Crowdsourced Bug Triaging: Leveraging Q&A
Platforms for Bug Assignment

Ali Sajedi Badashian, Abram Hindle, Eleni Stroulia

University of Alberta, Edmonton, Canada
{alisajedi, abram.hindle, stroulia}@ualberta.ca

Abstract. Bug triaging, i.e., assigning a bug report to the “best” per-
son to address it, involves identifying a list of developers that are qual-
ified to understand and address the bug report, and then ranking them
according to their expertise. Most research in this area examines the de-
scription of the bug report and the developers’ prior development and
bug-fixing activities. In this paper, we propose a novel method that ex-
ploits a new source of evidence for the developers’ expertise, namely their
contributions in Stack Overflow, the popular software Question and An-
swer (Q&A) platform. The key intuition of our method is that the ques-
tions a developer asks and answers in Stack Overflow, or more generally
in software Q& A platforms, can potentially be an excellent indicator of
his/her expertise. Motivated by this idea, our method uses the bug-report
description as a guide for selecting relevant Stack Overflow contributions
on the basis of which to identify developers with the necessary expertise
to close the bug under examination. We evaluated this method in the
context of the 20 largest GitHub projects, considering 7144 bug reports.
Our results demonstrate that our method exhibits superior accuracy to
other state-of-the-art methods.

1 Introduction

Software development, today more than ever, is a community-of-practice activ-
ity. Developers often work on multiple projects, hosted on large-scale software
repository platforms, such as GitHub and BitBucket. They access and contribute
information to open question-answering web sites, such as Java Forum, Yahoo!
Answers and Stack Overflow '. Through the developers’ participation on these
code-sharing and question-answering platforms, rich evidence of their software
development expertise is collected. Understanding the developers’ expertise is
relevant to many software-engineering activities, including “onboarding” of new
project members so that their expertise is best utilized in the new context, form-
ing new teams that have the necessary expertise to take on new projects, and
bug triaging and assignment to the person that is best skilled to fix it.

In this paper we focus on the bug-triaging-and-assignment task, which has
already received substantial attention by the software-engineering community
[2][8][10][14][15][18]. The typical formulation of bug triaging problem aims at

! http://www.coderanch.com/forums, http://answers.yahoo.com, and http://
stackoverflow.com/

ranking a number of developers that could potentially fix a given bug report.
Most solutions to date have considered developers’ expertise, using their past
development and bug-resolving contribution as evidence. In contrast, we describe
and report on the effectiveness of a bug-assignment method that uses expertise
networks extracted from social software-development platforms.

At a high level, our work makes two novel contributions to the bug-triaging
research. First, we demonstrate that as a software focused Q&A web site, Stack
Overflow contains valuable information about the expertise of the participating
developers, which may be exploited to support bug triaging. Second, we com-
paratively investigate a family of methods for analyzing Stack Overflow posts to
precisely understand how to improve state-of-the-art bug-triaging methods.

The rest of the paper is as follows. Section 2 sets the background context for
our work. Section 3 describes in detail our new bug-assignment method, ranking
the expertise of developers based on a new metric relying on Stack Overflow.
Section 4 reports on the evaluation of our method. Finally, Section 6 concludes
with a summary of the take-home lessons of this work.

2 Literature Review

There are two categories of previous research relevant to this body of work: (a)
expertise identification and recommendation; and (b) bug triaging.

Ezpertise Identification and Recommendation Venkaratamani et al. [30] described
a system for recommending specific questions to Stack Overflow members qual-
ified to answer them. The system infers the developers’ expertise based on the
names of the classes and methods to which the developers have contributed.
Similarly, Fritz et al. [9] developed the “Degree of Knowledge” (DOK) metric to
determine the level of a developer’s knowledge regarding a code element (class,
method or field), based on the developer’s contribution to the development of
this element. Mockus and Herbsleb [16] developed the Expertise Browser (EB), a
tool that identifies the developers’ expertise from their code and documentation,
considering system commits and changes to classes, sub-systems, packages, etc.

Zhang et al. [31] described a method for constructing a “Community Exper-
tise Network” (CEN) from the post-reply relations of Java Forum users. They
then ranked the users’ expertise using the PageRank [6] and HITS (Hyperlink-
Induced Topic Search) [11] algorithms on this network.

Bug Triaging Previous research in bug-triaging has produced a number of dif-
ferent techniques for selecting the (list of &) most capable developer(s) to resolve
a given bug report. Typically the first developer in the list is selected as the bug
assignee but, if this developer is unavailable or somehow unsuitable to work on
the bug report, the other developers in the recommendations list may be tasked
with the bug. Given this problem formulation, most researchers evaluate their
methods by reporting top-k “accuracy” [8,27,28,1,13,12,26,10,5] (hit ratio in the
top-k recommended list) or precision-and-recall [2,3,1,7,15,25] (precision is the
percentage of the suggested developers who were actual bug fixers and recall is
the percentage of bug fixers who were actually suggested).

Machine Learning (ML) approaches: Cubranié¢ and Murphy[8] used a Naive
Bayes classifier to assign each bug report (a “text document” consisting of the
bug summary and description) to a developer (seen as the “class”). Their clas-
sifier was able to predict the bug assignee with a top-1 accuracy of up to 30%.

Next, Anvik et al. [2] proposed a Support Vector Machine (SVM) method
as a more effective text classifier for this problem, reporting up to 57%, 64%
and 18% top-3 accuracy. Additionally considering the bug-report severity and
priority [3] resulted in 75%, 70%, 84%, 98% and 98% top-5 accuracy. Note that
the last two high-accuracy results are were obtained in very small projects, with
6 and 11 developers respectively. A subsequent method, taking also into account
information about the components linked to bugs and the list of active developers
resulted in 64% and 86% accuracies in two projects [1].

Lin et al. [13] used SVM and C4.5 classifiers, considering the bug-report tex-
tual data (title and description) as well as the bug type, class, priority, submitter
and the module IDs, and obtained up to 77% accuracy.

Considering severity and component of the bug reports in addition to the
textual descriptions, Lamkanfi et al. [12] compared the effectiveness of four ML
approaches, Naive Bayes, Multinomial Naive Bayes, INN and SVM in predicting
the real assignee. They reported Multinomial Naive Bayes as the most accurate
method with 79% accuracy.

Naguib et al. [17] used LDA to assign the bug reports to topics. Then, mining
the activity profiles of the developers in a bug-tracking repository, they associate
topics to developers. Finally, they suggest the developers with the most topics
matching with the bug-report topics. They obtained up to 75% top-5 accuracy.
Information Retrieval (IR) approaches: Canfora and Cerulo [7] consider
each developer as a document by aggregating the textual descriptions of the
change requests that the developer has addressed. Given a new bug report,
the textual description of the new request is used as a query to the document
repository to retrieve the candidate developer. This method achieved 62% and
85% accuracy in two projects.

Develect, by Matter et al. [15], employs the Vector Space Model (VSM) and
relies on a vocabulary of “technical terms” collected from the developers’ source-
code commits and the bug-report keywords. The developer’s expertise is modeled
as a term vector, based on that developer’s commit history. Given a new bug
report, the closest —according to the cosine distance— developer is identified. This
method achieved up to 34% and 71% top-1 and top-10 accuracies.

Linares-Vasquez et al. [14] applied IR-based concept-location techniques [19]
to locate the source code files relevant to the text-change request. Source-code
authorship information of these files was used to recommend expert developers
and they obtained up to 65% precision.

Shokripour et al. [26] proposed an assignee recommender for the bug reports
based on information extracted from the developers’ source code, comments, pre-
viously fixed bugs, and source code change locations. A subsequent study [25]
improved these results using additional data, such as the source-code files, com-
mits and comments of the developers, names of classes, methods, fields and
parameters in the source code. The maximum top-5 accuracy of their approach
on three different projects was 62%. They obtained 48% and 48% top-1 and

60% and 89% top-5 accuracies on two projects (between 57 and 9 developers
respectively).

Other approaches: Tamrawi et al. [27] introduced a fuzzy approach that com-
putes a score for each “developer - technical term” based on the technical terms
available in previous bug reports and their fixing history by the developers.
Considering the new bug report, they calculate a score for each developer as a
candidate assignee by combining his/her scores for all the technical terms as-
sociated with the bug report in question. This method was shown to achieve
between b40% and 75% for top-1 and top-§ accuracy over 7 projects.

A number of studies have examined bug reassignments, the reasons that cause
them, and ways to reduce them [4] [32]. To reduce bug reassignments, Jeong et
al. [10] introduced “tossing graphs” of developers (as nodes) and edges between
them, weighed by the number of times the destination developer was assigned
a bug originally assigned to the source developer. Then, beginning with the
first prediction (developer candidate) in hand, they used this graph to predict
the next developer by consulting this graph. They obtained up to 77% top-5
accuracy.

All the above studies some combination of the bug textual and categorical
attributes, the bug code components, and the developers’ coding and bug-fixing
contributions. Our method is unique in that it uses the developers’ Stack Ouver-
flow questions and answers, as well as their previous bug assignments, and cor-
relates these contributions to relevant bugs based on the semantic tags they
share.

3 A Social Bug-Triaging Model

Software developers today contribute to a variety of social platforms, includ-
ing social software-development platforms, question-and-answering communities,
technical blogs, and presentation-sharing web sites. The key intuition of our work
is that these contributions constitute evidence of expertise that can be exploited
in the context of bug triaging. More specifically, in this paper, we analyze the
developers’ contributions in Stack Overflow for assigning them to GitHub bug
reports. Focusing on the overlap of the two social platforms [24], our approach
examines the questions and answers in Stack Overflow that pertain to the terms
mentioned in a bug report’s title and description. It uses Stack Overflow tags for
cross-referencing GitHub bug reports with Stack Overflow questions and answers,
Tags categorize the questions and their corresponding answers in terms of a few
well-known technical terms. The community curates these tags to improve their
quality: the person asking a question selects the initial tags for the question (out
of around 40,000 available but evolving tags) and expert community members,
who enjoy a reputation above some threshold, can edit them. Tags are also used
as indication of expertise; for example, the person answering a question tagged
with Android and Java is assumed to be knowledgeable in these two domains.
Furthermore, the more upVotes this answers collects, the more knowledgeable
this answerer is assumed to be.

Figure 1 summarizes the elements of interest in a real bug report?. Some of
the words in the bug-report’s title and description are shown as ifalic because
they also appear as tags in the Stack Overflow questions reported in Table 1,
where they are shown in bold.

Bug report title: TooManyOpenFiles might cause data-loss in ElasticSearch Lucene
Bug report body: Under certain circumstances a TooManyOpenFiles exception in
Java thrown as FileNotFoundException might cause dafa loss where entire shards
lucene indices are deleted. This is mainly caused by Lucene-4870 hitps issues.apache.org
jira browse LUCENE-4870 - currently all Elasticsearch releases are affected by this.
Project title: elasticSearch

Project description: Open Source Distributed RESTful Search Engine

Project language: Java

Fig. 1. An example bug report (selected fields)

Table 1 reports partial information about five questions in Stack Overflow and
the answers provided by seven developers. Each question is associated with the
developer who asked it, the number of upVotes it received, and its thematic tags.
The questions are sorted based on the number of their tags that match with the
bug-report textual information (in Figure 1) and are shown in bold under each
question. The more tags the question shares with the bug-report terms, the
more relevant it is to the bug report. We will use these tags to characterize the
erpertise areas required to address the bug report in question.

3.1 Social Metrics of Expertise

Zhang et al. [31] introduced a family of metrics for measuring expertise in social
networks. The simplest one is AnswerNum, the number of answers contributed by
a user. However, while answering a question is an indication of expertise, asking
a question is an indication of lack of expertise. Z_score is a more sophisticated
metric that considers both questions and answers: Z = (a —q)/y/(a+¢). In this
formula, ¢ and a are the numbers of the questions and answers correspondingly
posted by user w. If a user asks as many questions as he answers, his Z_score will
be close to 0. Developers who answer more questions than they ask have positive
7 _scores, and vice versa. The Z_score is undefined for users who have not asked
nor answered a question. The developers in Table 1 are ordered (left to right) in
descending AnswerNum order.

3.2 A Bug-Specific Social Metric of Expertise

The Z_score would likely identify the most active question answerers as the
preferred bug assignees every time, consistently ignoring all other developers.
To prevent this phenomenon, we have chosen to refine the Z_score with bug-
specific information. As discussed before, we use Stack Overflow tags as a cross-
referencing mechanism between GitHub bug reports and Stack Overflow ques-
tions and answers. Developers facing problems with their tasks, use these tags,

2 https://github.com/elasticsearch/elasticsearch/issues/2812 2014-08-20

Table 1. The activity of some developers in Stack Overflow, and their various expertise
scores.

Question/Answerer |JP, | Bob Ali Joe| Mike Jane Tom Ben
Q1/Mike;
version control, 3 46 5 53 28
open source
2/ Jane;
ajax, data, search, | 1 20 16 22 6
jquery, php
Q3/Mike;
elasticsearch, php, | 21 11 14 29 10
java, lucene
Q4/Al;
https, css, java, 0 27 0 36
jira, data
Q)5 /Ben;
search,java,lucene,| 70 1 18 42 -4 14 98
elasticsearch. https
AnswerNum 5 4 4 3 3 2 0
Z _score 2.24 1.34 2 0.45 1 1.41 -1
(d6+1)- 14 54101 (5341).1] .
e (LS| s Gbiad| @AF (@RS peepar|
4| 5T e | (a2 1) 5e | 4 1)6= | (144 1) 5= | 0
EESTREgRCant g bhie i s T B+
Q_score 20.(gdy) '-’-U-[I;g'_f_[+ 20.(131) 20.(50)
- o) 0 T [+1 0 FOES
(1= 20) =50 21_-;1.7} —a20 —1.41
SSA_7Z _score 15.72 6.20] 20.12 -1.44 9.34] 29.03 -1.19

which are indexed by search engines [22], to search for earlier questions and their
answers that could be helpful to them. Tags are generic enough to convey seman-
tic topics and, yet, specific enough to relate to programming concepts and exper-
tise needed to fix GitHub bugs. As a sanity check against the possibility that tags
may drastically limit the relevant information between GitHub and Stack Ouver-
flow, we examined the bug reports in three selected GitHub projects (out of the
20 projects considered in this study) and found that the textual information of
each bug report (including projectLanguage, projectDeseription, issueTitle and
issueBody) mentions between 2 to 89 Stack Overflow tags (avg=14.9, var=132
and o=11.5). In effect, the Stack Overflow tags define a common vocabulary for
developers to exchange information. This vocabulary has a fundamental advan-
tage over natural languages; all tags are useful and there is no need for stop-word
and noise-word removal from the bug-report texts.

Our approach limits the search for potential bug assignees to the Stack Over-
flow members that have asked questions or provided answers with at least one
tag in common with the text of the bug report under examination, b. To that
end, we define the following terms.

A_score, p = Z (upVa + 1) - (match_tags,p) (1)

a E uanswers

v (maichiagsy) o,

_SCOT €y = L -
Q_score,p, =t Vg +1)

q € uquestions
(a—q)
——t (3]

7 _SCOTEy =
(a+q)

(A_score, p — Q-scorey)
V/ (A_score, ;, + Q_score, p)

SSA_Z_score, , = (4)

— match_tagsgp : all the Stack Overflow tags that appear in the title and
description of the bug report; these are, in effect, the Stack Overflow topics
that are important for the bug report in hand.

— match_tags, ;: the shared tags between a question (g) and b.

— match_tags, ;: the tags that annotate the question of an answer (a) that
also appear in b.

Based on the above definitions, we have developed a measure of the expertise
of the project developers in the areas defined by the mateh_tagsso,, set. As we
have discussed above, our inspection of numerous bug reports has established
that the textual information of each bug report is usually matched with several
tags. As a result, the relevant subsets of g and a for each developer, match_tags,
and match_tags, p, frequently contain more than one elements.

Our expertise metric is specific to a particular bug report, b. It is subject-
aware in that it considers two sets of tags —match_tags,, and match_tags, s
relevant to the bug under examination. Finally, it is social in that it relies on so-
cial assessments of the Stack Overflow content, taking into account the numbers
of upVotes and downVotes associated with the developer’s Stack Querflow ques-
tions and answers.

Let us now describe our expertise metric for user u on bug report b, We de-
fine the A_score, ;, (see Equation 1) and Q_score,, ;, (see Equation 2) to replace a
and q respectively in the original definition of the Z_score. At any point in time,
for every answer the user has contributed in the past that is relevant to the bug
in question (i.e., is associated with a tag that appears in the bug report), the
number of match_tags, ; is multiplied with the number of the answer’s upVotes
(plus one, for the answer itself). In effect, each answer contributes to the calcula-
tion of the user’s expertise, taking into account the number of upVotes that the
answer has received, which reflects the community’s judgement on the answer’s
quality and usefulness. The sum of these terms make up A_score, ;. Each ques-
tion is considered as evidence of lack of relevant expertise but this weakness is
compensated by promotion of the question by other users (upVotes). To reflect
the intuition that the “asker of a naive question is less knowledgeable than asker
of a good one”, we divide match_tags, » by the number of upVotes (plus one
for the question itself). This tends to make the value of Q_score,, very small
relative to A_score, , which is why we use the p normalization factor to adjust
it. The social subject-aware Z_score (SSA_Z_score) can then be defined as shown
in Equation 4. This formula involves the terms relevant to the user’s expertise

(as match_tags,, and match_tags,, used in A_score, p, and Q_score, for differ-
ent questions and answers). Furthermore, it takes into account the votes of the
users to the answers and questions to advance good ones. The SSA_Z_score,
focuses on answers and questions related to the topics relevant to the bug under
examination.

Table 1 shows different scores for the users. Each cell at the intersection of a
question and a developer contains the number of upVotes for the answer posted
by that developer to the question. Tom has the best SSA_Z_score, : he provided
two answers to questions relevant to the bug, which received many upVotes.

Note that our implementation of the above score is aware of the temporal
aspect of a developer’s expertise. The activity of a developer in Stack Owver-
flow accumulates over time but the estimation of the developer’s expertise for
a given bug report, reported in time £, is based only on his contributions up to
date: the §SA_Z score, ; considers questions and answers of the user u posted
in time 11 < t.

A Recency-Aware SSA _Z score The expertise of the developers shifts over
time as they work on different projects with potentially different technologies
[15]. Developers actively working in a particular domain are more appropriate
to be assigned to a bug in this domain. This is why Mayter et al. consider a
decay factor in their model of developers’ expertise. Shokripour et al. [26] also
consider this idea in their bug-assignment method: the older the evidence for a
particular expertise is, the less relevant it is for current expertise needs. Anvik
et al. [2] used filtering approaches to capture the recency of work.

Motivated by the intuition that “more recent evidence of expertise is more
relevant”, we define the recency-aware, social, subject-aware RA_SSA_Z_score,
as follows.

RA_SSA_Z score, , =

: ‘ 1
a - (SSA.Z scoreny) + B+ (X [wumber of bugs occured)

between 1 and b

i £ previous bugs
assigned to u

(5)

In this formula. o and 8 are tuning parameters and we explain how we tuned
them in Section 4.4. Having the RA_SSA_Z_score, ; for all users in the commu-
nity over a bug report, our algorithm sorts the users and reports the top k as
the most capable developers to fix the bug.

4 Evaluation

We obtained two Stack Overflow data sets [20][21] (approximately 65GB and
90GB). They consist of several XML files including information of 2,332,403
and 3,080.577 users, their posts. tags. votes, etc. In order to link these users to
GitHub, their emailHash is needed [24][29], which is provided by the older data
set. We merged these two data sets to get a large data set including the newer
posts with old users.

We used a mySQL dump [23] (with a size of about 21GB) containing in-
formation of 4,212,377 GitHub users and their project memberships. However,
this data set did not include the textual information of the bug reports. We
obtained this information from a set of MongoDB dumps provided by the same
web site [23] (with a size of about 210GB) including information of 2,908,292
users. Again, we also merged the two data sets and obtained a large data set
including information about GitHub users, projects and bug reports.

As our method assigns bugs to developers with a presence in both GitHub and
Stack Overflow, we used identity merging [24][29] to identity the common users
in GitHub and Stack Overflow. The GitHub data set contains the e-mails of the
users, but Stack QOuverflow data set includes e-mail hash. So for each GitHub user,
using MD-5 function, we obtained the e-mail hash and compared it with e-mail
hashes in Stack Overflow. With this approach, we found 358,472 common users.

4.1 Experiment Setup

For each GitHub project, we first calculated the union of the sets of project mem-
bers, committers, bug reporters and bug assignees, and we removed from this
set all developers without any Stack Overflow activity, to calculate the project’s
community-members set. Next, we sorted the projects based on the cardinality
of their community-member sets and we identified the top 20 projects® with the
highest number of community members and the highest number of bug assignees.

For the selected 20 projects, the number of community members vary from 28
to 822 (average=127, median=87). Out of 14,172 bug reports in all the selected
projects, we examined 7144 bug reports that have been assigned to one of the
project’s community members. Note that we could not use the rest of bug reports
since they were assigned to developers with no Stack Ouverflow activity. We used
bug reports from three of these projects for training and tuning purposes and
17 for final evaluation. For each bug report in each of the 20 chosen projects,
we ran our algorithm to recognize the RA_SSA_Z score, j, score of all project-
community members. Then, we ranked the users from the highest score to the
lowest.

We report the average top-k recommendation accuracies. We compare our
results for k=1 and k=5 with several implemented methods, as well as previously
published results. We also report our results based on MAP (Mean Average
Precision) as a precise, synthesized, rank-based evaluation measure.

4.2 Comparison to State of the Art

Direct comparison with earlier methods is not possible since none of the previous
studies we reviewed above have made available their bug-assignment algorithm
implementation and data sets. To approximate this comparison, we experimented
with the scikit-learn ? implementations of a number of algorithms classify-

3 rails/rails, scala/scala, adobe/brackets, JuliaLang/julia, mozilla/rust,
mozilla-b2g/gaia, angular/angular.js, bundler/bundler, lift /framework,
dotecloud /docker, edx/edx-platform, elasticsearch /elasticsearch, fog/fog,

html5rocks/www.html5rocks.com, Khan/khan-exercises, saltstack/salt, travis-
ci/travis-ci, NServiceBus/NServiceBus, TryGhost,/Ghost and yui/yui3
4 http://scikit-learn.org/stable/

ing bugs to developers, which we applied to our own data set. Considering the
previous bug reports and the real assignee for each one, these algorithms use
word-based features of the bug reports to predict the most probable developer
who would fix the bug.

1NN, 3NN and 5NN In this family of classifier methods, each bug report
is considered a point in a multi-dimensional space, each dimension defined by
a distinct word. Each developer (class) corresponds to a hyper-plane in this
space, consisting of all the bugs closed by the developer. Then, given a new bug
report and a corresponding new point in the space, the closest existing point is
selected. The class of the selected point (bug report) is the recommendation for
the new bug report. This process is called Nearest Neighbor (1INN). In 3NN and
5NN, we look for 3 or 5 nearest points (bug reports) to that point and simply
get their average to determine a hyper-plane and its class (developer) as the
recommendation. Lamkanfi, et al. [12] and Anvik [3] used this method for their
predictions about bug reports.

Naive Bayes (NB) and Multinomial Naive Bayes (MNB) In this family
of algorithms, the developers’ features are the words included in the textual ele-
ments of the bug reports they have handled before. These features are considered
by the learner as a bag of words. Given a new bug report, the classifier returns
the classes (developers) with the highest number features in common with the
bug. Bhatacharya et al. [5], Cubrani¢ and Murphy [8] and Anvik [2] are from
those researchers who used this method for bug triaging.

Building on the above method, a group of Naive Bayes classifiers, one per
developer, may be constructed to decide the developer to which a given bug
report belongs, and to calculate the probability of that being the case. Then,
this probability is compared over all the developers to infer the most probable
bug fixers. Lamkanfi et al. [12] and Anvik [3] used this method for bug triaging.
SVM This approach represents bug reports as vectors in a multi-dimensional
space —similar to 1NN, 3NN and 5NN. With each word being a dimension, this
classifier considers each bug report a point in this multidimensional space. Then,
considering all the bug reports that are already assigned to each developer as
a category, the optimal hyper-planes between these points to separate different
categories is inferred. This method also assigns a label (name of a developer) to
each category. Then, given a new bug report, it reports the label of its category.
Lin et al. [13], Anvik et al. [2] and Bhattacharya et al. [5] used this method for
bug triaging.

4.3 Implementation

The Java implementation of our approach as well as our data sets (3 training
and tuning and 17 final evaluation projects and their bug reports) and output re-
sults are available online at https://github. com/anonymous-user-1/BugTriaging
for consideration or future comparisons.

Regarding the implemented Machine-Learning approaches, given that no
open implementations were available for the previous bug-assignment methods
reported in the literature, we made fair effort toward the best implementation of
the competitor algorithms. We processed bug reports’ title and body words with

TFIDF, producing TFIDF word vectors. In order to make the process compet-
itive enough to our approach, we made the process online: train them on first
n-1 bug reports and then test on the n'". Then train on first n bug reports and
test on n+1t™" and so on.

We used the followings parameters for scikit-learn machine learners. For
KNN, we chose k as the parameter (1, 3 or 5), weights=‘uniform’, algorithm="‘auto’,
leaf_size=30, p=2, metric="minkowski’ and metric_params=None. For Multi-
nomial Naive Bayes, we used Laplace smoothing priors (o = 1.0) fit to prior
distribution using OneVsRestClassifier classifier strategy. Similarly for Naive
Bayes, but it uses multiclass classification. For SVM, we used Support Vector
Classification (SVC) class. We chose RBF kernel type, used shrinking heuristic,
with gamma kernel coefficient 1/n for n features, error penalty=1 and proba-
bility=true. More details as well as the the Python implementation of the men-
tioned approaches are available online at https://github.com/anonymous-user-1/
ML-bug-triager-scikit/blob/master/dumpbayes.py.

4.4 Performance of Variant Social Metrics of Expertise

In Section 3 we incrementally developed our Triage_score starting with the sim-
ple social measures of expertise a and ¢. To gain an insight on how each aspect
of this measure contributes to the bug-assignment effectiveness, we applied sev-
eral intermediate variants of the metric, representing different intuitions in its
evolutionary construction process, to three test projects with 490 bug reports in
total, randomly selected from the 20 projects of our study.

The performance of the simplest measure, i.e., the number of answers, An-
swerNum [31], tagged with at least one of those match_tagsseo p, is shown in Table
2. The triaging accuracy is poor and does not recommend this naive measure for
the bug-assignment task.

The original Z_score [31], which considers answers as indication of expertise
and questions as indication of lack of expertise, does not perform much better.
The problem was that the Z_score metric measures general expertise rather than
expertise specific to the bug under examination, and, as a result, it is inadequate
to compete with the approaches reported in the literature.

Next we evaluated the subject-aware Z_score, SA_Z_score, which measures ex-
pertise of the developers in match_tagsso p, without considering upVotes. This
score is in effect equivalent to SSA_Z_score, but with =1 and without consider-
ing upVotes. p was the normalization factor which we used to balance the values
of Q)_score, ;, with A_score,; when it was divided by “l1+number of upVotes of
the question”. In other words, we set u = 1 for SA_Z_score because it does not
consider upVotes. Again, a small improvement was observed in the performance,
evidence that, not surprisingly, awareness of the bug under examination is useful
in selecting the right bug assignee. Still this score is not competitive with the
literature results.

Our next step was to consider the community’s curation of the questions
and answers. Instead of uniformly considering all Stack Owverflow answers of
a developer as evidence of expertise and all questions as evidence of lack of
expertise, we evaluated whether weighing “good” answers and questions more
than “bad” ones would make a difference. The Stack Overflow users’ upVotes

Table 2. Accuracy results for preliminary approaches and tuning

Method Top-1| Top-5| MAP

AnswerNum 3.40| 21.00| 0.1384

Z _score 3.49| 21.05| 0.1453

SA_Z score (p=1, upVotes=0) 9.12| 23.59| 0.1801

n=1 12.33| 56.97| 0.3216

=10 12.06{ 52.68| 0.3153

1=20 11.79| 50.67| 0.3128

RSA.Z_score ;Lzl—i—avg(up\r’ntes} 12.06{ 53.61| 0.3166
pt=1+4avg(upVotes)?| 11.66| 53.73| 0.3130

u=1+HM(upVotes) |12.33|58.45|0.3223

a=0.001 42.65| 88.37| 0.618

a=0.01 43.06|88.57| 0.621

recency-aware SSA _Z score|a=0.1 41.84| 86.33| 0.609
a=1 39.59| 77.96| 0.565

a=10 38.98| 77.14| 0.559

are evidence for the quality of the questions and answers and the social subject-
aware Z_score (SSA_Z_score) was designed to take them into account, as well as
being aware of the bug context. This metric involves the u normalization factor
that determines the importance of considering “asking” as “lack of expertise”
with respect to answers. It can be assigned a static value, or, it may be tuned for
different projects. For all projects, we set it to “1+Harmonic Mean of upVotes
of all related questions” (all questions containing at least one match_tagssos)
which has slightly better performance. The tuning results are shown in Table 2.
Note that for the example of Table 1, we have p=20, obtained simply based on
the average of upVotes of the questions mentioned in the first column.

The final improvement leading to our triage score was to make it sensitive
to the recency of the relevant Stack Ouverflow activity. The key intuition here is
that “the fixing activity has locality” meaning that “the recent fixing developers
are likely to fix bug reports in the near future” [27]. Inspired by this idea, we
considered the recency of the developers” activities, highlighting recent ones
more than past ones. As we anticipated, the results improved further.

Finally, we examined the impact of the various parameters of our metrics
to the bug-triaging performance. For the purpose of tuning and calibrating our
method, we needed to determine the values for « and 8 in the RA_SSA_Z_score, p
(Equation 5). We set the value of 8 to 1 in order to reduce the variables to one.
Then, changed o and measured the accuracy and MAP on three test projects.
The best results obtained with a=0.01. This is because of very large numbers
attained for Social_Z_score (i.e., number of upVotes multiplied by number of
tags, summed over all answers of each user). Later in this section, we apply
the parameter values (u, o and) obtained from the three projects into the
remaining 17 projects in our final evaluation.

4.5 Performance of the RA_SSA_Z score,p

As the final evaluation, we ran our algorithm over 17 projects (holding out
the three projects used for tuning) including 6654 bug reports and sorted the

recommended developers for each bug report. We measured the average top-k
accuracies as well as MAP. The average top-k accuracies of our approach for
k from 1 to 5 are 45.17%, 66.41%, 77.50%, 84.79% and 89.43% respectively.
We also obtained the MAP as 0.633, which is very strong and shows that the
harmonic mean of the real assignee is 1.58 over all the bug reports.

We also implemented the other approaches discussed in Section 4.2. We ran
those experiments to compare the results of our method with other approaches
on the same data set. The results for average fop-1 and fop-5 accuracies as well
as MAP are shown in Table 3.

Table 3. Accuracy results for different simulated approaches compared with ours

" 2 Naive| Multinomial| Our

INN} - 3NN| 5NN Bayes| Naive Bayes SVM Approach

Topl Accuracy ()] 43.09| 46.48| 45.60| 43.77 42.75(45.46 45.17
Topb Accuracy (%)| 70.46] 75.63| 75.00| 78.98 75.97| 81.82 89.43
MAP 0.575| 0.610| 0.596| 0.609 0.606| 0.617 0.633

Note that all the values reported in Table 3 are averages over all the 17
projects examined; due to paper-length limitations, the per-project values are
not shown here. However, we examined the detailed results for each project and
found them close to the mean (var=60.97 and o=7.81 for fop-5 accuracies).
Our results demonstrate that our RA_SSA_Z score, . relying on evidence of
developers’ expertise from their Stack Overflow activities, is very effective in
selecting the right assignee for the right bug, much more so than all competing
machine-learning algorithms relying exclusively on GitHub data. In the next
section, we analyze these results and compare the details with the other methods.

5 Analysis

First, we compare our approach against implemented machine-learning meth-
ods. The results in Table 3 show that our method outperforms all of the other
machine learning methods in terms of top-5 accuracy and MAP. 3NN, 5NN and
SVM do well for top-1 accuracy, slightly better than our approach. Our aver-
age top-5 accuracy is between 8 to 19 percent better than other approaches.
The MAP value of our approach, 0.633, corresponds to the harmonic mean 1.58
for the rank of the real assignee (implying that the real assignee frequently ap-
peared in the rank-1 and rank-2 positions in the results). MAP varies from 0.575
(for INN) to 0.617 (for SVM as the best approach after ours). Comparing the
different algorithms on the same data set demonstrates the usefulness of our
method. The improved MAP and accuracy of our approach over these other
methods shows that our approach is trustworthy and capable of precise assignee
recommendation.

Let us now compare the accuracy of our approach against the accuracy re-
ported in previous published contributions. Due to differences in the experimen-
tal design and collected metries of the various studies, it is impossible to have

an exact and fair comparison. Some of these earlier methods reported the maxi-
mum accuracy over different projects instead of the average accuracy. Also they
differ in reported values for k in top-k accuracies, with top-1 and especially top-5
being the most frequently used. As one of the best obtained accuracies in the
previous studies, Shokripour et al. obtained 48% top-1 and 60% and 89% top-5
accuracies on two projects (between 57 and 9 developers respectively). Our top-5
accuracy outperforms theirs, but their approach performs 3% better on top-1.
Note that their best results were obtained in a project with only 9 candidate
developers (our projects included between 28 and 822 developers). Also note
that their approach was tested only on 80 and 85 bug reports, as opposed to our
7144 bug reports. In fact, some of the features and meta-data that are required
for their method (e.g., product and component of the bug reports) are quite
difficult to obtain [12], which makes this study quite challenging to eplicate.

To summarize our comparison findings, it is important to mention the follow-
ing. Our evaluation of our metric is the most thorough reported in the literature
(with 20 projects and 7144 bug reports). Our metric highly outperforms all pre-
viously reported methods in terms of average top-5 accuracy, and most of them
in terms of average fop-1 accuracy. More importantly, our metric exhibits the
highest MAP.

Limitations and Threats to Validity The most important concern with re-
spect to the validity of our method is that the common users (between Stack
Overflow and GitHub) who constitute the project community are a small part of
the complete set of developers associated with each project. The common users
between Stack Overflow and GitHub represent up to 20% of the total number of
users, in each of these networks. There are many users about whom we do not
have information, because we could not match their profile in the two networks.
However, to mitigate this limitation, unlike most previous studies, we examined
our approach on a large number (i.e., 20) of big projects with thousands of
users and bug reports which is quite substantial, limiting threats to external
validity. We can even argue that this phenomenon may be an advantage of our
approach that focuses on high-quality evidence of developers’ expertise estab-
lished in the actively curated Stack Overflow community and ignores developers
who do not have such credentials. If our method performs well by accessing parts
of the developers’ contributions, it should improve when accessing the complete
information.

Currently, for privacy reasons, much of the Q&A content at the software so-
cial networks is provided anonymously. One could envision however that project
managers could request their developers to provide their Stack Overflow 1Ds.
Thus, the step of identifying users common across the two networks through
their e-mails should become unnecessary and a larger community of develop-
ers, with far more extensive Q&A contributions, will become available to the
bug-assignment process.

One concern, is the practice of some developers answering their own questions
on Stack Overflow for announcing a commonly encountered issue with some API,
library, etc. However, we investigated the questions and answers of members of
three (out of the 20) chosen projects and found that only 3% of their answers
are answers to one’s own questions, and only in around half of these cases the

question is up-voted, meaning that the case did not indicate expertise, but lack
of expertise (as we assumed).

6 Conclusions and Future Work

The fundamental novelty of our work lies in that it is the first bug-assignment
method to consider evidence of developers’ expertise beyond their contributions
to software development, examining instead their contributions to a Q&A plat-
form. Our method takes advantage of the fact that many developers participate
in both platforms. Relying on the expertise of the community to recognize good
(and bad) questions and answers, our method taps into a rich, and as yet unex-
ploited, social source of expertise information. To consider this information in the
context of the software-development task at hand, our method relies on the inter-
section between GitHub bug-report text and tags of the Stack Overflow questions
and answers, We believe Stack Overflow is a rich source of expertise for software
engineering purposes since the privilege of important Stack Overflow contribu-
tions like up/downVoting is only available to community members who have
established a minimum reputation.

We have thoroughly evaluated our method with 20 popular GitHub projects,
comparing its performance (a) against six traditional machine-learning approaches
that have been widely used for bug assignment before, and (b) against the re-
ported accuracies of previous bug-triaging publications. Our approach exploits
expertise information found in Stack Overflow and readily outperforms the com-
petition. We believe that in order to achieve even better performance, a project
manager may ask the ID of his developers in the software social networks and
identify their full Q&A contributions.

Generalizing beyond Stack Overflow, how helpful it is for bug assignment,
and what limitations it suffers, we envision a new research agenda studying
the application of third-party expertise networks to bug triaging. The biggest
open question is how to generalize this approach to multiple expertise networks.
As well as various Q&A networks and code forums, perhaps there are wikis,
project documentation, or developer performance histories that could be mined
for expertise networks to exploit for bug triage.

In addition to considering multiple social platforms, we also plan to consider
tag synonyms: Stack Overflow introduces lists of tag synonyms and suggests the
users to use the primary definitions (e.g., “servlets” instead of “webservlet”, “au-
thentication” instead of “login”), but does not enforce the practice. In the future,
we plan to consider integration of the synonyms in their primary definitions in
code and data sets.

Acknowledgments

This work has been partially funded by IBM, the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and the GRAND NCE.

References

1.

10.

I

12.

13.

16.

Anvik, J.: Automating bug report assignment. In: Proceedings of the 28th Inter-
national Conference on Software Engineering (Doctoral Symposium). pp. 937-940.
ICSE '06, ACM (2006)

. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of

the 28th International Conference on Software Engineering. pp. 361-370. ICSE 06,
ACM (2006)

Anvik, J.K.: Assisting Bug Report Triage through Recommendation. Ph.D. thesis,
University of British Columbia (Nov 2007)

Baysal, O., Holmes, R., Godfrey, M.W.: Revisiting bug triage and resolution prac-
tices. In: In Proceedings of the User evaluation for Software Engineering Re-
searchers (USER) Workshop at the International Conference on Software Engi-
neering (ICSE), 2012. pp. 29-30. IEEE (2012)

Bhattacharya, P., Neamtiu, 1., Shelton, C.R.: Automated, highly-accurate, bug
assignment using machine learning and tossing graphs. Journal of Systems and
Software 85(10), 2275-2292 (2012)

Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30(1), 107-117 (1998)

Canfora, G., Cerulo, L.: Supporting change request assignment in open source
development. In: Proceedings of the 2006 ACM Symposium on Applied Computing.
pp. 1767-1772. SAC '06, ACM (2006)

. Cubranié, D., Murphy, G.C.: Automatic bug triage using text categorization. In:

In SEKE 2004: Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering. Citeseer (2004)

. Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model

to capture source code familiarity. In: Proceedings of the 32Nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1. pp. 385-394. ICSE "10,
ACM (2010)

Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing
graphs. In: Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering. pp. 111-120. ESEC/FSE 09, ACM (2009)

Kleinberg, J.M.: Hubs, authorities, and communities. ACM Computing Surveys
(CSUR) 31(4es), 5 (1999)

Lamkanfi, A., Demeyer, 5., Soetens, Q.D., Verdonck, T.: Comparing mining algo-
rithms for predicting the severity of a reported bug. In: Software Maintenance and
Reengineering (CSMR), 2011 15th European Conference on. pp. 249-258. IEEE
2011)

£in, Z.,Shu, F., Yang, Y., Hu, C., Wang,).: An empirical study on bug assignment
automation using chinese bug data. In: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement. pp. 451-455.
ESEM '09, IEEE Computer Society (2009)

Linares-Vasquez, M., Hossen, K., Dang, H., Kagdi, H., Gethers, M., Poshyvanyk,
D.: Triaging incoming change requests: Bug or commit history, or code authorship?
In: Software Maintenance (ICSM), 2012 28th IEEE International Conference on.
pp. 451-460. IEEE (2012)

. Matter, D., Kuhn, A., Nierstrasz, O.: Assigning bug reports using a vocabulary-

based expertise model of developers. In: Mining Software Repositories, 2009. MSR
'09. 6th IEEE International Working Conference on. pp. 131-140 (May 2009)
Mockus, A., Herbsleb, J.D.: Expertise browser: A quantitative approach to identi-
fying expertise. In: Proceedings of the 24th International Conference on Software
Engineering. pp. 503-512. ICSE '02, ACM (2002)

17.

18.

19.

24,

25.

26.

27.

28,

29,

30.

31.

32,

Naguib, H., Narayan, N., Brugge, B., Helal, D.: Bug report assignee recommen-
dation using activity profiles. In: Mining Software Repositories (MSR), 2013 10th
IEEE Working Conference on. IEEE (2013)

Nguyen, T.T., Nguyen, A.T., Nguyen, T.N.: Topic-based, time-aware bug assign-
ment. SIGSOFT Softw. Eng. Notes 39(1), 1-4 (Feb 2014)

Poshyvanyk, D., Marcus, A.: Combining formal concept analysis with information
retrieval for concept location in source code. In: Program Comprehension, 2007.
ICPC’07. 15th IEEE International Conference on. pp. 37-48. IEEE (2007)

. Stack Exchange Community: Is there a direct download link with a raw data dump

of stack overflow?, "http://meta.stackexchange.com/questions /198915 /is-there-a-
direct-download-link-with-a-raw-data-dump-of-stack-overflow-not-a-t”, Visited on
2014/08,/20

. Stack Exchange, Ine: Stack exchange data dump,

"https://archive.org/details/stackexchange”, Visited on 2014/08/20

. Stack Exchange Team: What are tags, and how should i use them?,

"http:/ /stackoverflow.com/help/tagging”, Visited on 2015/03/17

. The GHTorrent Project: Mysqgl database dumps,

"http:/ /GHTorrent.org/downloads /mysql-2014-08-18.sql.gz", Visited on
2014/08/20

Sajedi, A., Esteki, A., GholiPour, A., Hindle, A., Stroulia, E.: Involvement, con-
tribution and influence in github and stack overflow. In: Proceedings of the 2014
Conference of the Center for Advanced Studies on Collaborative Research. CAS-
CON ’14, ACM, Markham, Toronto, Canada (2014)

Shokripour, R., Kasirun, Z., Zamani, S., Anvik, J.: Automatic bug assignment us-
ing information extraction methods. In: Advanced Computer Science Applications
and Technologies (ACSAT), 2012 International Conference on. pp. 144-149 (Nov
2012)

Shokripour, R., Anvik, J., Kasirun, Z.M., Zamani, S.: Why so complicated? sim-
ple term filtering and weighting for location-based bug report assignment recom-
mendation. In: Proceedings of the 10th Working Conference on Mining Software
Repositories. pp. 2-11. MSR '13, IEEE Press (2013)

Tamrawi, A., Nguyen, T.T., Al-Kofahi, J., Nguyen, T.N.: Fuzzy set-based auto-
matic bug triaging (nier track). In: Proceedings of the 33rd International Confer-
ence on Software Engineering. pp. 884-887. ICSE "11, ACM (2011)

Tamrawi, A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Fuzzy set and cache-
based approach for bug triaging. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering. pp. 365-375. ESEC/FSE "11, ACM (2011)

Vasilescu, B., Filkov, V., Serebrenik, A.: Stackoverflow and github: associations
between software development and crowdsourced knowledge. In: Social Computing
(SocialCom), 2013 International Conference on. pp. 188-195. IEEE (2013)
Venkataramani, R., Gupta, A., Asadullah, A., Muddu, B., Bhat, V.: Discovery
of technical expertise from open source code repositories. In: Proceedings of the
22Nd International Conference on World Wide Web Companion. pp. 97-98. WWW
13 Companion, International World Wide Web Conferences Steering Committee
2013

;(Zhang}, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
Structure and algorithms. In: Proceedings of the 16th International Conference on
World Wide Web. pp. 221-230. WWW 07, ACM (2007)

Zimmermann, T., Nagappan, N., Guo, P.J., Murphy, B.: Characterizing and pre-
dicting which bugs get reopened. In: 34th International Conference on Software
Engineering (ICSE), 2012. pp. 1074-1083. IEEE (2012)

