68 0.95 0.49 0.46 0.05
JITFine 0.67 0.90 0.49 0.41 0.10
IRJIT 0.66 0.60 0.73 0.14 0.40

Neutron JITLine 0.89 0.88 0.90 0.01 0.12
JITFine 0.88 0.86 0.89 0.03 0.14
IRJIT 0.70 0.54 0.90 0.37 0.46

Tomcat JITLine 0.68 0.87 0.53 0.34 0.13
JITFine 0.71 0.79 0.64 0.15 0.21
IRJIT 0.63 0.71 0.56 0.15 0.29

BroadleafCommerce JITLine 0.55 0.94 0.32 0.62 0.06
JITFine 0.54 0.89 0.33 0.56 0.11
IRJIT 0.71 0.87 0.57 0.30 0.13

Fabric8 JITLine 0.40 0.99 0.16 0.83 0.01
JITFine 0.46 0.93 0.22 0.71 0.07
IRJIT 0.61 0.65 0.58 0.07 0.35

JGroups JITLine 0.46 0.95 0.22 0.73 0.05
JITFine 0.53 0.82 0.35 0.47 0.18
IRJIT 0.63 0.77 0.52 0.25 0.23

Spring-integration JITLine 0.54 0.92 0.32 0.60 0.08
JITFine 0.60 0.86 0.41 0.45 0.14

ate their effectiveness (see Figure 6). For example, in Camel, IRJIT undergoes
steep declines in performance around time step 100. Similarly, BroadleafCom-
merce shows a high G-mean in the early time steps before it drops at later
time steps. For JGroups and Tomcat datasets, IRJIT is very close to JITFine.

On the other hand, JITFine and JITLine emerge as clear winners in 3
projects showing superior G-mean performance. These projects include Nova,
Neutron and Brackets, specifically IRJIT has a poor G-mean of 0.46 for Brack-
ets dataset. For Nova, IRJIT achieves a G-mean value of 0.58 whereas the
other two approaches reach 0.67 and 0.68, though the difference of recall of
JITLine approach is higher than IRJIT. The highest number of false alarms
are produced by IRJIT, followed by JITFine, while JITLine has the lowest
FAR, signifying that it will be least wasteful of developer’s effort.

To evaluate the statistical significance of the observed differences between
IRJITbatched and the baseline models, we employed the Mann-Whitney test for
independent samples. We compared the G-mean results of IRJITbatched and

26 Hareem Sahar et al.

JITLinebatched per project. We applied Bonferroni Correction to the alpha
values to correct for multiple comparisons. For JITLine, we were able to reject
the null hypothesis for all datasets except Camel, but for JITFine both Camel
and Tomcat hypothesis could not be rejected. These findings underscore that
while IRJIT shows statistically significant differences compared to ML and DL
baselines, the superiority of any method is dataset-dependent, with no clear
winner across the board.

7.2.1 Impact of K

As for the KNN classifier we tested the model’s performance for different K
values. Specifically, we tested for K = 1, 3, 5, 7, 9, 11 and the impact on model’s
performance is presented in Figure 7.

In our analysis, we observe minor variations in the G-mean across different
values of K. While a low K leverages the precision of BM25 to accurately
measure the relevance of commits, increasing the value of K means that the
clean class examples might dominate the voting process. This leads to an
increase in R0 from 0.54 to 0.62, as illustrated in Table 4. Concurrently, we
notice a decrease in FAR from 0.46 to 0.38 with an increase in K from 1 to
11. While at first glance, the reduction in FAR seems favorable, it introduces
significant trade-offs such as drop in R1.

More concerning, however, is the effect on |R0 − R1|, which jumps from
0.25 to 0.47. This increase suggests a growing imbalance in model performance
across the two classes, highlighting the need for careful consideration in the
choice of K. A relatively balanced recall can be achieved with smaller K values
at the cost of a higher FAR which we consider a reasonable choice for a JIT-
SDP approach intended for early detection of buggy commits. In such contexts,
prioritizing the early detection of bugs, even if it means tolerating a higher
rate of false alarms, could outweigh the benefits of reducing false positives
at the risk of overlooking actual bugs. These observations leave us with two
choice (K = 1 and K = 3) for the default values for IRJIT, striking a balance
between stability and performance. By choosing K = 3 as the default K value,
we obtain a prediction based on the unanimous agreement between the top 3
matches, which is presumably more reliable than a single match.

Table 4: Median performance across different values of K using Recall0 (R0),
Recall1 (R1), |R0 −R1|, G-mean and False Alarm Rate (FAR)

Metric/K K=1 K=3 K=5 K=7 K=9 K=11

Recall0 0.54 0.56 0.57 0.58 0.58 0.62
Recall1 0.68 0.65 0.64 0.65 0.66 0.64
|R0 −R1| 0.25 0.34 0.40 0.45 0.46 0.47
G-mean 0.62 0.61 0.59 0.59 0.59 0.60
FAR 0.46 0.44 0.43 0.42 0.42 0.38

Title Suppressed Due to Excessive Length 27

0.00

0.25

0.50

0.75

1.00

1 3 5 7 9 11
K

P
er

fo
rm

an
ce

Recall0 Recall1 G−mean FAR

Fig. 7: Performance variation of IRJITonline models across different values of
K represented along the x-axis.

In conclusion, while no definitive statistical distinction exists between the
two methodologies, their performance varies depending on the dataset. While
JITLine occasionally excels, IRJIT often matches or surpasses JITLine in cer-
tain projects. This variability emphasizes the importance of understanding
dataset characteristics, suggesting that relying solely on one method might
not always be the best strategy. Further research could shed light on the spe-
cific conditions favoring each approach.

RQ2: IRJIT shows a competitive predictive performance at commit-level,
achieving a higher G-mean than ORB in 5 out of 10 projects. It also
outperforms the ML and DL baselines JITLine and JITFine in 6 out of 10
projects, considering both G-mean and difference of recalls (|R0 −R1|) of
buggy and clean class. In only 3 out of 10 projects the baseline approaches
performed better than IRJIT.

7.3 RQ3. Line level performance

This section presents the results of RQ3, which evaluates line-level prediction
performance of IRJIT in comparison to baseline fine-grained approaches, in-
cluding JITLine, JITFine, and the N-Gram model by Yan et al. In Section 5.5,

28 Hareem Sahar et al.

0.00

0.25

0.50

0.75

1.00

brackets

BroadleafCommerce

camel
fabric8

JGroups
neutron

nova npm

spring-integration

tomcat

T
o
p
-1

0
 a

c
c
u
ra

cy

IRJIT JITFine JITLine ngram

Fig. 8: Comparing line level performance of IRJIT, JITFine, JITLine, and
n-gram across 10 datasets Top-K accuracy(↗)

we previously detailed the utilization of term weights from the Elasticsearch
Explain API [11] to rank buggy lines. After ranking lines we compute four
line-level evaluation metrics described in section 6.4. The remainder of this
section presents the results of our line-level evaluation.

All four line-level metrics except IFA range from 0 to 1. To remain con-
sistent with prior work [31,49], we use the top 10 lines to compute Top-K
accuracy. The median Top-10 accuracy of IRJIT and JITLine is 0.64 and 0.61
respectively. A high ratio suggests that many of the buggy lines are ranked
at the top. As shown in Figure 8, IRJIT has a higher median top-k accuracy
than JITFine, JITLine, and N-gram in 6, 4, and 7 projects respectively. The
relatively smaller interquartile range for IRJIT also suggests that it exhibits
a more consistent top-k performance across projects. JITLine exhibits more
variability in its accuracy, especially for fabric8, npm and neutron. The over-
all variability for JITLine measured using standard deviation is 0.30, which is
higher than that of IRJIT (0.26). All approaches have outliers, but they are
more pronounced in the case of JITFine, suggesting that while JITFine might
work well for specific datasets, it might not be consistently effective for all
datasets.

A significant portion of defects in a software application can often be traced
back to a relatively small portion of the codebase. We use Recall@20%Effort
to measure the ratio of actual buggy lines that can be found given only top
20% changed lines of code. A high value of Recall@20%Effort indicates that an

Title Suppressed Due to Excessive Length 29

0.00

0.25

0.50

0.75

1.00

brackets

BroadleafCommerce

camel
fabric8

JGroups
neutron

nova npm

spring-integration

tomcat

R
e
c
a
ll@

2
0
%

E
ff
o
rt

IRJIT JITFine JITLine ngram

Fig. 9: Comparing line level performance of IRJIT, JITFine, JITLine, and
N-gram across 10 datasets using Recall@20%Effort(↗)

approach can rank many actual buggy lines at the top and many actual buggy
lines can be found given a fixed amount of effort. On the other hand, a low
value of this metric indicates that many clean lines are in the top 20% LOC
and developers need to spend more effort to identify defective lines. Figure 9
shows that the Recall@20%Effort for all approaches is under 0.25 with the
median for IRJIT being slightly higher than the other approaches in most
datasets. This suggests IRJIT can rank more buggy lines among the top 20%
of lines.

Effort@20%Recall measures the amount of effort made by the developers to
identify top20% of buggy lines in a commit. A higher value suggests that more
effort is needed so a lower value is better. Figure 10 presents Effort@20%Recall
for each project. JITFine has the lowest values of Effort@20%Recall signifying
that out of all approaches it requires the least amount of effort in order to find
the same amount of actual defective lines. On the other hand, N-gram has
the highest effort values so developers using this approach will spend more
effort to find the actual 20% defective lines of a defective commit. Although
IRJIT does not beat JITFine, but it requires 5% and 18% less effort than the
baseline approaches, JITLine and N-gram, respectively. JITLine’s effort varies
more drastically from one project to another, and in some projects the outliers

30 Hareem Sahar et al.

0.00

0.25

0.50

0.75

1.00

brackets

BroadleafCommerce

camel
fabric8

JGroups
neutron

nova npm

spring-integration

tomcat

E
ff
o
rt

@
2
0
%

R
e
c
a
ll

IRJIT JITFine JITLine ngram

Fig. 10: Comparing line level performance of IRJIT, JITFine, JITLine, and
n-gram across 10 datasets using Effort@20%Recall(↘)

are much more prominent, such as neutron and fabric, but it is close to IRJIT
with median Effort@20%Recall values of 0.20 and 0.19 respectively.

Initial False Alarm (IFA) measures the amount of clean lines of a commit
that need to be inspected before identifying an actual buggy line. A low IFA
value indicates that few clean lines are ranked at the top, while a high IFA
value indicates that developers will spend unnecessary effort on clean lines. The
median IFA for all approaches is 0 indicating that a buggy line is always ranked
as the top location. However, as shown in Figure 11, IRJIT has a slightly lower
IFA for some projects. It indicates that buggy lines are always ranked at the
top so developers need to inspect fewer clean lines until finding the first actual
defective line for a given commit. JITLine not only has a higher IFA but also
more pronounced outliers, making it particularly well-suited for some contexts
but less effective in others. To confirm if the observed differences between any
of the metrics were statistically significant or not we conducted Mann-Whitney
test. For JITLine, we found that the differences between top-k and IFA are not
statistically significant (p − value = 0.241 and p − value = 0.996), but those
between Recall@20%Effort and Effort@20%Recall (p−value = 1.265e−10 and
p− value = 2.49e− 11) are significant. For JITFine the differences for Top-K

Title Suppressed Due to Excessive Length 31

0

20

40

60

brackets

BroadleafCommerce

camel
fabric8

JGroups
neutron

nova npm

spring-integration

tomcat

IF
A

IRJIT JITFine JITLine ngram

Fig. 11: Comparing line level performance of IRJIT, JITFine, JITLine, and
n-gram across 10 datasets using IFA(↘)

and Effort@20%Recall between IRJIT and JITFine are statistically significant
(p− value < 2.2e− 16).

RQ3: IRJIT is better than JITLine, JITFine and the N-gram approach
considering Top-K metrics. In terms of Effort@20%Recall, JITFine out-
performed IRJIT and other approaches. The Mann-Whitney test confirms
that the observed differences are statistically significant. In terms of IFA
all approaches are similar.

8 Discussion

Our study indicates that while sophisticated machine learning models might
be more effective in certain contexts, their efficiency in real-time or rapidly
changing environments is still in question. Given that not all organizations or
researchers have access to the computational power or other resources required
to train complex models, simple approaches are the way forward. Our study
shows that IRJIT can balance between performance and cost in such scenarios,
democratizing access to JIT models for a broader audience. A key advantage of
IRJIT is that it offers explainability at two distinct levels. At the commit-level,

32 Hareem Sahar et al.

it provides context of the predictions by directly linking to the contributing
documents i.e., commits that contributed to the prediction. At line level, it
ranks buggy lines of an identified buggy commit, guiding developers to dedicate
their limited effort in certain parts of the code for identifying bugs.

The IRJIT model is online and was trained only on within project data.
The model initially predicts clean until it sees buggy examples. Tabassumet al.
showed that cross project data was helpful in the initial phase of the project
when there was no or little within project training data available. Future
studies may include cross project data to improve model accuracy. We sub-
jected IRJIT to rigorous testing on extensive codebases, including prominent
projects, such as nova and camel, to validate IRJIT’s practicality and effective-
ness when applied to projects with substantial codebases. Furthermore, it is
worth noting that our experiments were conducted on a machine with modest
computing resources. This underscores the versatility and practical applica-
bility of IRJIT in various environments, demonstrating that it can deliver
valuable results even without high-end hardware.

8.1 Implications

Researchers should focus on designing simple approaches for JIT-SDP. Our
findings reveal that in terms of performance, IRJIT closely rivals a state-
of-the-art machine learning approach. However, what sets IRJIT apart is its
inherent simplicity compared to JITLine. IRJIT relies solely on source code
changes which are readily available in the project’s source code repository.
It uses basic IR techniques that can be replicated with ease, even by indi-
viduals with limited expertise, thereby enhancing the accessibility of IRJIT.
Our study demonstrates that IR-based methods are competitive out of the
box, suggesting that further tuning and using them in combination with other
project-specific features (e.g., metrics) can bridge the performance gaps.

Researchers should evaluate JIT approaches taking verification latency into
account. Based on RQ1, our study further emphasizes that, when deciding
which JIT-SDP approach to adopt, it is important to investigate them taking
verification latency into account. Prior studies often relied on the traditional
80:20 split for the JIT evaluation. Following recent work [6,43], we conduct
an evaluation at different points in time while taking verification latency into
account. Through this evaluation, we emphasize two crucial points: 1) defect
prediction approaches exhibit varying performance over time, and 2) some ap-
proaches may be impractical for resource-constrained real-world development
settings. Therefore, we advocate for research that aligns with the practical
needs and constraints faced by developers in the field. Future defect predic-
tion studies should adopt evaluation methodologies that accurately reflect the
real-world application of JIT prediction from a development perspective.

Researchers must ensure that their JIT approach is suitable for online de-
ployment and does not require considerable retraining. In general, JIT ap-
proaches with lower computational cost are better suited for seamless online

Title Suppressed Due to Excessive Length 33

deployment because they do not slow down the agile development. Our work
demonstrates the practicality of IRJIT, which operates online without necessi-
tating model tuning or retraining. Instead, it incrementally updates indexes as
new commits arrive, making it highly adaptive and scalable. In contrast, the
baseline approach, JITLine, relies on resource-intensive retraining involving
techniques like SMOTE and DE. Consequently, JITLine is computationally
more expensive for online deployment and potentially slows down the overall
prediction process. However, different projects and requirements may war-
rant different approaches. It is worth noting that the choice between IRJIT
and JITLine may vary depending on specific project requirements and avail-
able resources. While IRJIT prioritizes efficiency and adaptability, JITLine
might offer superior performance on certain datasets. Developers with ample
resources and a strong emphasis on model accuracy may opt for JITLine over
IRJIT.

8.2 Limitations and Opportunities for Future Work

8.2.1 Reliance on SZZ

We rely on SZZ algorithm to obtain the ground truth dataset for evaluation.
We as part of the software engineering community are aware of the shortcom-
ings of SZZ algorithm that it only identifies large defects that get reported
to the issue tracking system and therefore are important enough to be fixed.
Other kinds of datasets such as ManySStuBs4J [20] are not widely available
so we rely on a dataset extracted with the help of SZZ. In the area of defect
prediction, researchers commonly rely on SZZ e.g., it was used to extract the
datasets in recent JIT studies [50,31,6,43]. We therefore think that it is out
of the scope of our paper to design a new way of identifying buggy commits.
Instead, we implore the software engineering community to come together and
take up the challenge of improving the accuracy of SZZ algorithm or propose
new ways of identifying representative buggy commits.

8.2.2 Usability of Explanations

JITLine employs SMOTE to invent documents, making it more difficult to
trace predictions back to the original documents involved in commit-level pre-
diction. When IRJIT flags a commit, it provides a concrete, context-relevant
example as an explanation. Although we have not yet conducted a user study
to assess the effectiveness of IRJIT explanations, we aim to explore this aspect
in future work through a user study.

For line-level predictions, JITLine trains a local LIME model [36], which
adds additional cost on top of the original model. Similar to JITFine, IRJIT
improves upon JITLine by eliminating the need for two separate models for
prediction and localization. It uses a unified IR model to identify a buggy

34 Hareem Sahar et al.

commit and rank its lines by defectiveness. This integration ensures that ex-
planations are generated promptly alongside predictions, essential for real-time
application in development workflows. Our decision prioritizes simplicity and
speed, making IRJIT more suitable in practice.

8.3 Impact of Class Imbalance and Concept Drift

Class imbalance and concept drift are well-known problems in SDP litera-
ture. However, we did not investigate their impact on IRJIT. We believe that
our model’s continuous update mechanism at each timestep captures the lat-
est trends and patterns in the data, and addresses the aforementioned issues
to a significant extent. In other words, since the training set is continuously
updated, it is more likely to have similar characteristics as the test set for con-
structing accurate models. However, we recognize the importance of a thorough
examination of these factors and are open to exploring their impact on IRJIT’s
performance in future work. We believe that experimenting with class imbal-
ance and concept drift mitigation techniques such as online SMOTE could
potentially benefit IRJIT by enhancing its performance.

9 Threats to Validity

Here we discuss threats that impact the credibility and generalization of our
findings. The choice of datasets used for evaluation should be representative
of typical software projects, or sampling bias is introduced, affecting the inter-
nal validity of results. However, we counteract the sampling bias by using an
existing dataset, which includes ten diverse projects encompassing three pop-
ular programming languages and multiple domains. Moreover, our datasets’
different sizes and complexities also ensure that our findings are not restricted
to certain types of projects, hence improving the external validity.

We also acknowledge that comparisons against additional baselines such as
DeepJIT and CC2Vec could add more value to our work. To this end, we only
compared IRJIT with four prior approaches. However, it is important to note
that the chosen baselines, JITLine and JITFine, have been evaluated against
these models in prior studies and demonstrated superior performance. This
was a key factor in our decision to use them as baselines for our research.

The choice of features or information retrieval methods may influence the
effectiveness of IRJIT. Currently, IRJIT collects and uses lines added by de-
fault because the probability of introducing a bug is higher with the addition of
new lines, as suggested by Purushothaman et al. [33], and hence spotting bugs
might be easier with only lines added field. Variations in hyper-parameter
settings of the IRJIT model can impact results. Robust hyperparameter tun-
ing is necessary to minimize this threat. We tested IRJIT on different values
of K in the range 1 to 11.

Title Suppressed Due to Excessive Length 35

The conclusion validity of a study is affected by the choice of performance
metrics because that affects how we measure the success of an approach. Fol-
lowing, several prior works, we decided to use G-mean and difference of recalls
because it is the most widely accepted metric in online learning. Using multiple
metrics or considering alternative measures can provide a more comprehensive
assessment. Therefore, at the line level, we use JITLine’s proposed metrics.
Furthermore, we optimized JITLine for G-mean instead of AUC to keep the
comparison between the two approaches consistent. Our study also assumes a
verification latency waiting period of 90 days which means a commit becomes
a training example after 90 days from commit time have passed. However,
projects that are not frequently modified may require longer waiting period to
obtain confidence on the label of committed software changes.

10 Conclusion

This study investigated JIT-SDP in a realistic online learning scenario using
10 open-source datasets. We showed that our approach, IRJIT, has a compa-
rable performance to the state-of-the-art approach ORB but a higher run time
cost. We also showed that state-of-the-art ML and DL approaches JITLine and
JITFine, are cost-prohibitive in an online JIT-SDP setting, due to their expen-
sive training process. To address this problem, we propose IRJIT, an informa-
tion retrieval approach for defect prediction that relies on incremental model
updates. Our approach saves the run time cost by a factor of 3 to 112 times
against the sophisticated baselines. It also achieves a competitive G-mean per-
formance at the commit-level that surpasses JITLine and JITFine, in 6 out of
10 projects. Notably, IRJIT achieves JITLine level performance in an online
setting without using SMOTE. IRJIT is explainable, as it makes predictions
by linking current changes to historical buggy changes, allowing developers to
benefit from the rich context inherent in the evolution of the codebase. It also
ranks the changed lines by riskiness, making it easier for developers to iden-
tify bugs with minimal effort. The line-level evaluation shows that IRJIT has a
higher Top-k performance than the aforementioned approaches and an N-gram
approach, whereas JITFine was best in terms of Effort@20%Recall. Our study
implies that if practitioners want to save time and obtain predictions in real-
time, then IRJIT is a good option as it provides competitive performance with
much lower run time compared to ML and DL baselines. Moreover, as IRJIT
operates directly on the source code without needing additional hand-crafted
features, it saves computational resources and time, leading to faster predic-
tions. In a future study we will incorporate additional open-source projects
and will compare different online JIT-SDP approaches with IRJIT.

36 Hareem Sahar et al.

Data Availability Statement

The dataset used in evaluation, the source code to evaluate approaches and
the R scripts to plot the graphs for this study are available at:
https://github.com/Hareem-E-Sahar/eseval online

Conflict of Interest Statement

The authors of this article declared that they have no conflict of interest.

References

1. Apache: Apache lucene library. URL https://lucene.apache.org/core/
2. Apache: Lucene scoring formula. URL https://lucene.apache.org/core/3_5_0/

scoring.html
3. Atlassian: Commit hooks. URL https://www.atlassian.com/git/tutorials/

git-hooks
4. Bangash, A.A., Sahar, H., Hindle, A., Ali, K.: On the time-based conclusion stability

of cross-project defect prediction models. Empirical Software Engineering 25(6), 5047–
5083 (2020)

5. Cabral, G.G., Minku, L.L., Oliveira, A.L., Pessoa, D.A., Tabassum, S.: An investigation
of online and offline learning models for online just-in-time software defect prediction.
Empirical Software Engineering 28(5), 1–35 (2023)

6. Cabral, G.G., Minku, L.L., Shihab, E., Mujahid, S.: Class imbalance evolution and
verification latency in just-in-time software defect prediction. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pp. 666–676. IEEE (2019)

7. Campbell, J.C., Hindle, A., Amaral, J.N.: Syntax errors just aren’t natural: improving
error reporting with language models. In: Proceedings of the 11th Working Conference
on Mining Software Repositories, pp. 252–261 (2014)

8. Campbell, J.C., Santos, E.A., Hindle, A.: The unreasonable effectiveness of traditional
information retrieval in crash report deduplication pp. 269–280 (2016)

9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)

10. Dam, H.K., Tran, T., Ghose, A.: Explainable software analytics. In: Proceedings of
the 40th International Conference on Software Engineering: New Ideas and Emerging
Results, pp. 53–56 (2018)

11. Elasticsearch: Explain api. URL https://www.elastic.co/guide/en/elasticsearch/

reference/current/search-explain.html
12. Elasticsearch: More like this. URL https://www.elastic.co/guide/en/elasticsearch/

reference/current/query-dsl-mlt-query.html
13. Elasticsearch: Pattern analyzer. URL https://www.elastic.co/guide/en/

elasticsearch/reference/current/analysis-pattern-analyzer.html
14. Elasticsearch: Whitespace tokenizer. URL https://www.elastic.co/guide/en/

elasticsearch/reference/current/analysis-whitespace-tokenizer.html
15. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on knowledge

and data engineering 21(9), 1263–1284 (2009)
16. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of software

pp. 837–847 (2012)
17. Hoang, T., Dam, H.K., Kamei, Y., Lo, D., Ubayashi, N.: Deepjit: an end-to-end deep

learning framework for just-in-time defect prediction. In: 2019 IEEE/ACM 16th Inter-
national Conference on Mining Software Repositories (MSR), pp. 34–45. IEEE (2019)

18. Hoang, T., Kang, H.J., Lo, D., Lawall, J.: Cc2vec: Distributed representations of code
changes. In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pp. 518–529 (2020)

https://lucene.apache.org/core/
https://lucene.apache.org/core/3_5_0/scoring.html
https://lucene.apache.org/core/3_5_0/scoring.html
https://www.atlassian.com/git/tutorials/git-hooks
https://www.atlassian.com/git/tutorials/git-hooks
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-analyzer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-whitespace-tokenizer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-whitespace-tokenizer.html

Title Suppressed Due to Excessive Length 37

19. Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A., Ubayashi, N.:
A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on
Software Engineering 39(6), 757–773 (2012)

20. Karampatsis, R.M., Sutton, C.: How often do single-statement bugs occur? the
manysstubs4j dataset. In: Proceedings of the 17th International Conference on Mining
Software Repositories, pp. 573–577 (2020)

21. Kim, K., Kim, D., Bissyandé, T.F., Choi, E., Li, L., Klein, J., Traon, Y.L.: FaCoY: a
code-to-code search engine. In: Proceedings of the 40th International Conference on
Software Engineering, pp. 946–957 (2018)

22. Kim, S., Whitehead, E.J., Zhang, Y.: Classifying software changes: Clean or buggy?
IEEE Transactions on Software Engineering 34(2), 181–196 (2008)

23. Kim, S., Zimmermann, T., Pan, K., James Jr, E., et al.: Automatic identification of
bug-introducing changes. In: 21st IEEE/ACM international conference on automated
software engineering (ASE’06), pp. 81–90. IEEE (2006)

24. Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.: Sourcerer: min-
ing and searching internet-scale software repositories. Data Mining and Knowledge
Discovery 18(2), 300–336 (2009)

25. Luan, S., Yang, D., Barnaby, C., Sen, K., Chandra, S.: Aroma: Code recommenda-
tion via structural code search. Proceedings of the ACM on Programming Languages
3(OOPSLA), 1–28 (2019)

26. McIntosh, S., Kamei, Y.: Are fix-inducing changes a moving target? a longitudinal case
study of just-in-time defect prediction. IEEE Transactions on Software Engineering
44(5), 412–428 (2017)

27. Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Technical
Journal 5(2), 169–180 (2000)

28. Nayrolles, M., Hamou-Lhadj, A.: Clever: combining code metrics with clone detection for
just-in-time fault prevention and resolution in large industrial projects. In: Proceedings
of the 15th International Conference on Mining Software Repositories, pp. 153–164
(2018)

29. Ni, C., Wang, W., Yang, K., Xia, X., Liu, K., Lo, D.: The best of both worlds: inte-
grating semantic features with expert features for defect prediction and localization.
In: Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 672–683 (2022)

30. Planning, S.: The economic impacts of inadequate infrastructure for software testing.
National Institute of Standards and Technology (2002)

31. Pornprasit, C., Tantithamthavorn, C.K.: Jitline: A simpler, better, faster, finer-grained
just-in-time defect prediction. In: 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 369–379. IEEE (2021)

32. Pradel, M., Sen, K.: DeepBugs: a learning approach to name-based bug detection. Pro-
ceedings of the ACM on Programming Languages 2(OOPSLA), 1–25 (2018)

33. Purushothaman, R., Perry, D.E.: Toward understanding the rhetoric of small source
code changes. IEEE Transactions on Software Engineering 31(6), 511–526 (2005)

34. Rahman, M.M., Roy, C.K.: Improving IR-based bug localization with context-aware
query reformulation. In: Proceedings of the 2018 26th ACM joint meeting on Euro-
pean software engineering conference and symposium on the foundations of software
engineering, pp. 621–632 (2018)

35. Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., Devanbu, P.: On the
“naturalness” of buggy code. In: 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pp. 428–439. IEEE (2016)

36. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the pre-
dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1135–1144 (2016)

37. Rosen, C., Grawi, B., Shihab, E.: Commit guru: analytics and risk prediction of software
commits. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 966–969 (2015)

38. Salton, G., Waldstein, R.K.: Term relevance weights in on-line information retrieval.
Information Processing & Management 14(1), 29–35 (1978)

38 Hareem Sahar et al.

39. Santos, E.A., Campbell, J.C., Patel, D., Hindle, A., Amaral, J.N.: Syntax and sensi-
bility: Using language models to detect and correct syntax errors. In: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 311–322. IEEE (2018)

40. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? ACM sigsoft
software engineering notes 30(4), 1–5 (2005)

41. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python framework for mining software
repositories. In: Proceedings of the 2018 26th ACM Joint meeting on european software
engineering conference and symposium on the foundations of software engineering, pp.
908–911 (2018)

42. Stephen E. Robertson, K.S.J.: Okapi bm25 algorithm. URL https://en.wikipedia.

org/wiki/Okapi_BM25

43. Tabassum, S., Minku, L.L., Feng, D., Cabral, G.G., Song, L.: An investigation of cross-
project learning in online just-in-time software defect prediction. In: 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pp. 554–565. IEEE
(2020)

44. Tan, M., Tan, L., Dara, S., Mayeux, C.: Online defect prediction for imbalanced data. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 2,
pp. 99–108. IEEE (2015)

45. Wan, Z., Xia, X., Hassan, A.E., Lo, D., Yin, J., Yang, X.: Perceptions, expectations,
and challenges in defect prediction. IEEE Transactions on Software Engineering 46(11),
1241–1266 (2018)

46. Wang, S., Minku, L.L., Yao, X.: A systematic study of online class imbalance learning
with concept drift. IEEE transactions on neural networks and learning systems 29(10),
4802–4821 (2018)

47. Wattanakriengkrai, S., Thongtanunam, P., Tantithamthavorn, C., Hata, H., Mat-
sumoto, K.: Predicting defective lines using a model-agnostic technique. IEEE Trans-
actions on Software Engineering 48(5), 1480–1496 (2020)

48. Wu, Y., Dobriban, E., Davidson, S.: Deltagrad: Rapid retraining of machine learning
models. In: International Conference on Machine Learning, pp. 10355–10366. PMLR
(2020)

49. Yan, M., Xia, X., Fan, Y., Hassan, A.E., Lo, D., Li, S.: Just-in-time defect identification
and localization: A two-phase framework. IEEE Transactions on Software Engineering
(2020)

50. Zeng, Z., Zhang, Y., Zhang, H., Zhang, L.: Deep just-in-time defect prediction: how far
are we? pp. 427–438 (2021)

51. Zhou, S., Shen, B., Zhong, H.: Lancer: Your code tell me what you need. In: 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
1202–1205. IEEE (2019)

https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25

	Introduction
	Research Question and Contributions
	Background and Related Work
	IRJIT in Practice
	IRJIT Methodology
	Experimental Setup
	Experimental Results
	Discussion
	Threats to Validity
	Conclusion

