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Within the field of mining software repositories, many ap-
proaches, such as topic modeling and concept location, rely
on the automated application of machine learning algorithms
to corpora. Unfortunately the output of these tools is often
difficult to distinguish and interpret as they are often so
abstract. Thus to have a meaningful discussion about the
topics of software development, we must be able to devise
appropriate labels for extracted topics. However, these ap-
proaches neither use domain-specific knowledge to improve
results, nor contextualize those results for developers. While
too much specificity can produce non-generalizable results,
too little produces broad learners that do not provide much
immediately useful detail. This paper implements labelled
topic extraction, in which topics are extracted from commit
comments and given labels relating to a cross-project tax-
onomy. We focus on non-functional requirements related to
software quality as a potential generalization, since there is
some shared belief that these qualities apply broadly across
many software systems and their development artifacts. We
evaluated our approach with an experimental study on two
large-scale database projects, MySQL and MaxDB. We ex-
tracted topics using Latent Dirichlet Allocation (LDA) from
the commit log comments of their version control systems
(CVS and BitKeeper). Our results were generalizable across
the two projects, showing that non-functional requirements
were commonly discussed, and we identified topic trends
over time. Our labelled topic extraction technique allowed
us to devise appropriate, context-sensitive labels across these
two projects, providing insight into software development
activities.

1. INTRODUCTION
What’s in a name? that which we call a rose
By any other name would smell as sweet;

– Romeo and Juliet, II:ii

Few would argue that software development is a bed of roses.
To most of us, the important properties of a rose are sen-
sual in nature, and concern appearance, odour, and feel.
While horticulturalists and botanists may see more seman-
tic depth than this, one rose is often just as pleasing to us as
another. Software development artifacts, on the other hand,
are abstract and intangible. They are often unnamed and
ephemeral — even more so than roses — and maybe partially
derived from other unnamed and ephemeral artifacts. Yet
to have meaningful discussions about how software develop-
ment is progressing, we must be able to devise appropriate
labels for our development topics and be able to categorize
the development artifacts as belonging to one or more of
these topics.

Topics arise from the wide variety of issues which occur dur-
ing a software project’s life-cycle. These topics can relate to,
among others, the problem domain, the processes and tools
used, or the development artifacts themselves. The set of
development topics for a given project can sometimes be ex-
tracted automatically by analyzing artifacts within software
repositories, such as change-log comments that developers
create when committing revisions to the project’s source
control system. Our previous work dealt with topic trends,
which are topics that recur over time [10]. We observed that
topic trends were often non-functional requirements.

Topics in this paper and the previous paper are word bags
or word distributions. These word distributions are found
via Latent Dirichlet Allocation [2], which finds indepen-
dent word distributions shared among documents (change-
log comments). The unfortunate aspect of topics that are
word distributions is that they lack the tangibility of a rose.
They do not self identify with their tangible properties. Top-
ics have to be identified by interpreting the prevalent words



in the word distribution and by inspecting related docu-
ments. This is impractical when one has to handle more
than one hundred different topics. It would be nice if we
could have automatic assistance to determine what the topic
is about. This is the power of labelling and naming.

A topic — that is, a word distribution in our world — needs
a suggestive name to succinctly convey its intent, and make
it easy to use in discussions and analyses about the devel-
opment of the system. Our previous experience leads us to
believe that automated topic naming is currently infeasible
in the general case. We have therefore decided to focus on
topic labels from the sub-domain of non-functional require-
ments related to software quality.

Traditionally topic extraction has required manual annota-
tion to derive domain-relevant labels. This paper imple-
ments labelled topic extraction, in which topics are extracted
and given labels relating to a cross-project taxonomy. This
is an ontological approach where we attempt to relate net-
works of words to labels and then search for these terms
within our topics. We also compare this approach to ma-
chine learners.

Our contributions include:

• We introduce labelled topic extraction, and demon-
strate its usefulness compared to other approaches.

• We show that these labels with their topics can be
learnt and used to classify other data-sets.

• We present visualizations of named topics and their
trends over time to aid communication and analysis.

• We use an exploratory case study of several open source
database systems to show how named topics can be
compared between projects.

We first introduce some important terminology for our work.
We then describe our methodology, including our data-sets,
then highlight our results. We conclude with a look at re-
lated work and possible improvements.2. BACKGROUND
We provide a brief overview of software repository mining
and information retrieval. This work is related to the min-
ing software repositories (MSR) [12] research community
as it deals expressly with analyzing a project’s source con-
trol repository, and the messages associated with revisions
therein.2.1 De�nitions
We will use the following terminology in the rest of the pa-
per. A message is a block of text written by a developer. In
this paper, messages will be the CVS and BitKeeper commit
log comments made when a developer commits changes to
files in a repository. A word distribution is the summary of
a message by word count. Each word distribution will be
over the words in all messages. However, most words will
not appear in each message. A word distribution is effec-
tively a word count divided by the message size. A topic is

a word distribution, i.e., a set of words that form a word
distribution that is unique and independent within the set
of documents in our total corpus. One could think of a topic
as a distribution of the centroid of a group of messages. In
this paper we often summarize topics by the top ten most
frequent words of their word distribution. A trend is one or
more similar topics that recur over time. Trends are partic-
ularly important, as they indicate long-lived and recurring
topics that may provide key insights into the development
of the project. A label is part of a title we attach to a topic,
whether manually or automatically.

Area of ROC Curve is the area under the Receiver Oper-
ating Characteristic (ROC ) curve, sometimes referred to as
AUC. ROC values reflect a score, similar to school letter-
grades (A is 0.9, C is 0.6), reflecting how well a particular
learner performed for the given data. A ROC result of 0.5
would be equivalent to a random learner (randomly classi-
fying data). ROC maps to the more familiar concepts of
precision/sensitivity and recall/specificity: it plots the true
positive rate (sensitivity) versus the false positive rate (1 -
specificity). A perfect learner has a ROC value of 1.0, re-
flecting perfect recall and precision.2.2 Topic and Concept Extraction
Topic extraction, sometimes called concept extraction, uses
tools such as Latent Dirichlet Allocation (LDA) [2] and La-
tent Semantic Indexing (LSI) to extract independent word
distributions (topics) from documents (commit log comments).
Many researchers [17, 22, 16, 15] have applied tools like LSI
and LDA to mining software repositories, in particular ana-
lyzing source code, bugs or developer comments.

Typically a topic analysis tool like LDA will try to find N

independent word distributions found within the word dis-
tributions of all the messages. Linear combinations of these
N word distributions are then meant to be able to recre-
ate the word distributions of all of the underlying messages.
These N word distributions effectively form topics: cross
cutting collections of words relevant to one or more doc-
uments. Our problem is that these topics are not easy to
interpret, as the underlying pattern is not clear. We feel that
automatic labelling or naming of these topics would be help-
ful with respect to interpreting the subject of a topic. LDA
extracts topics in an unsupervised manner; the algorithm
relies solely on the source data with no human intervention.

In topic analysis a single document, such as a commit mes-
sage, can be related to multiple topics. Representing docu-
ments as a mixture of topics maps well to source code repos-
itory commits, which often have more than one purpose [10].
A topic represents both a word distribution and a group of
commit log comments that are related to each other by their
content. In this paper a topic is a set of tokens extracted
from commit messages found within a project’s source con-
trol system (SCS).

One issue that arises with use of unsupervised techniques is
how to label the topics. While the topic models themselves
are generated automatically, what to make of them is less
clear. For example, in our previous work [10], as well as in
Baldi et al. [1], topics are named manually: human experts
read the highest-frequency members of a topic and assign a



keyword accordingly. E.g., for the word list “listener change
remove add fire”, Baldi et al. assign the keyword event-
handling. The labels are reasonable enough, but still require
an expert in the field to determine them. Our technique is
automated, because we match keywords from WordNet [8]
to words in the topic model.2.3 Supervised learning
While unsupervised techniques (LSI and LDA are both un-
supervised) are appealing in their lack of human interven-
tion, and thus lower effort, supervised learners have the
advantage of domain knowledge which typically means im-
proved results. In supervised learning, the data is divided
into slices. One slice is manually annotated by the domain
expert, and the classifications he/she determines are ap-
plied to the remaining slices. In this paper, we employ the
WEKA [9] and Mulan [24] machine learning frameworks in
order to test supervised learning.3. METHODOLOGY
To evaluate our approach, we sought candidate systems that
were mature projects and had openly accessible source con-
trol repositories. We also decided to select systems from
the same application domain, as we felt the functional re-
quirements would probably be broadly similar. We selected
MySQL and MaxDB as they were open-source, partially-
commercial database systems. MaxDB started in the late
1970s as a research project, and was later acquired by SAP.
As of version 7.500, released April 2007, the project has
940 thousand lines of C source code 1. The MySQL project
started in 1994 but MySQL 3.23 was released in early 2001.
MySQL contains 320 thousand lines of C and C++ source
code.3.1 Generating the data
For each project, we used source control commit comments,
the messages that programmers write when they commit
revisions to a source control repository. We leveraged the
data that we gathered in [10] for this work. An example
of a typical commit message is: “history annotate diffs bug
fixed (if mysql real connect() failed there were two pointers
to malloc’ed strings, with memory corruption on free(), of
course)”. We extracted these messages and indexed them by
creation time. We summarized each message as a word dis-
tribution but removed stop-words such as common English
words like the and at.

From that data-set, we created an XML file which sepa-
rated commits into monthly windows. This size of period
is smaller than the time between minor releases but large
enough for there to be sufficient commits to analyze. We
applied Blei’s LDA implementation [2] against the word dis-
tributions of these commits, and generated lists of topics per
period. We arbitrarily set the number of topics to generate
to 20, because past experimentation showed that fewer top-
ics might aggregate multiple unique topics while any more
topics seemed to dilute the results and create indistinct top-
ics. As well, more than 20 topics quickly became infeasible
for inspection and it was difficult to discern the difference in
topics.

1generated using David A. Wheeler’s SLOCCount.

3.2 Associating labels
Topics are word distributions: essentially lists of words ranked
by frequency, which can be burdensome to interpret and
hard to distinguish and understand. Once we had topics for
each period, we tried to associate them with a label from
a list of keywords and related terms. We performed simple
string matching between these topics and our lists, ‘naming’
a topic if it contained that word or words. We used several
different word lists for comparison.

Our first word list set, exp1, was generated using the ontol-
ogy described in Kayed et al. [13]. That paper constructs
an ontology for software quality measurement using eighty
source documents, including research papers and interna-
tional standards. The labels we used:

integrity, security, interoperability, testability, maintain-
ability, traceability, accuracy, modifiability, understand-
ability, availability, modularity, usability, correctness, per-
formance, verifiability, efficiency, portability, flexibility,
reliability.

Our second word list set, exp2, relied on the ISO quality
model (ISO9126) [11]. ISO9126 describes six high-level qual-
ity requirements (listed in Table 1). ISO9126 is “an inter-
national standard and thus provides an internationally ac-
cepted terminology for software quality [3, p. 58],” that is
sufficient for the purposes of this research. However, the
terms extracted from ISO9126 may not capture all words
associated with the labels. For example, the term “redun-
dancy” is one most would agree is relevant to discussion of
reliability, but is not in the standard. We therefore took the
words from the taxonomy and expanded them.

To construct these expanded word-lists, we used WordNet [8],
an English-language “lexical database” that contains seman-
tic relations between words, including meronymy and syn-
onymy. We then added Boehms 1976 software quality model
[4], and classified his eleven ilities into their respective ISO9126
qualities. We did the same for the quality model produced
by McCall et al. [18]. Finally, we analyzed two mailing
lists from the KDE project to enhance the specificity of the
sets. We selected KDE-Usability, which focuses on usabil-
ity discussions for KDE as a whole; and KDE-Konqueror,
a mailing list about a long-lived web browser project. For
each high-level quality in ISO9126, we first searched for our
existing labels; we then randomly sampled twenty-five mail
messages that were relevant to that quality, and selected co-
occurring terms relevant to that quality. For example, we
add the term “performance” to the synonyms for efficiency,
since this term occurs in most KDE mail messages that dis-
cuss efficiency.

For the third – exp3 – list of quality labels, we extended the
list from exp2 using unfiltered WordNet similarity matches.
Similarity in WordNet means siblings in a hypernym tree.
We do not include these words here for space considera-
tions (but see the Appendix for our data repository). It is
not clear the words associated with our labels are specific
enough, however: for example, the label maintainability is
associated with words ease and ownership.3.3 Supervised learning



Label Related terms

Maintainability testability changeability analyzability stability maintain main-
tainable modularity modifiability understandability + interde-
pendent dependency encapsulation decentralized modular

Functionality security compliance accuracy interoperability suitability func-
tional practicality functionality + compliant exploit certificate
secured buffer overflow policy malicious trustworthy vulnerable
vulnerability accurate secure vulnerability correctness accuracy

Portability conformance adaptability replaceability installability portable
movableness movability portability + specification migration
standardized l10n localization i18n internationalization docu-
mentation interoperability transferability

Efficiency resource behaviour time behaviour efficient efficiency + perfor-
mance profiled optimize sluggish factor penalty slower faster
slow fast optimization

Usability operability understandability learnability useable usable service-
able usefulness utility useableness usableness serviceableness ser-
viceability usability + gui accessibility menu configure conven-
tion standard feature focus ui mouse icons ugly dialog guide-
lines click default human convention friendly user screen inter-
face flexibility

Reliability fault tolerance recoverability maturity reliable dependable re-
sponsibleness responsibility reliableness reliability dependable-
ness dependability + resilience integrity stability stable crash
bug fails redundancy error failure

Table 1: Qualities and associated signifiers WordNet version (exp2)

In order to validate how effective these word-bag approaches
to topic labelling would be we had to make a data set to test
against. For MySQL 3.23 and MaxDB 7.500, we manually
annotated each extracted topic in each period with the same
quality labels as exp2 (software qualities). We looked at each
period’s topics, and assessed what the data – consisting of
the frequency-weighted word lists and messages – suggested
was the topic for that period. We were able to pinpoint the
appropriate label using auxiliary information as well, such as
the actual revisions and files that were related to this topic.
For example, for the MaxDB topic consisting of a message
“exit() only used in non NPTL LINUX Versions”, we tagged
that topic portability. We compared against this data-set,
but we also used it for our supervised learning based topic
classification.

We first compared our previous analysis using label match-
ing to our manual classifications to get an error rate for that
process described below in Section 4.2.

For supervised learning, we used a suite of supervised clas-
sifiers from WEKA [9]. WEKA contains a suite of machine
learning tools such as support vector machines and Bayes
nets. We also used the multi-labelling add-on for WEKA,
Mulan [24]2. Traditional classifiers map our topics to a sin-
gle class, whereas Mulan allows for a mixture of classes per
topic, which maps to what we observed while manually la-
belling topics.

To assess the performance of the supervised learners, we did
a 10-fold cross-validation. This is when a set is partitioned
into 10 partitions and then each partition is used once as a

2http://mlkd.csd.auth.gr/multilabel.html

test set and 9 other times as part of the training set of 9
partitions. We have reported these results below in Section
4.3.

Finally, using this data, we evaluated two research questions
(see Section 4.7):

1. Do label frequencies change over time? That is, is a
certain quality of more interest at one point in the
life-cycle than some other?

2. Do the different projects differ in their relative topic
interest? That is, is a particular quality more impor-
tant to one project than the other projects?4. OBSERVATIONS AND EVALUATION4.1 Word list similarity

In general, this approach did not work out well as common
labels dominated the less common labels. The related words
for correctness, for example, tended to be too lengthy and
non-specific. Table 2 lists results. A named topic is a topic
with a matching label. There are {periods X 20} topics per
project as we told LDA to extract 20 topics per period. All
experiments were run on MaxDB 7.500 and MySQL 3.23
data.

For exp1, our best performing labels (the labels matched
with the most topics) were correctness (182 topics) and
testability (121). We did not get good results for usability or
accuracy, which were associated with fewer than ten topics.
We also looked for correlation between our labels: Excluding
double matches (self-correlation), our highest co-occurring

http://mlkd.csd.auth.gr/multilabel.html


Measure exp1 exp2 exp3

Topics 500 500 500
Named topics 281 125 328

Unnamed topics 139 295 92

Table 2: Automatic topic labelling for MaxDB 7.500

terms were verifiability and traceability, and testability and
correctness (76 and 62 matches, respectively).

For exp2, there are many more unnamed topics. Only re-
liability produces a lot of matches, mostly with the word
‘error’. Co-occurrence results were poor.

For exp3, we had many more named topics. As we men-
tioned, the word-lists are quite broad, so there are likely to
be false-positives. See the following sections for our error
analysis. We found a high of 265 topics for usability, with a
low of 44 topics for maintainability. Common co-occurrences
were reliability and usability, efficiency and reliability, and
efficiency and usability (200, 190, and 150 topics in common,
respectively).4.2 Analysis of the unsupervised labelling
Based on the labels, and our manual topic labelling, we
compared the results of the unsupervised word matching
approach. For each quality we tried to assess whether the
manual tag matched the unsupervised label assigned. Table
3 shows our results for MaxDB and MySQL. In general re-
sults are poor. Using the F-Measure, the weighted average
of precision and recall, where 1 is perfect, our best results
are 0.6, a few at 0.4, and most around 0.2. We achieved sim-
ilar results using the Matthew’s correlation coefficient (used
to measure efficacy where classes are of different sizes) and
ROC.

Based on these results we find that reliability and usability
worked well for MaxDB in exp2 and better in exp3. MySQL
had reasonable results within exp2 for reliability and effi-
ciency. MySQL’s results for efficiency did not improve in
exp3 but other qualities such as functionality did improve.
If a C grade performance has a ROC value of 0.6 then most
of these tests scored a grade of C or less, but our results
were still better than random chance.4.3 Analysis of the supervised labelling
We took our annotated data-set and applied supervised learn-
ers to it. Because our data-set was of word counts we ex-
pected Bayesian techniques, often used in spam filtering, to
perform well. We also tried other learners that WEKA [9]
provides: rule learners, tree learners, vector space learners,
and support vector machines. Table 4 shows the perfor-
mance of the best performing learner per label. We consid-
ered the best learner for a label to be the one which had the
highest ROC value for that label. Table 4 uses the ZeroR
learner as a baseline, since it naively chooses the largest cat-
egory all of the time. The ZeroR difference is often negative.
For labels which are not as common, this can be expected
because any miscategorization will hurt accuracy. This is
why the F1 (F-measure) and the ROC values are useful, as
they can better present performance on labels which are not

applicable to the majority of samples.

Table 4 shows that MaxDB and MySQL have quite different
results, as the ROC values for reliability and functionality
seem swapped between projects. It should be noted that for
both projects Bayesian techniques did the best out of a wide
variety of machine learners tested. Discriminative Multino-
mial Naive Bayes (DMNBtext), Naive Bayes (NaiveBayes)
and Multinomial Naive Bayes (NaiveBayesMultinomal) are
all based on Bayes’s theorem and all assume, naively, that
the features are independent. The features we used are word
counts per message. One beneficial aspect of this result is
that it suggests we can have very fast training and classi-
fying since Naive Bayes can be calculated in O(N) for N

features.

The smaller the label the harder it is to get accurate results.
Nevertheless, these results are better than our previous word
bag results of exp2 and exp3, because the ROC values are
sufficiently higher in most cases (other than MaxDB relia-
bility and MySQL efficiency).

The limitation of the approach we took here is that we as-
sume labels are independent; however, labels could be cor-
related with each other. We also did not evaluate how well
the learners performed together.4.4 Applying multiple labels to topics
We applied the Mulan [24] library for Multi-Label learning
to our data-set because intuitively, topics can have more
than one label, much like how a particular source code revi-
sion can have more than one topic. Multi-label learning is
more than just classifying entities with more than one label.
It also includes methods for determining the performance of
such techniques. The problem framed in the learners above
has changed; instead of looking at the precision and recall
of applying one label, we rank multiple labels at once. We
must check if the full subset of labels was applied, and then
how much of that subset was applied.

Another aspect of multi-label learning are micro versus macro
measurements. Macro measurements are aggregated at a
class or label level. Micro measurements are aggregated at a
decision level. So a macro-ROC measurement is the average
ROC over the ROC values for all labels, where a micro-ROC
is the average ROC over all examples that were classified.
Unfortunately for MaxDB, the macro-ROC values are un-
defined because of poor performance of one of the labels.

We have presented the results of Mulan’s multi-label learn-
ers in Table 5. Binary Relevance (BR), Calibrated La-
bel Ranking (CLR) and Hierarchy Of Multi-label classi-
fiERs (HOMER), performed the best. HOMER and BR
act as a hierarchy of learners: BR is flat, while HOMER
tries to build a deeper hierarchy to build a more accurate
learner [24]. These classifiers performed better than other
multi-label classifiers. They have the best micro and macro
ROC scores, although their results seem comparable to the
naive Bayesian learners we used in Section 4.3.4.5 Summary of techniques
Very rarely did exp2 and exp3 (naive word matching) ever
perform as well as the machine learners. For MaxDB, relia-



Experiment Label F1 MCC Precision Recall ROC

MaxDB exp2 portability 0.228 0.182 0.520 0.146 0.553
efficiency 0.217 0.125 0.237 0.200 0.558
reliability 0.380 0.340 0.246 0.829 0.765

functionality 0.095 0.083 0.250 0.059 0.521
maintainability 0.092 0.123 0.571 0.050 0.520

usability 0.175 0.138 0.113 0.389 0.620
total 0.236 0.127 0.248 0.225 0.561

MySQL exp2 portability 0.138 0.211 1.000 0.074 0.537
efficiency 0.345 0.327 0.476 0.270 0.625
reliability 0.425 0.287 0.348 0.545 0.669

functionality 0.025 0.006 0.571 0.013 0.501
maintainability 0.000 0.000 0.000 0.000 0.500

usability 0.175 0.135 0.200 0.156 0.560
total 0.167 0.095 0.403 0.105 0.527

MaxDB exp3 portability 0.472 0.286 0.402 0.573 0.660
efficiency 0.223 0.068 0.130 0.778 0.549
reliability 0.257 0.196 0.149 0.927 0.652

functionality 0.236 0.187 0.138 0.824 0.665
maintainability 0.338 0.112 0.266 0.463 0.566

usability 0.108 0.094 0.057 0.944 0.595
total 0.258 0.093 0.160 0.671 0.568

MySQL exp3 portability 0.413 0.170 0.564 0.325 0.574
efficiency 0.158 0.105 0.089 0.703 0.608
reliability 0.388 0.240 0.260 0.758 0.660

functionality 0.652 0.240 0.655 0.649 0.620
maintainability 0.203 0.007 0.240 0.175 0.503

usability 0.105 0.013 0.057 0.688 0.513
total 0.362 0.076 0.284 0.499 0.544

Table 3: Results for automatic topic labelling. F1 = f-measure, MCC = Matthew’s correlation coeff., ROC
= Area under ROC curve

Label Project Learner ROC ZeroR Acc. ZeroR. Diff F1

portability MySQL NaiveBayesMultinomial 0.74 58.53 11.43 0.62
efficiency MySQL NaiveBayes 0.67 93.69 -7.68 0.23
reliability MySQL NaiveBayes 0.73 83.11 -12.80 0.41

functionality MySQL DMNBtext 0.81 54.44 21.67 0.77
maintainability MySQL DMNBtext 0.78 76.62 3.41 0.32

usability MySQL NaiveBayes 0.75 94.54 -5.80 0.21
portability MaxDB NaiveBayes 0.84 77.12 2.06 0.61
efficiency MaxDB NaiveBayes 0.62 88.43 -11.31 0.25
reliability MaxDB DMNBtext 0.84 89.46 3.86 0.57

functionality MaxDB NaiveBayes 0.67 91.26 -6.94 0.31
maintainability MaxDB NaiveBayes 0.70 79.43 -9.25 0.42

usability MaxDB NaiveBayes 0.56 95.37 -4.37 0.00

Table 4: Per label, per project, the best learner for that label. ROC value rates learner performance,
compared with the ZeroR learner ( a learner which just chooses the largest category all of the time). F1 is
the F-measure for that particular learner.



MySQL MySQL MySQL MaxDB MaxDB MaxDB
Performance Metric BR CLR HOMER BR CLR HOMER

example Subset Accuracy 0.19 0.24 0.31 0.40 0.43 0.45
label macro-ROC 0.74 0.66 0.64 NaN NaN NaN
label macro-F1 0.46 0.30 0.43 0.32 0.19 0.23
label macro-Precision 0.41 0.41 0.49 0.29 0.31 0.32
label macro-Recall 0.56 0.26 0.40 0.38 0.15 0.20
label micro-ROC 0.81 0.81 0.77 0.76 0.66 0.62
label micro-F1 0.59 0.53 0.61 0.39 0.27 0.34
label micro-Precision 0.51 0.69 0.66 0.34 0.42 0.49
label micro-Recall 0.68 0.43 0.56 0.47 0.21 0.26
rank Avg. Precision 0.76 0.77 0.69 0.54 0.57 0.54
rank Coverage 1.51 1.47 1.94 1.40 1.23 1.43
rank One-error 0.40 0.39 0.47 0.81 0.79 0.81
rank Ranking Loss 0.19 0.18 0.27 0.41 0.35 0.41

Table 5: MySQL and MaxDB Mulan results per Multi-Label learner

bility was slightly better detected using the static word list
of exp2. In general, the machine learners and exp3 did better
than exp2 for both MaxDB and MySQL. For both MySQL
and MaxDB usability was better served by exp2. Usability
was a very infrequent label, however.

We found that the multi-label learners of BR, CLR and
HOMER did not do as well for Macro-ROC and Micro-F1
as NaiveBayes and other NaiveBayes derived learners did.
This suggests that by sticking together multiple NaiveBayes
learners we could probably label sets of topics effectively, but
it would require a separate NaiveBayes learner per label.4.6 Visualization
We have created two visualizations of the manually labelled
data. A problem we faced while visualizing was how to dis-
play tag overlaps. Our solution, while not optimal, was
to assign a separate colour to each distinct set of annota-
tions. Figures 1 and 2 show extracted topics grouped by
annotations. Annotations or labels that occur in adjacent
windows are joined together as trends. For MaxDB (Fig-
ure 1) the largest trends were related to maintainability
and portability. MaxDB supports numerous platforms and
portability was a constant issue facing the project’s develop-
ment. MySQL was different, with many topics overlapping,
so there were many different subsets. Functionality trends
were prevalent throughout its history (the largest reddish
streak across the top). Two combination tags of “function-
ality portability” (orange) and “maintainability portability”
(teal) streaked across most of the history of MySQL. Since
this was MySQL 3.23, a stable branch, we expect that issues
dealing with portability and maintenance would be the pri-
mary concerns of this branch: developers probably wanted
it to work with current systems and thus had to update it.4.7 Comparing MaxDB and MySQL
We observed that MySQL had more topic subsets than MaxDB.
MySQL 3.23 also had more topics and a longer recorded
history than MaxDB 7.500. We tagged more MySQL top-
ics with annotations than MaxDB topics yet both shared
similarities. In terms of non-functional requirements both
projects had long running trends that focused on function-
ality, maintainability, and portability, yet MaxDB had more

of a focus on efficiency and reliability. MaxDB differed from
MySQL since MaxDB was being actively developed, whereas
halfway through our history of MySQL 3.23, other versions
of MySQL were being actively developed: MySQL versions
4.0, 4.1, and eventually 5.0 and 5.1. In other words, MySQL
3.23 was being maintained rather than actively developed,
whereas MaxDB 7.500 was being actively developed into
MaxDB 7.6, and then maintained thereafter.

MySQL and MaxDB’s machine learners did make decisions
based off some shared words. Words that were used to clas-
sify topics that were shared between MySQL and MaxDB
included: bug, code, compiler, database, HP UX, delete, mem-

ory, missing, problems, removed, add, added, changed, prob-

lem, and test. Adding these words to the word bags of exp2

and exp3 could improve performance while ensuring they
were only domain specific.

With respect to the questions raised in section 3.3:

Do label frequencies change over time? – Yes, MySQL’s
label frequencies decreased as it got older. Usability and
reliability labels became more and more infrequent as it
matured. Maintainability topics became more prevalent as
MaxDB matured.

Do the different projects differ in their relative topic
interest? – Yes. MySQL 3.23 had proportionally more
functionality labelled topics, while MaxDB had proportion-
ally more efficiency and portability related topics.4.8 Annotation observations
We found many topics that were not non-functional require-
ments (NFRs) but were often related to them. For instance,
concurrency was mentioned often in the commit logs and was
related to correctness and reliability, because concurrency
was troublesome. Configuration management and source
control related changes appeared often and sometimes there
were topics dedicated to configuration management. These
kinds of changes are slightly related to maintainability. A
non-functional change that was not quality-related was li-
censing and copyright; many changes were simply to do with
updating copyrights or ensuring copyright or license headers



Figure 1: MaxDB 7.500: Labelled topics related to non-functional software qualities plotted over time,
continuous topics are trends that occur across time

Figure 2: MySQL 3.23: Labelled topics related to non-functional software qualities plotted over time, con-
tinuous topics are trends that occur across time



were applied to files.

We noticed that occasionally the names of modules would
conflict with words related to other non-functional require-
ments. For instance, optimizers are very common modules
in database systems: both MySQL and MaxDB have opti-
mizer modules. In MySQL the optimizer is mentioned but
often the change deals with correctness or another quality.
Despite this difference, the name of the module could fool
our learners into believing the change was always about ef-
ficiency. Perhaps a project specific word-bag is needed in
order to avoid automated mistakes due to the names of en-
tities and modules of a software project.4.9 Effectiveness
With ROC values ranging from 0.6 to 0.8 we can see there is
promise in these attempts. exp2 and exp3 both indicate that
static information can be used to help label topics without
any training whatsoever. If the techniques used in exp2 and
exp3 were combined with the supervised techniques we could
probably reduce the training effort. Both Naive Bayesian
learners and the word-list approaches were computationally
efficient. These results are promising, because the results
are accurate enough to be useful, while still cheap enough
to execute to be feasible as an automated or semi-automated
method of labelling topics by their software qualities.4.10 Threats to validity
Our study suffers from multiple threats to validity. Con-
struct validity issues include that we used only commit mes-
sages rather than mail or bug tracker messages. We also
chose our taxonomy and the data to study. Internal validity
issues are to do with inter-rater reliability. External valid-
ity issues are that our data originated from OSS database
projects and thus might not be applicable to commercially
developed software. Furthermore, our analysis techniques
rely on a project’s use of meaningful commit messages.5. RELATEDWORK
The idea of extracting higher-level ‘concerns’ (also known as
‘concepts’, ‘aspects’ or ‘requirements’) has been approached
in two ways.

Cleland-Huang and her colleagues published work on min-
ing requirements documents for non-functional requirements
(NFR) (quality requirements) [6]. One approach they tried
was similar to this one, with keywords mined from NFR
catalogues found in their previous work [5]. They managed
recall of 80% with precision of 57% for the Security NFR,
but could not find a reliable source of keywords for other
NFRs. Instead, they developed a supervised classifier by
using human experts to identify an NFR training set. There
are several reasons we did not follow this route. One, we be-
lieve we have a more comprehensive set of terms due to the
taxonomy we chose. Secondly, we wanted to compare across
projects. Their technique was not compared across different
projects and the applicability of the training set to differ-
ent corpora is unclear. A common taxonomy allows us to
make inter-project comparison (subject to the assumption
that all projects conceive of these terms in the same way).
Thirdly, while the objective of Cleland-Huang’s study was
to identify new NFRs (for system development) our study

assumes these NFRs are latent in the textual documents of
the project. Finally, the source text we use is less structured
than their requirements documents.

In the same vein, Mockus and Votta [21] studied a large-
scale industrial change-tracking system. They also leveraged
WordNet, but only for word roots. They felt the synonyms
would be non-specific and cause errors. A nice contribu-
tion was access to system developers, with whom they could
validate their labels. Since we try to bridge different orga-
nizations, these interviews are infeasible (particularly in the
distributed world of open-source software).

The other approach is to start with code repositories, and try
to extract concerns from there. Marcus et al. [17] describe
their use of Latent Semantic Indexing to identify commonly
occurring concerns for software maintenance. Some results
were interesting, but their precision was quite low. Concern-
Lines [23] shows tag occurrence using colour intensity. They
mined change request tags (such as ‘milestone 3’) and used
these to make evolutionary analyses of a single product. The
presence of a well-maintained set of tags is obviously essen-
tial to the success of this technique.

Mens et al. [20] conducted an empirical study of Eclipse,
the open source software (OSS) source code editor, to verify
the claims of Lehman [14]. They concerned themselves with
source code only, and found Law Seven, “Declining Quality”,
to be too difficult to assess: “[we lacked an] appropriate mea-
surement of the evolving quality of the system as perceived
by the users [20, p. 388]”. This paper examines the notions
of quality in terms of a consistent ontology, as Mens et al.
call for in their conclusions.

Mei et al. [19] use context information to automatically name
topics. They describe probabilistic labelling, using the fre-
quency distribution of words in a topic to create a mean-
ingful phrase. They do not use external domain-specific in-
formation as we do. In [7], we describe our earlier project,
similar to this, to identify change in quality requirements
in GNOME software projects; our approach is solely text-
matching, however, it does not leverage machine learning
strategies.6. CONCLUSIONS AND FUTUREWORK
We demonstrated that static but domain-specific knowledge
can improve unsupervised labelling of extracted topics. Our
exp2 experiment used small accurate word bags to label top-
ics but performed just as well as exp3, which used many
more general terms from WordNet. We then showed that
with some supervision, and by using efficient machine learn-
ers based on Naive Bayesian classifiers, we could improve
the accuracy of automatic labelling topics even further.

Our manual inspection and annotation of the topics ex-
tracted from MySQL and MaxDB revealed that many of
the extracted topics dealt with non-functional requirements,
and these topics were spread across the entire history of a
project. In the cases of MaxDB and MySQL, portability was
a constant maintenance concern and was prevalent through-
out the entire lifetime of the projects.

We showed that non-functional requirements are often trend-



ing topics, that non-functional requirements are quite com-
mon in developer topics, and that there are efficient methods
of semi-automating and automating topic labelling.

There are many avenues of further investigation. We want to
investigate developer attitudes related to these labels: i.e.,
when we label a topic, was the developer expressing posi-
tive or negative qualities about that label? It is difficult to
map abstract qualities to particular messages. Is a “quality”
discussion about more than just corrective maintenance?7. APPENDIX
Our data and scripts are available at http://softwareprocess.
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