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Abstract

As part of the George B. Moody PhysioNet Challenge
2024, we developed a computational approach, leverag-
ing a combination of UNet and ResNet models, to analyze
and classify electrocardiogram (ECG) images. Our team,
DeRC ECG, introduced an innovative method that applies
UNet for denoising ECG images, followed by the use of
ResNet18 Networks and other CNN-based models to ac-
curately classify ECGs into various diagnostic categories.
For the classification task, our approach achieved a macro
F-measure of 0.359 on the official test set.

1. Introduction

We participated in the 2024 George B. Moody Phy-
sioNet Challenge, which invited teams to develop auto-
mated, open-source methods for digitizing and classify-
ing electrocardiograms (ECGs) captured from images or
paper printouts [1, 2]. While ECG images or printouts
remain common, ECG classification algorithms typically
rely on ECG time series data recorded digitally from the
ECG devices to identify cardiac abnormalities. Our team
focused solely on the ECG image classification task using
the UNet-ResNet framework.

2. Methods

Our Challenge entry addresses this problem by first de-
noising ECG images using a UNet model, followed by
classification using CNN-based models, including ResNet,
VGG and, ViT. We trained on the labels and ECG images
from the PTB-XL dataset [3, 4],. We validated our mod-
els using 5-fold cross-validation on the internal test set,
then submitted our best-performing models to the Chal-
lenge and validated on challenge ECG image data [5].

2.1. Data Process

We ran the ECG-Image-Kit [6, 7] process on the PTB-
XL dataset [3, 4] to generate ECG images at both 500
Hz and 100 Hz resolutions. This generation process cre-
ated noisy ECG images by applied random distortions,
grid overlays, simulated handwriting, and slight rotations –
distortions designed to mimic real-world scenarios where
ECGs are captured from printed or scanned sources, pre-
serving the challenges of noise and artifacts in the data. To
enhance the dataset further, we modified the ECG-Image-
Kit to generate clean ECG images. These clean images
focused solely on the ECG waveforms by removing all
background elements, grids, and any superimposed text.
Specifically, we excluded text related to the lead name,
axes labels and units of the ECG plot. This preprocess-
ing step aimed to create a set of images that highlight the
ECG signal without distractions, ensuring that our models
could effectively learn from both noisy and clean data.

2.2. UNet Denoising

We focused on denoising the ECG images before feed-
ing them into the classification model, aiming to improve
overall performance. For input data, we used noisy ECG
images with RGB channels, resized to 896 × 1152. The
ground truth data consisted of clean, grayscale ECG im-
ages of the same size. To further reduce background noise,
we applied a sigmoid function to the pixel values, and re-
tained only pixels with a value less than 250, effectively
isolating the ECG lines from the background. We im-
plemented a UNet[8] architecture for the denoising task,
which consists of a contracting path (encoder) and an ex-
pansive path (decoder). The encoder was a series of Dou-
bleConv layers, each containing two convolutional lay-
ers followed by batch normalization and ReLU activation.



Max-pooling layers are used to progressively downsam-
ple the input, reducing spatial dimensions while increasing
feature depth. Specifically, the encoder includes convolu-
tional layers with 64, 128, 256, 512, and 1024 filters. The
decoder mirrors the encoder’s structure, using transposed
convolutions to upsample the feature maps. At each up-
sampling step, the feature maps are concatenated with the
corresponding encoder features to preserve spatial context.
The DoubleConv layers then refine these feature maps.
The final output layer consists of a 1x1 convolution, re-
ducing the feature map to the desired number of output
channels (1 grayscale channel), followed by a sigmoid ac-
tivation to produce the final denoised ECG images. This
architecture allows for precise localization and reconstruc-
tion of the ECG waveforms, effectively reducing noise. To
train our UNet model effectively, we employed a custom
loss function that combines Dice Loss and Focal Loss, de-
signed to address the unique challenges of ECG image seg-
mentation.

The Dice Loss (LossDice) is particularly useful for han-
dling imbalanced data, where the area of interest (e.g.,
ECG lines) is much smaller compared to the background.
Dice Loss measures the overlap between the predicted seg-
mentation map and the ground truth. It is defined as:

LossDice = 1 −
2 ·

∑
(ptrue · ppred) + η∑

ptrue +
∑

ppred + η

where ptrue and ppred represents the ground truth and pre-
dicted probabilities, respectively. The η term is added to
avoid division by zero. This loss function is effective in
maximizing the overlap between the predicted and true la-
bels, ensuring that the model focuses on accurately seg-
menting the ECG lines.

We incorporate the Focal Loss (LossFocal)to further ad-
dress the class imbalance issue, particularly in cases where
the majority of pixels belong to the background (white),
and only a small fraction represents the ECG lines (black).
The Focal Loss modifies the traditional binary cross-
entropy (BCE) loss to down-weight easy-to-classify exam-
ples, emphasizing harder examples. The BCE and the Fo-
cal Loss are defined as:

BCE = − 1

N

∑
p∈Pixel

(
ptrue log(ppred) + (1− ptrue) log(1− ppred)

)

LossFocal = α (1− exp(−BCE))γ · BCE

where α and γ are hyperparameters that control the con-
tribution of hard-to-classify examples. This loss function
enhances the model’s ability to learn from difficult cases,
thereby improving segmentation performance on the mi-
nority class.

Finally, the Combined Loss (LossCombine) is computed
as the sum of Dice Loss and a weighted Focal Loss:

LossCombine = LossDice + β · LossFocal

where β is a scaling factor that adjusts the influence of
the Focal Loss relative to the Dice Loss. This combined
loss function ensures that the model is not only accurate
in segmenting the ECG lines but also robust to the class
imbalance present in the data, leading to improved overall
performance.

For training, we used the Adam optimizer with a learn-
ing rate of 1e-4 and a ReduceLROnPlateau scheduler,
which reduced the learning rate to a minimum of 1e-6 af-
ter 7 epochs of no improvement in validation loss. We also
implemented early stopping with a patience of 10 epochs
to prevent overfitting, retaining the model weights from the
epoch with the lowest validation loss.

2.3. Classification Task

For the classification task, we used both clean and
denoised ECG images to classify 11 diagnostic labels.
We experimented with several pre-trained models, includ-
ing ResNet18, ResNet50, ResNet152[9], VGG11[10], and
ViT-ECG[11], adapting each model to suit our single-
channel ECG input and multi-label classification require-
ments. To accommodate the grayscale ECG images, we
modified the first convolutional layer of each model to ac-
cept a single-channel input instead of the standard three
channels. Specifically, for ResNet18, the first convolu-
tional layer was reconfigured to process single-channel
ECG inputs by averaging the weights across the original
three input channels. This adjustment allowed the model
to effectively process grayscale images while maintaining
the integrity of the pre-trained weights. Additionally, the
final fully connected layer of each model was adapted to
output predictions for the 11 diagnostic labels. This mod-
ification ensured that the model could perform multi-label
classification, assigning the appropriate set of diagnoses to
each ECG image. We conducted 5-fold cross-validation
(5-CV) on the clean ECG images to evaluate the perfor-
mance of the different models. The evaluation was based
on the average Area Under the Receiver Operating Char-
acteristic (AUROC) score across all folds. ResNet18 con-
sistently delivered the best performance, making it our
model of choice for the final submission. During training,
we utilized the Binary Cross-Entropy with Logits Loss,
a loss function well-suited for multi-label classification
tasks. The training process for the classification model fol-
lowed the same approach as described in the UNet model
section. We utilized the Adam optimizer with an initial
learning rate of 1×10−4, along with a learning rate sched-
uler and early stopping to prevent overfitting, ensuring op-
timal model performance.



Figure 1. In Stage A, a UNet model denoises the ECG images. In Stage B, the cleaned images are classified into 11
diagnostic labels using a ResNet model. Probabilities from the sigmoid layer are converted to binary outcomes using
Youden’s Index thresholds.

After training the multi-label classification model, we
used the Youden’s Index to determine the optimal thresh-
old for each label. Specifically, we trained the model
on an 80% training set, and used the remaining 20% as
a validation set to obtain the predicted probabilities for
each label. To find the best threshold that balances the
true positive rate (sensitivity) and the true negative rate
(specificity), we set the threshold to Youden’s Index, J =
sensitivity + specificity − 1, which identifies the thresh-
old that maximizes both sensitivity and specificity, ensur-
ing that the model performs optimally in distinguishing be-
tween the presence and absence of each label.

3. Results

We evaluated our models for ECG image classification
using 5-fold cross-validation. Performance metrics in-
cluded macro F1-score, accuracy, and AUROC for each
label in the PTB-XL training set.

Table 1 presents a comprehensive comparison of the
model’s performance across individual labels. It shows the
mean and standard deviation for accuracy, AUROC, and
F1-score based on 5-fold cross-validation.

Label Accuracy AUROC F1
NORM 0.83± 0.03 0.91± 0.02 0.82± 0.03

Acute MI 0.73± 0.09 0.71± 0.06 0.04± 0.02
Old MI 0.76± 0.04 0.82± 0.05 0.60± 0.05
STTC 0.78± 0.03 0.84± 0.06 0.62± 0.06

CD 0.81± 0.03 0.81± 0.07 0.61± 0.07
HYP 0.81± 0.01 0.77± 0.12 0.43± 0.09
PAC 0.77± 0.09 0.80± 0.08 0.11± 0.07
PVC 0.87± 0.05 0.93± 0.06 0.43± 0.15

AFIB/AFL 0.83± 0.06 0.90± 0.04 0.43± 0.14
TACHY 0.93± 0.01 0.97± 0.01 0.53± 0.04
BRADY 0.85± 0.05 0.89± 0.06 0.25± 0.07

Table 1. Performance metrics for different labels using
5-fold cross-validation (Mean ± SD)

Our experiments demonstrated that UNet combined
with ResNet-18 (UNet-ResNet-18) outperformed its com-
binations with other models, such as VIT-ECG, VGG11,
ResNet-50, and ResNet-152, particularly in terms of F1-
score, as shown in Table 2.. Therefore, UNet-ResNet-18
was selected for the challenge submission.



Model F1-measure
UNet + VIT-ECG 0.40
UNet + VGG11 0.37

UNet + ResNet-50 0.41
UNet + ResNet-152 0.37
UNet + ResNet-18 0.44

Table 2. Comparative performance of different CNN ar-
chitectures based on F1-measure

When evaluated on the official test set [5], our best-
performing model, UNet-ResNet-18, achieved a challenge
score of 0.359 on the leaderboard, as shown in Table 3.

Task Score Rank
Classification 0.359 NA

Table 3. Task performance summary

4. Discussion and Conclusions

In this challenge, we deviated from traditional ap-
proaches of digitizing ECG images into waveforms for
classification. Instead, we focused on denoising ECG im-
ages to create cleaner representations for classification.
Our UNet-based denoising method showed promising re-
sults, but our exploration of classification models was lim-
ited to simple CNN architectures. Future work should ex-
plore more advanced classification models to enhance per-
formance.

Significant variability in ECG formats across institu-
tions and devices may limit our method’s generalizability.
For instance, some ECGs are formatted with four leads per
line, while others have three leads per line. Such differ-
ences could impact model performance on unseen formats.
To address these challenges, we suggest two potential im-
provements: Instead of denoising the entire ECG image,
a patch-based approach using UNet could be employed
[12]. By breaking down the ECG images into smaller
patches, the denoising process could remain robust, even
if the overall layout changes across various formats. Clas-
sification by Specific Regions: Instead of classifying the
entire ECG image, we could focus on specific regions con-
taining the leads. This approach could enhance model ro-
bustness and accuracy.

In conclusion, our study highlights the importance of
both denoising and classification in the context of ECG
image analysis. While our method shows potential, partic-
ularly in its novel approach to handling noise, further re-
search is needed to refine the classification models and im-
prove generalizability to diverse ECG formats. Addressing
these challenges will be crucial for enhancing the robust-
ness and applicability of ECG image-based diagnosis in
real-world clinical settings.

References

[1] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, et al. PhysioBank, PhysioToolkit, and Phys-
ioNet: Components of a New Research Resource for Com-
plex Physiologic Signals. Circulation 2000;101(23):e215–
e220.

[2] Reyna MA, Deepanshi, Weigle J, Koscova Z, Elola A,
Seyedi S, et al. Digitization and Classification of ECG Im-
ages: The George B. Moody PhysioNet Challenge 2024.
Computing in Cardiology 2024;51:1–4.

[3] Wagner P, Strodthoff N, Bousseljot RD, Kreiseler D, Lunze
FI, Samek W, et al. PTB-XL, a Large Publicly Available
Electrocardiography Dataset. Scientific Data 2020;7:154.

[4] Strodthoff N, Mehari T, Nagel C, Aston PJ, Sundar A, Graff
C, et al. PTB-XL+, a Comprehensive Electrocardiographic
Feature Dataset. Scientific Data 2023;10:279.

[5] Reyna MA, Deepanshi, Weigle J, Koscova Z, Campbell K,
Shivashankara KK, et al. ECG-Image-Database: A Dataset
of ECG Images with Real-World Imaging and Scanning Ar-
tifacts; A Foundation for Computerized ECG Image Digiti-
zation and Analysis, 2024. URL https://arxiv.or
g/abs/2409.16612.

[6] Shivashankara KK, Deepanshi, Shervedani AM, Reyna
MA, Clifford GD, Sameni R. ECG-Image-Kit: A Synthetic
Image Generation Toolbox to Facilitate Deep Learning-
Based Electrocardiogram Digitization. Physiological Mea-
surement 2024;45:055019.

[7] Deepanshi, Shivashankara KK, Clifford GD, Reyna MA,
Sameni R. ECG-Image-Kit: A Toolkit for Synthesis, Anal-
ysis, and Digitization of Electrocardiogram Images, Jan-
uary 2024. Online at: https://github.com/alp
hanumericslab/ecg-image-kit.

[8] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medi-
cal image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich,
Germany, October 5-9, 2015, proceedings, part III 18.
Springer, 2015; 234–241.

[9] He K, Zhang X, Ren S, Sun J. Deep Residual Learn-
ing for Image Recognition. arXiv e-prints. arXiv preprint
arXiv151203385 2015;10.

[10] Simonyan K, Zisserman A. Very Deep Convolutional Net-
works for Large-scale Image Recognition. arXiv preprint
arXiv14091556 2014;.

[11] Wu B, Xu C, Dai X, Wan A, Zhang P, Yan Z, et al. Vi-
sual Transformers: Token-based Image Representation and
Processing for Computer Vision, 2020.

[12] Li Y, Qu Q, Wang M, Yu L, Wang J, Shen L, et al.
Deep Learning for Digitizing Highly Noisy Paper-based
ECG records. Computers in biology and medicine 2020;
127:104077.

Address for correspondence:

Weijie Sun - weijie2@ualberta.ca
116 St & 85 Ave, Edmonton, AB T6G 2R3, Alberta, Canada

https://arxiv.org/abs/2409.16612
https://arxiv.org/abs/2409.16612
https://github.com/alphanumericslab/ecg-image-kit
https://github.com/alphanumericslab/ecg-image-kit

	Introduction
	Methods
	Data Process
	UNet Denoising
	Classification Task

	Results
	Discussion and Conclusions

