Evidence-based Software Process
Recovery

by

Abram Hindle

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2010

(© Abram Hindle 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Developing a large software system involves many complicated, varied, and inter-
dependent tasks, and these tasks are typically implemented using a combination of defined
processes, semi-automated tools, and ad hoc practices. Stakeholders in the development
process — including software developers, managers, and customers — often want to be able
to track the actual practices being employed within a project. For example, a customer
may wish to be sure that the process is ISO 9000 compliant, a manager may wish to track
the amount of testing that has been done in the current iteration, and a developer may
wish to determine who has recently been working on a subsystem that has had several
major bugs appear in it.

However, extracting the software development processes from an existing project is ex-
pensive if one must rely upon manual inspection of artifacts and interviews of developers
and their managers. Previously, researchers have suggested the live observation and in-
strumentation of a project to allow for more measurement, but this is costly, invasive, and
also requires a live running project.

In this work, we propose an approach that we call software process recovery that is
based on after-the-fact analysis of various kinds of software development artifacts. We use
a variety of supervised and unsupervised techniques from machine learning, topic analysis,
natural language processing, and statistics on software repositories such as version control
systems, bug trackers, and mailing list archives. We show how we can combine all of these
methods to recover process signals that we map back to software development processes
such as the Unified Process. The Unified Process has been visualized using a time-line
view that shows effort per parallel discipline occurring across time. This visualization
is called the Unified Process diagram. We use this diagram as inspiration to produce
Recovered Unified Process Views (RUPV) that are a concrete version of this theoretical
Unified Process diagram. We then validate these methods using case studies of multiple
open source software systems.

1ii

Acknowledgements

I would like to recognize my coauthors on much of this work:

e Michael W. Godfrey (PhD Supervisor)
e Richard C. Holt (PhD Supervisor)
e Daniel German (Masters Supervisor)

e Neil Ernst (Fellow PhD Student and collaborator)
I would also like to acknowledge those who awarded me with scholarships:

e NSERC, as I was funded by a NSERC PGS-D Scholarship

e David Cheriton and the David Cheriton School of Computer Science for the David
Cheriton scholarship I received.

I would like to thank all the people who helped motivate this work:

e Lixin Luo
e Ron and Faye Hindle
e Michael W. Godfrey and Richard C. Holt

v

Dedication

This is dedicated to my loving wife Lixin and to principles of Free Software as prescribed
by the Free Software Foundation.

Contents

List of Tables xii
List of Figures Xv
1 Introduction 1
1.1 Relationship to Mining Software Repositories. 2
1.2 Application of Software Process Recovery 3
1.2.1 Stakeholders 4

1.3 Conceptual View of Software Process Recovery 6
1.4 Summary 9

2 Related Research 11

2.1 Stochastic Processes, Business Processes and Software Development Processes 11

2.2

2.1.1 Stochastic Processes 0. 12
2.1.2 Business Processes Lo oL 12
2.1.3 Software Development Processes 13
2.1.4 Process SUmmary 15
Data Analysis 15
2.2.1 Statistics. 15
2.2.2 Time-series analysis Lo 16
2.2.3 Machine Learning and Sequence Mining 18
2.2.4 Natural Language Processing 20

vi

2.2.5 Social Network Analysis 23

2.2.6 Data Analysis Summary 23
2.3 Mining Software Repositories L. 23
2.3.1 Fact extractiono 24
2.3.2 Prediction 24
2.3.3 Metricso 25
2.3.4 Querying Repositories L 27
2.3.5 Statistics and Time-series analysis 28
2.3.6 Visualization 28
2.3.7 Social Aspects 31
2.3.8 Concept Location and Topic Analysis 31
2.3.9 MSR Summary 32
2.4 Software Process Recovery 32
2.4.1 Process Mining: Business Processes 32
2.4.2 Process Discoveryo 33
2.4.3 Process Recovery 33
2.4.4 Software Process Recovery Summary 34
2.5 SUummary . o.o.o. .o 34
Software Process Recovery: A Roadmap 36
3.1 Software Artifact Perspective L. 40
3.1.1 Source Control Systems 40
3.1.2 Mailing list and Bug Trackers 41
3.2 Process Perspective Lo 41
3.2.1 Evidence of Software Development Processes 42
3.2.2 Concurrent Effort o o 43
3.2.3 Process and Behaviouro 43
3.3 Software Development Perspective 43
3.3.1 Requirements and Design 44
3.3.2 Implementation, Testing, and Maintenance 44
3.3.3 Deployment, Project Management, and Quality Assurance 45
3.4 Summary ... o. .. 46

vii

4 FEvidence of Process 47

4.1 Release Patterns 48
4.1.1 Background 49

4.1.2 Terminology 50

4.2 Methodology 51
4.2.1 Extraction 52
4.2.2 Partitioning Lo 53
4.2.3 Aggregates. 53
424 Analysiso 54
4.2.5 STBD Notation 55

4.3 Case Study 55
4.3.1 Questions and Predictions 56
4.3.2 Tools and Data-sets L. 56

4.4 Results 58
4.4.1 Indicators of Process L. 61
4.4.2 Linear Regression Perspective 61
4.4.3 Release Perspective oL 62
4.4.4 Interval Length Perspective 62
4.4.5 Project Perspective oL 63
4.4.6 Revision Class Perspective 64
4.4.7 Zipf Alpha Measure 65
4.4.8 Answers to Our Questions 65
4.49 Validity Threats. oo 67

4.5 Possible Extension Lo 68
4.6 Conclusions L 69
5 Learning the Reasons behind Changes 70
5.1 What About Large Commits? 71
5.1.1 Previous Worko 71

5.2 Methodology 72
5.3 Results. 7
5.3.1 Themes of the Large Commits 7
5.3.2 Quantitative Analysis. 79
5.4 Analysis and Discussion 88
5.4.1 Threats to Validity 0. 90
5.5 Conclusions L 90
Classifying Changes by Rationale 92
6.1 On the Classification of Large Commits 93
6.2 Previous Work 94
6.3 Methodology 95
6.3.1 Projects 95
6.3.2 Creating the trainingset L. 95
6.3.3 Features used for classification 95
6.3.4 Machine Learning Algorithms 96
6.4 Results. 97
6.4.1 Learning from Decision Trees and Rules 98
6.4.2 Authors 101
6.4.3 Accuracy 101
6.4.4 Discussion 105
6.5 Validity Threats 106
6.6 Possible Extension Lo 107
6.7 Conclusions 107
Recovering Developer Topics 108
7.1 Latent Dirichlet Allocation and Developer Topics 109
7.1.1 Topics of Development 109
7.1.2 Backgroundo 111
7.1.3 Preliminary Case Study 113

X

7.1.4 Methodology 114

715 Results. o 119
7.1.6 Validity Threats L 123
7.1.7 Conclusions 124

7.2 Labelling Developer Topics, 125
7.2.1 What’sina Name? oL 125
7.2.2 Backgroundo 127
7.2.3 Methodology 129
7.2.4 Observations and evaluation 133
7.2.5 Related worko 140

7.2.6 Conclusions and future work 141
72.7 Appendix 141

8 Synthesizing Recovered Unified Process Views 146
8.1 Investigating Development Processes, 147
8.1.1 Motivation 149

8.2 Previouswork 149
8.3 Methodology 151
8.3.1 Source Acquisition 152
8.3.2 Extraction 153
8.3.3 Unsupervised Analysis L. 155
8.3.4 Annotation 156
8.3.5 Supervised analysiso 157
8.3.6 Signal Mapping and Reporting 158

8.4 Signals 158
8.4.1 Signal Visualization 158
8.4.2 Signal Similarity oo 159

8.5 Recovered Unified Process Views, 159
8.5.1 Mapping signals back to the Unified Process 160

8.6 FreeBSD Case Study 163

8.7 SQLite Case Study 164
8.8 Discussion L 166
8.8.1 Threats to validity 167

8.9 Conclusions 167
8.9.1 Possible Extension o000 168

9 Conclusions 169
9.1 Threats to validity 171
9.1.1 Evidence and Observability 171

9.1.2 Detail of Fine Grained Artifacts 172

9.1.3 Validating with Case Studies 172

9.1.4 Cost of Machine Learning 172

9.1.5 Summary 172

9.2 Future Work 173
0.3 Summary 173
References 175

el

List of Tables

1.1
1.2

4.1

4.2
4.3

4.4

4.5

4.6

4.7

4.8

Definitions used throughout the rest of the thesis

Stakeholders who could benefit from Software Process Recovery

Total number of releases per project (Note MaxDB and MySQL fork their
repositories so each repository contains most of the releases)

Total Number of Revisions per class per project

Summary of the four major project’s revision frequencies before and after a
release with majority voting across the branches, where ?D is when no major-
ity is found, ¥ means revisions are more frequent before, A means revisions
are more frequent after. S - source, T - test, B - build, D - documentation

A STBD notation summary table of project revision frequencies across re-
lease types, and interval lengths. ¥ means revisions are more frequent before
a release, A means revisions are more frequent after a release. [] means re-
visions were equally frequent before and after a release. S - source, T - test,
B - build, D - documentation

Summary of Table 4.4 using majority voting where r?D means no majority.
V¥ means revisions are more frequent before a release, A means revisions
are more frequent after a release. [] means revisions were equally frequent
before and after a release. S - source, T - test, B - build, D - documentation

Linear Regressions of daily revisions class totals (42 day interval): ¥ indi-
cates a positive slope, A indicates a negative slope, [indicates a slope of

Comparison of average of total number of revisions before and after a release.
Vv indicates more revisions before a release, A indicates more revisions after
arelease.

The Zipf a parameters for each class of revision.

xii

o1
52

o6

57

o8

99

5.1
2.2

2.3

0.4

2.5

2.6
5.7

2.8

2.9

6.1
6.2
6.3

7.1

7.2

Software projects used in this study. 72

Our categorization of maintenance tasks; it extends Swanson’s categoriza-
tion [149] to include feature addition and non-functional changes as separate
categories. We refer to this as the Extended Swanson Categories of Changes. 73

Types of Commits used to annotate commits. These types attempt to
capture the focus of the commit rather than every detail about it; for in-
stance Token Replacement that affected 1 build file and 10 source files will
not be labelled Build. A commit could be labelled with one or more types.
Their abbreviation is used in the figures in this chapter. 74

An attempt at classifying types of changes according to the Extended Swan-
son Categories of Change. Some of the types of change do not fit only one
category; for example, a documentation change might be adaptive or per-

fective. See Table 5.3 for a legend of types. 75
Categories of Large Commits. They reflect better the types of large commits
we observed than those by Swanson. 76

Classification of the types of commits using the Categories of Large Commits 77

Distribution of commits belonging to each Type of Change over all projects

(1 commit might have multiple types). 83
Proportion of changes belonging to each Extended Swanson Maintenance

Category for all projects (1 commit might belong to multiple ones). 88
The percent of commits belonging to each Large Maintenance Category over

all projects (1 commit might belong to multiple categories). 88
Best Learner Per Project for Word Distributions 102
Best Learner Per Project for Authors and Modules 103

Best Average Learner for each data-set. As expected, the more information,
the better. However, the Frequency of Words and the Authors appear to be
the most significant contributors. 000 104

Sampled topics from MySQL 3.23, some with continuous topics. These
tokens were pulled from the top 10 most common words found in LDA
extracted topics. Each token is a summary of one LDA generated topic

from MySQL 3.23 commit comments. 114
NFRs and associated word-list words used in exp2. These words were used
to label a topic with a related NFR 132

xiil

7.3

74

7.5

7.6

8.1

Automatic topic labelling for MaxDB 7.500. This table shows how many
topics from MaxDB 7.500 were named by the word-list topic-labeller and
how many were not for experiments expl, exp2, and exp3.

Results for automatic topic labelling. F1 = f-measure, MCC = Matthew’s
correlation coeff., ROC = Area under ROC curve

Per label, per project, the best learner for that label. ROC value rates
learner performance, compared with the ZeroR learner (a learner which
just chooses the largest category all of the time). F1 is the F-measure for
that particular learner.

MySQL and MaxDB Mulan results per Multi-Label learner

Symbol table for describing the composition of RUPV signals in Section
8.5.1. Each symbol represents a signal that is made available by previous
analysis, these signals can be thought of as time-series. In Section 8.5.1
we combine these signals as linear combinations in order to proxy effort
associated with UP related disciplines. The subscripts symbols are meant
to specify which artifacts these signals are derived from.

Xiv

List of Figures

1.1

2.1

2.2

2.3
24
2.5

2.6

The relationship between developers and software development processes
and the evidence that we rely on to recover software development processes.
Developers exhibit behaviour as they attempt to complete tasks for a vari-
ety of purposes. These behaviours, tasks and purposes form the underlying
software development process. Evidence is a side effect of the developer’s
behaviour. Using this evidence we attempt to infer the purpose and pro-
cesses of software development. Thus software process recovery attempts to
recover the actual development by inferring behaviour, purpose, and process
from evidence.

Unified Process diagram: this is often used to explain the division of labour
within the Unified Process [86]. This diagram is also referred to as the UP
“Hump diagram” [63].

A project’s change history split into four streams: source changes, test code
changes, build system changes, documentation changes.

17

Proportion of large commits per project per Swanson Maintenance Category 19

A manual example of topic analysis applied to MySQL 3.23 revisions. [80] .

Automatic topic analysis applied to MaxDB 7.500. This compact-trend-view
shows topics per month for MaxDB 7.500. The x-axis is time in months,
the y-axis is used to stack topics occurring at the same time. Trends that
are continuous are plotted as continuous blocks. Trends with more than one
topic are coloured the same unique colour, while topics that do not recur are
coloured grey. The top 10 words in the topics are joined and embedded in
box representing the topics. No stop words were removed. [80] See Section

T LD, o

How indentation metrics are extracted and measured.

XV

21

22

2.7 YARN Ball: PostgreSQL module coupling animation, the thickness of the
arc and direction indicates how many times one module calls another. Mod-
ules are the boxes along the edge of the circle [82].

3.1 An illustration of the reality of development versus what we can infer from
evidence left behind. Developers exhibit behaviour as they attempt to meet
goals that compose the software development processes they follow. Evi-
dence is a side effect of the developer’s behaviour. Using this evidence we
infer the behaviours that the developer followed as well as the purpose be-
hind this behaviour. By combining both recovered purpose and behaviour
we can infer the recovered process. Thus software process recovery attempts
to recover the actual development by inferring behaviour, purpose, and pro-
cess from evidence.

5.1 Distribution of Types of Changes by project. Each bar corresponds to 100%
of commits of that type and it is divided proportionally according to their
frequency in each of the projects. L.

5.2 Distribution of Types of Change of the aggregated sum of all projects.

5.3 Distribution of changes per project, organized using Extended Swanson
Maintenance Categories.

5.4 Distribution of changes for all projects, organized using Extended Swanson
Maintenance Categories

5.5 Distribution of commits per project, classified according to the Categories
of Large Commits.

5.6 Distribution of commits for all projects, classified according to the Cate-
gories of Large Commits. L.

6.1 Text Cloud of tokens used by the J48 learner to classify commits. The
size of the text indicates how many instances of the word occurred in trees
produced for the union of all the projects’ commits.

6.2 Text Clouds of Tokens used in J48 trees for each project

7.1 Example of topics extracted from MySQL 3.23. The horizontal axis is time
by month examined. The vertical axis is used to stack topics that occur at
the same time. Longer topics are topics which recur in adjacent windows.
Colours are arbitrary.

Xvi

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.1

8.2

How commits are analyzed and aggregated into topics and trends: commits
are first extracted, then abstracted into word counts or word distributions
which are then given to a topic analysis tool like LDA. LDA finds indepen-
dent word distributions (topics) that these documents are related to (the
numbers indicate similarity between documents and topics).

Topic similarity demonstrated by clustering topics by the transitive closure
(connectedness) of topic similarity. Nodes are topics and arcs imply some
notion of similarity, e.g., topics share 8 out of top 10 words.

A zoomed-in slice of compact-trend-view of topics per month of MaxDB
7.500. The topic text is visible in each topic box. Trends are plotted across
time continuously. L

Trend-time-line: Trends plotted per month of MaxDB 7.500. Time in
months are plotted along the X-axis, each row on the Y-axis is associated
with a trend ranked by size in descending order.

The top part of a trend-histogram of MaxDB 7.500, ordered by topic oc-
currence. X-axis determines the number of continuous months of a trend.
Trends are ranked by the number of topics that a trend contains in descend-
ingorder. L

This figure depicts MaxDB 7.500 topics analyzed with global topic analy-
sis, 20 topics (each row) and their document counts plotted over the entire
development history of MaxDB 7.500 (26 months). The shade of the topic
indicates the number of documents matching that topic in that month rel-
ative to the number of documents (white is most, black is least).

MaxDB 7.500: Labelled topics related to non-functional software qualities
plotted over time, continuous topics are trends that occur across time . . .

MySQL 3.23: Labelled topics related to non-functional software qualities
plotted over time, continuous topics are trends that occur across time . . .

Methodology flow chart, describes how artifacts are extracted, analyzed,
annotated and reported about.

Recovered Unified Process Views: These are the Recovered Unified Process
Signals of FreeBSD (on the left) and SQLite (on the right): business mod-
elling, requirements, analysis and design, implementation, testing, deploy-
ment, configuration management, project management, environment and
build revisions.

XVvil

Chapter 1

Introduction

Software process recovery is the extraction and recovery of software development processes
from the software development artifacts that developers create and leave behind. These
artifacts are found in software repositories such as source control, mailing lists, user docu-
mentation, developer document and bug trackers. Some of these artifacts include: changes
to source code, source code, bugs, bug reports, bug discussions, mailing list discussions,
patches, user documentation, design documentation, requirements, developer documenta-
tion. These artifacts act as evidence that software process recovery analyzes in order to
infer to the behaviours, the purposes, the goals, and the underlying software development
process of a project.

In this thesis, we describe the area of software process recovery by describing methods
and tools one can use to recover software development processes from existing software
development projects. We combine many of these techniques and use them to extract
software development process related events and artifacts. These events are aggregated
in order to create Unified Process diagram like visualizations (sometimes called the RUP
hump diagram [63]), such as our Recovered Unified Process Views which is described in
detail in 8. In essence we use a variety of techniques to analyze the repositories of existing
software systems and then present views of the underlying processes and behaviours that
occur within these systems.

As developers work on a software project their efforts, their behaviours, produce evi-
dence. This evidence usually is in the form of software artifacts such as incremental changes
to source code and documentation. Often each change is recorded and annotated with a
change message. Sometimes communications about the development or current use of a
software project is recorded, developers and users often take part in these discussions on
mailing lists and in bug reports within bug trackers. As developers create software, a dig-
ital trail of “bread crumbs” is left behind. We expect that if we can recover these trails,

made by developers, that we can determine the changes they have made, infer the pur-
poses behind such changes, and perhaps recover some aspects of the software development
process these developers are following.

This extraction and recovery of software development serves multiple purposes:

e To recover and understand development processes that occurred within a software
project.

e To reconcile the prescribed software development processes with the observed soft-
ware development processes.

e To elicit process related information and developer behaviour without interviewing
developers or relying on their perceptions and judgement.

These purposes are not unique to software process recovery. Other fields such as mining
software repositories, process mining, and process discovery are concerned with similar
issues, as we will explain in the following section.

1.1 Relationship to Mining Software Repositories

The field of mining software repositories (MSR) [88] is dedicated to exploiting and un-
derstanding software repositories and their artifacts of development, as well as inferring
the relationships between them. Process recovery is a sub-field of MSR, that combines
MSR research with process mining [156], the mining business processes via instrumenta-
tion, and process discovery [29, 31, 30|, the mining software development processes via
instrumentation.

We propose to improve the state of the art of process recovery by extending it with
current mining software repositories research. The purpose of process recovery is to be
able to retroactively recover process from project histories without having to rely on a
process that has been heavily instrumented as suggested by Cook and Wolf [29, 31, 30].
Process recovery is the elicitation of underlying behaviours, informal processes, and for-
mal processes that developers follow while building and maintaining a software project,
based on evidence recovered from the artifacts that these developers leave behind. This
thesis attempts to describe and execute process recovery from information left behind by
developers and not rely on modifying the actual development at run-time.

Process recovery relies on the underlying artifacts to describe the development processes
that have taken place. These processes and behaviours are documented within the project
and recovered from artifacts such as source code, documentation, build and configuration

Process Mining Mining of business processes at run-time
Process Discovery — Mining of software processes at run-time
Process Recovery Mining of software processes after-the-fact

Table 1.1: Definitions used throughout the rest of the thesis

management scripts, test scripts, mailing lists, bug trackers, and revisions to all of these
artifacts. The behaviours discovered and the underlying processes recovered from these
behaviours can be used to characterize the processes used to develop a software project.
Some of the methods used for process recovery are already used to mine business processes.

Process mining in the context of business processes, processes that define business
tasks, has been heavily investigated by Van der Aalst et al. [156]. Process mining is
the run-time investigation of and recovery of business processes. With respect to software
engineering, and mining software for processes, Cook et al. [29, 30, 29] attempted to discover
underlying processes from software projects, referred to as process discovery, by recording
developer actions at particular times. Cook took an existing project being developed, and
inserted measurement devices (instrumentation) into the process in order to record process-
related information, as the project was being developed. In contrast, process recovery
does not require tooling an existing process, it involves mining artifacts left behind for
evidence of underlying processes. In this particular case, we respect that some projects
have documented their processes, but we hope that we can help validate that these processes
are being executed by recovering evidence of their use from the artifacts left behind. Thus
process recovery seeks to expose and uncover processes after-the-fact, or in an ex post facto
fashion. Table 1.1 provides a quick reference to the difference between process mining,
process discovery and process recovery. In the next section we will motivate this after-the-
fact process analysis by suggesting possible applications.

1.2 Application of Software Process Recovery

The usefulness of process recovery lies mainly in reporting and validating existing knowl-
edge about a particular project. Process recovery could be used to analyze past behaviours
and processes within a software project, and determine what methods of development took
place. One could produce reports of the observable and recorded behaviours that occurred
within an iteration and show how close these behaviours follow existing development pro-
cesses and project prescribed development processes. Process recovery would give some
semblance of what actions developers were taking as well was what work was done in
the past. Process recovery could also aid in extracting and describing the processes and
behaviours that occurred within successful projects. These processes might be useful for
planning new projects. Alternatively the unsuccessful processes could be mined; perhaps

New Developers Discover a project’s process without bothering co-workers.
Fixer Developers Integrate with projects that they are loosely associated with.

Managers Validate the software processes being followed by their team.
ISO 9000 certifiers Recover process in order to document the process they have.
Acquisitions Determine what went into building a project.

Table 1.2: Stakeholders who could benefit from Software Process Recovery

there is a correlation between unsuccessful projects and the processes they use. Thus an
application of process recovery can be the elicitation and validation of what processes are
being followed, and what the underlying observable process is.

When we refer to the observability of a process we refer to the evidence that is provided
and what inferences we can make about evidence. A behaviour would not be observable
and its related processes would have poor observability if there was no record or evidence
of such a behaviour. Behaviours such as face to face meetings or telephone conversations
are often poorly recorded, thus associated processes to these behaviours might have poor
observability. If a process is observable, interested stakeholders stand a chance of recovering
it.

Users of process recovery would be those stakeholders who are interested in how the de-
velopment of the project was executed. Potential users of process recovery are developers,
managers, consultants, and those responsible for acquisitions. Developers could use pro-
cess recovery to review how their coworkers were developing their current software project.
Managers could verify what processes their developer’s were following. Consultants could
determine the effort and quality of processes used within a project, they could then de-
termine how much work it took to implement the project. Process recovery is useful for
process verification. Managers could investigate the development artifacts of outsourced
components and try to validate if the outsourced team was following the processes they
had agreed to follow. Process recovery can provide stakeholders with evidence based sug-
gestions about what the underlying and observable processes in a project are. In the next
section we will discuss various kinds of stakeholders.

1.2.1 Stakeholders

While software process recovery might not be immediately useful to each and every de-
veloper it is potentially useful for a wide variety of stakeholders ranging from managers,
to new developers, to those responsible for technology acquisition. In this section we will
flesh out some of the stakeholders described in Table 1.2.

Managers can benefit from software process recovery as they can use it to extract,
recover and then verify if the process they prescribed is being followed by the programmers
that they manage. Managers might not be as intimately involved with a software project
as their developers are and might enjoy the introspection that software process recovery
could provide to them, especially if it was automated. Managers care if their processes
are being followed, they also care about the topics of development as well as the emphasis
of development. Managers might want to understand how much work is maintenance and
how much is new implementation.

Process documenters — those employees who are woefully assigned the task of doc-
umenting current processes whether it is for ISO 9000 certification, where processes are
defined and documented, or the Capability Maturity Model ranking where a team is ranked
on their level of process maturity. In either case the process documenter must go forth and
determine the processes being followed. If they have to take part in many interviews, this
will increase the costs of process documentation. Much of this work can be automated,
augmented or assisted by software process recovery as software process recovery can help
elicit the observable and recorded software development processes being followed.

Green developers — those who are new to a project, might want to determine what
the actual software development processes and practices of a particular project are. They
might want to get up to speed on the processes and methods employed by their coworkers.
While they can interview their coworkers this becomes more of an issue in a globally
distributed team. Perhaps software process recovery can help show new developers how
development is done on the projects they have been assigned to.

Fixer developers or star programmers are often assigned to different projects and
given relatively short time-spans to adjust and produce results. Often fixer developers have
to jump between many projects that their valuable time is divided amongst. Often fixers
become the new developer and need to orient themselves within a project. Potentially soft-
ware process recovery can help them as they can quickly analyze a project and determine
what the underlying culture within a project is and what observable processes do the other
developers follow. Often fixers lack the luxury of being able to interview other developers
and coworkers.

Investors, acquisitions consultants, and out-sourcers might be concerned about
the quality of development and adherence to the software development process of a par-
ticular project. When investing in or purchasing a company with software assets it might
be prudent for a consultant on behalf of the investor to investigate how the software was

built as well as who built it. With respect to out-sourcing, one might wish to verify that
the software development process that was prescribed in the contract was actually being
followed. Perhaps process validation, via software process recovery, could be used to ensure
that contractual obligations were met.

Thus all of these stakeholders can utilize software process recovery for their own pur-
poses. The commonality among stakeholders is that they are not intimately familiar with
the concrete implementation of the software project. These stakeholders are not necessar-
ily the developers but the next section shows why developers are central to understanding
the software development process of the project.

1.3 Conceptual View of Software Process Recovery

Software process recovery is the recovery of software development processes by interpreting
evidence and inferring behaviours, purposes, goals, tasks and finally software development
processes based on this evidence. In contrast other methods such as process mining and
process recovery rely on the developers and managers to help us infer what processes they
are following.

Figure 1.1 describes how software processes are composed and how developers interact
with these processes. As each part of a development process has a purpose, each part is
executed by a developer. When a developer implements or executes a process step relative
to a goal or purpose, that developer performs a behaviour. Often behaviours produce
evidence, whether the behaviour creates development artifacts or causes records to be
made. We rely on this evidence to infer or suggest the related and possible behaviours,
goals and software development processes. This means that without the help of developers
we are trying to leverage the evidence that leave behind. This also implies that the majority
of concepts in this diagram are only suggested and inferred from the evidence itself. Any
behaviour that does not produce evidence is not observed, but maybe inferred by other
evidence.

What this thesis is about is inferring the behaviours, purposes, and software devel-
opment processes that developers followed or performed in order to develop the software
development project being analyzed.

Our evidence of behaviour, purpose and process is extracted from software repositories
such as source control systems, mailing list archives and bug trackers. We extract facts
from this evidence, the artifacts of software development left behind. These facts are used
to reason about the behaviours performed, the purposes behind the behaviours and the
processes followed.

Developer Evidence

Produces
(lossy) N
]
Exhibits y
Follows Behaviour
Fufill

Purposes |« "Suggests.”
& Tasks

Compose .~

K4
L4
4

Software ;"Suggests
IDevelopment
Process

Figure 1.1: The relationship between developers and software development processes and
the evidence that we rely on to recover software development processes. Developers exhibit
behaviour as they attempt to complete tasks for a variety of purposes. These behaviours,
tasks and purposes form the underlying software development process. Evidence is a side
effect of the developer’s behaviour. Using this evidence we attempt to infer the purpose
and processes of software development. Thus software process recovery attempts to recover
the actual development by inferring behaviour, purpose, and process from evidence.

Evidence, behaviours and purposes can be related to disciplines, activities, workflows
and stages. In this thesis disciplines, workflows and stages refer to roughly the same
concept as they are different kinds of behaviours used to build software. Some example
disciplines include: requirements, design, maintenance, implementation, testing and many
others. Since our case studies in the following chapters demonstrate that these disciplines
are not staged sequentially but are mixed in different proportions, we feel that discipline
is more appropriate than stage, as stage implies a singular focus.

In terms of evidence and behaviour, our Chapter 4 is about release time behaviour and
demonstrates that the evidence left behind is sufficient to infer release time behaviours and
processes. While Chapter 5 and 6 describe maintenance categories of changes, they also
demonstrate that the evidence provides enough clues to recover the purpose or goals of a
source control system (SCS) change based on the language in the commit message. Chapter
7, which is about extracting developer topics, leverages this evidence to demonstrate the
shifting focus in a project. While Chapter 8 is about the Recovered Unified Process Views
that integrate the results of the previous chapters in order to summarize the software
development processes being followed.

With respect to the purpose, goal or tasks that artifacts are related to, Chapter 5
is about maintenance categories and demonstrates how the purposes behind changes are
often observable based on the evidence provided. Chapter 6 takes the manual effort of
determining purpose in Chapter 5 and automates it. Chapter 7 discusses developer topics
and explores purpose in the sense of related developer topics by recovering common de-
velopment threads through topic analysis of commit messages. Some of these topics are
related to non functional requirements such as portability or reliability. These different
methods of determining purpose are useful when trying to associate events with disciplines
and workflows in software development, as described in Chapter 8.

Process related work includes Chapter 4, which studies the release time processes of
multiple software projects and demonstrates that there is internal consistency within a
project. This consistency is indicative of a software development process. Chapter 8
summarizes many of the other chapters and integrates their efforts into a process overview
that looks like a concrete or recovered version of the Unified Process diagram shown in
Figure 2.1.

From the perspective of software development artifacts, Chapter 4, 5, 6, 7, and 8 focus
on SCS changes. Chapter 7 and 8 focus on mailing list and bug tracker related events.

Chapters that address process observability include Chapter 4 on release patterns, and
Chapter 8 on recovered unified process views. These chapters show that there are software
development processes that are recoverable based on evidence. We found that there was
concurrent effort across disciplines, as demonstrated in case studies from Chapter 4 and
Chapter 8. Chapter 7 demonstrates that topics of development often recur across the entire

lifetime of a project, indicating that there is some repeating behaviour within software
development projects.

The disciplines of software development are addressed across all of the chapters to differ-
ing degrees. Requirements and design disciplines are dealt with in Chapters 7 and 8 as both
chapters address recovering requirements-related and non-functional requirements-related
events. Chapter 4 and Chapter 5 address identifying implementation related changes
whether by file type or commit log message. Testing is addressed in Chapter 4 and 8.
Deployment and project management are addressed with our overview visualizations and
summaries described within Chapter 8.

Thus the structure of this thesis is that if we have evidence, we can observe it and
infer behaviour and processes from it (Chapter 4). Then we elaborate on this and try to
annotate events by their purpose or developer topic (Chapters 5, 6, 7). Then in Chapter 8
we integrate the chapters previous to provide a general overview of the underlying software
development process that we can observe based on the evidence recovered from the software
repositories that we analyzed. For a more comprehensive discussion of software process
recovery see Chapter 3.

1.4 Summary

In this chapter, we have proposed software process recovery and demonstrated the need for
it. We related software process recovery to process mining and mining software repositories
research fields. We have shown that software process recovery is valuable to a wide variety
of stakeholders. Then we described how this thesis relates to the recovery of evidence from
software repositories in order to infer behaviours, purposes and processes.

Our contributions in this thesis include

A proposal for a field of research called software process recovery.

A demonstration that we can extract some software development processes of existing
software systems without instrumentation.

The proposal, evaluation and validation of many methods of analyzing revisions,
revision messages, mailing list messages and bug reports.

An extraction of a Unified Process-like diagram called the Recovered Unified Process
Views.

Our goal will be to integrate this research in order to recover underlying software pro-
cesses that are observable based on the evidence recovered from the artifacts that developers
leave behind. Chapter 3 describes this integration in more detail.

Next in Chapter 2 we will provide a survey of the groundwork for software process
recovery. Afterwards we propose a line of research within process recovery which hinges
primarily on the integration of already existing techniques and the refinement of these
techniques into a relatively holistic framework for process recovery.

10

Chapter 2

Related Research

Our research will focus on methods, tools and techniques to aide software process recovery
that are either automatic and unsupervised, semi-automatic and supervised, or manual.
There is much previous relevant work related to this goal of software process recovery. This
work builds upon four main areas: process, the formal and adhoc steps behind development;
data analysis, the tools that we can rely on when we extract data from artifacts; mining
software repositories, the field and the associated methods and tools that are focused on
extracting information from repositories and artifacts created during development; soft-
ware process recovery, how previous authors have attempted software process recovery and
software process recovery related tasks. First off we must address what process is.

2.1 Stochastic Processes, Business Processes and Soft-
ware Development Processes

Development processes, or simply processes, guide the development of software, whether
they be informal and adhoc, or formal and regimented. Process is a very general word
which has multiple meanings depending on the field. While our process focus is on software
development processes, in this thesis we will use the term process to refer to three related
concepts: software development processes, business processes, and stochastic processes.
We describe each kind of process in the following subsections. Software process recovery
attempts to model these processes based on the evidence left behind by developers.

11

2.1.1 Stochastic Processes

Stochastic processes [3] produce values or measurements that exhibit some random be-
haviour. These are processes that have probabilistic variation, and whose sequences of
behaviour can be modelled probabilistically. Stochastic processes are much lower level
than software development processes, but often represent the observed statistical proper-
ties of a data-set, such as time between changes. Stochastic processes can be described
by parametrized probability distributions, such as the Poisson distribution or the Pareto
distribution [65], since they involve randomness and error. The processes could be sim-
ple relationships between inputs such as time and effort and measured values like growth.
With respect to software development these processes are sometimes used to model the
growth of a software project.

Growth models of software, and some models of software evolution are stochastic pro-
cesses as well. Lehman [98, 100, 99] described laws of software evolution relating to life
cycle processes. In general Lehman’s laws suggest that growth cannot persist in the long-
term without control because complexity caused by growth will increase and slow down
development. This was confirmed by Turksi et al. [155], who found that on some large
systems growth was sub-linear. Counter examples arose in subsequent studies by Tu et
al. [51] who showed that Linux in particular had super-linear growth and did not follow the
laws of evolution as laid out by Lehman. Herraiz et al. [65] mined many software project
and modelled growth with various software metrics and found that the distribution of the
metrics used to measure growth usually followed Pareto distributions. This knowledge
of underlying distributions allows us to expect certain behaviours when we measure and
include these behaviours into our models.

Stochastic processes are useful as they help model underlying data, allowing us to pre-
dict or reason more effectively about what will be observed. Some processes can be mod-
elled by well known distributions, which we discuss in Section 2.2. Stochastic processes
are relevant to software process recovery because they are used to model the underly-
ing behaviours based on evidence mined from software repositories. Stochastic processes
are usually too low-level, thus they need to be abstracted and aggregated into business
processes and software development processes to be useful to software process recovery.

2.1.2 Business Processes

Business processes are sequences of related tasks, activities, and methods combined, but
often within the context of a business operation. These processes can be executed by actors,
such as employees or software, with or without the help of software. Generally business
processes describe a kind of collaboration of tasks that occur between actors. Van der Aalst
et al. [156] describes business process mining as the extraction of business processes at

12

Phases
Disciplines

| Inception |[Elaboration IIConstruct|0n|| Transition |

Business Modeling ‘

Requirements e ——— . T
Analysis & Design A’?
Implementation —_— . .

Test —_——

CM and SCS E—
Environment

Figure 2.1: Unified Process diagram: this is often used to explain the division of labour

within the Unified Process [86]. This diagram is also referred to as the UP “Hump dia-
gram” [63].

run-time from actual business activities. Business processes can be fine-grained. Example
business processes are: handling customer returns at a retail store, authenticating clients
over the phone, and creating a client record. Van der Aalst deferred to Cook and Wolf
when it came to process mining software projects. Software development is a kind of
information work, like research, and thus is not easy to model so formally and so fine
grained. While process is still important to software, we feel that the business processes
described by frameworks like BPEL [157] (business process elicitation language) do not
model software development well, as software development is often viewed as information-
work. Business processes are related to software process recovery because tools such as
sequence mining [89] can produce processes that are quite similar.

2.1.3 Software Development Processes

Software engineering makes use of software development processes. Software development
processes are processes dedicated to analyzing a problem and designing a software solution
to that problem. These are processes modelled after industrial work processes, such as
the assembly line. Some researchers and practitioners hoped that software development
processes would enable teams to produce software in a repeatable manner, akin to how
many other engineered products were produced and designed. Software development pro-
cesses are often software development methodologies. The tasks in a software development
process can include just about everything: requirement elicitation, design, customer in-
teraction, implementation, testing, configuration management, bug tracking, etc. Some
processes deal with a specific part of software development such as maintenance [97]. Soft-

13

ware development processes are seen as a way to control the evolution of a software project
in order to ensure that requirements are met and the project is successful.

Software development processes are a method of control to enable the production of
quality software in a reliable manner. In this thesis our definition of software development
processes is:

Software development processes are the composition of structured behaviours, and
their purposes and intents, used to build a software system.

For example, posing software process as the behaviour of developers with respect to testing
near a milestone would match this definition. Another example would be the proportion-
ality of the efforts spent on each development-discipline over time would be a software
development process. This differs from the software development life-cycle [144] as our
focus is on behaviour and the SDLC’s focus is broader.

The SDLC describes how software is often built, maintained, supported and managed.
Most software development processes relate to some if not all of the various aspects of the
SDLC. Classic models of software development processes include the Waterfall model [138]
and the spiral model [20]. More recent software development processes include the Unified
Process [86], Extreme Programming (XP) [10], SCRUM [140], and many methodologies
related to Agile development [66]. See Figure 2.1 for a diagram of the Unified Process
workflows over time. Most of the recent development processes focus on smaller iterations,
such that design and requirements can be updated as they become more clear with each
iteration. Software development processes and life cycles seek to manage the creation and
maintenance of software.

Meta-processes, such as the Capability Maturity Model (CMM) [126, 1], attempt to
model the processes used to create software, much like ISO standard 9000 [147] attempts
to model and document how processes are executed, tracked, modelled and documented.

The CMM tries to model, track, and rank software process adherence. Software process
recovery could aide ISO 9000 certification and CMM adherence.

Software development models described in the literature are typically high level, they do
not have many tiny fine-grained sub-tasks, but companies often have much more detailed
home-brew processes. There are some processes which can be modelled in a fine grained
manner though, for instance researchers have modelled how bug reports are created and
handled with in a bug tracker. Their end process was essentially a state diagram of bug
states [135]. Software development processes are what software process recovery tries to
recover from the evidence left behind by developers. Thus software development processes
model software development at a relatively high level when contrasted with finer-grained
processes such as business processes.

14

2.1.4 Process Summary

We have covered three kinds of processes each increasing in their level of granularity and
generality. At the low level we have stochastic processes that seek to describe the processes
behind the measurements and the data itself. At the intermediate level we have business
processes which describe fine grained actions and tasks taken to fulfil a goal. Then at the
high level we have software development processes which group together different efforts
into a general process. We seek to extract all three of these kinds of processes from existing
artifacts in an effort to recover the underlying processes that were executed to build the
software project.

2.2 Data Analysis

In order to automate process recovery we will need to extract and process the data recov-
ered from the software development environment. This data comes in many forms, from
many repositories, as described by the mining software repositories community [88]. The
main tools we use and describe include: statistical analysis, time-series analysis, machine
learning, sequence mining, natural language processing, and social network analysis.

2.2.1 Statistics

Statistics [3] help us describe data and model data, and they are an integral part of data
mining. In the rest of this section, we will summarize some commonly used statistical
methods; the reader may choose to skip over this. The main statistical tools we use are
distributions and summary statistics. Distributions are characterizations of how values,
such as measurements, are spread out across their possible range. Distributions describe
the relative frequency of values occurring or having occurred within a data-set. Some distri-
butions have been modelled as functions or shapes. These distributions are parametrized,
so we can generate them from a function and a set of parameters. Some common dis-
tributions include: the normal distribution (bell curve), exponential distribution, Poisson
distribution, Pareto distribution, power-law distribution, Zipf distributions, etc. Distri-
butions can be summarized or characterized by summary statistics. Summary statistics
are metrics that describe aspects of a distribution such as the average, the median, the
variance, skew, kurtosis, etc. These summary statistics can be used to describe the shape
and expected range of values of a distribution without the need to show the distribution
itself. Quartiles are another useful measure, quartiles are a set of four ranges of elements
that share an equal number of elements, quartiles help define the range and spread of a dis-
tribution. The value between the middle two quartiles is about the median of the data-set.

15

Distributions and summary statistics tell us about the underlying data and help us model
the data. In order to better model the data it is useful to see how similar distributions or
models are to each other.

The statistical tools we use for comparing distributions include: the t-test, the y? test,
Kolmogorov Smirnov test, the Lilifors test, cosine distance and Euclidean distance. These
distribution similarity tests can be used to indicate if underlying distributions are similar
or if a distribution matches a well known distribution like a exponential distribution, a
Poisson distribution, a power law distribution, etc. The Lilifors and Kolmogorov Smirnov
tests are especially useful for dealing with software-related data because they are non-
parametric, which means that they can be used to compare data distributions that are
not Gaussian (normal); this can be contrasted with the t-test and chi® tests, which can
be sensitive to other kinds of distributions. Lilifors and Kolmogorov Smirnov tests are
based on measuring the largest distance between two cumulative distribution functions
(the integral of the probabilistic distribution function). These tests allow us to compare
distributions to each other, but sometimes we want to search for distributions that are
similar in order to compare models to the underlying data.

One common way to compare models is to use linear regression. Linear regression tries
to model the data by finding the best fitting line through our data; this is accomplished
by trying to minimize the R? values, which indicate how much unexplained variance there
is in our data compared to our best matching linear model [79]. These statistical methods
allow us to compare and reason about data-sets, create model of the data-sets, and validate
these models against the data-sets.

2.2.2 Time-series analysis

A time-series is a set of data points plotted over time. MSR research often deals with
time-series, and much of the data collected from software repositories is data that occurs
across time, which means the data has temporal components. The underlying data could
be an event, it could be an aggregate of events, it could be a measurement at a certain
time. The analysis of this data is called time-series analysis. Hindle et al. [69] discussed
spectral analysis applied to time-series. Spectral analysis, using Fourier transforms, allows
for underlying periodicities to be recovered from signals such as changes per day. What this
means is that if a behaviour recurs regularly, such as weekly, that it might be detectable
with spectral analysis. This spectral analysis is similar to the auto-correlation used in time-
series analysis [64]. Auto-correlation attempts to look for underlying repeating behaviour
by comparing a signal to time-shifted versions of itself. Much of the analyzed data from
repositories is time-series data, utilizing these tools allows us to deal with time and look
for potentially repeating patterns across time.

16

Release
Event

7

R Linear Regression

1
1
1
- []
- S o— < ! /
T e~
— ~
e T
: It Source Code Revisions
' . . per Time Unit (day)
' Smoothed
Summed Near Release
Revisions
per. Time /Test Revisions
Unit per Time Unit (day)
summed Smoothed
per time Summed Near Release
unit
before and /Build Revisions
after a per Time Unit (day)
release

Smoothed
Summed Near Release

/Documentation Revisions
per Time Unit (day)
Smoothed
Summed Near Release

'
1
1
-n time units 0 +n time units

>

Figure 2.2: A project’s change history split into four streams: source changes, test code
changes, build system changes, documentation changes.

17

Time-series analysis also relates to longitudinal studies [141]. These are studies of data
and measurements over time. Longitudinal studies can employ multilevel modelling, which
is a mixture of statistics and time-series analysis. Multilevel modelling first requires that
we model measurements of entities (e.g., changes to a file, changes made by an author)
over time. These are our first-level models. Then we can aggregate the parameters of these
models and produce a second-level model which generally describes all of the underlying
entities and the variances of each parameter. A common scenario for longitudinal data
analysis is to model the performance of children in a classroom. The first-level models
are those of the children and their performance throughout the school year. The second
level model is the general model of the children altogether, the average rate of change
of performance and the variance within the children’s models. Longitudinal studies and
multilevel modelling allow us to reason about general events like the major releases of a
project, but also about the instances such as a single major release of a project.

We have used a rudimentary form of multilevel modelling [75] to describe how individ-
ual releases behave compared to the general trend of release behaviour within a software
project. Figure 2.2 gives an example of how we analyzed behaviour around release time.
Thus we have already utilized time-series data, Fourier analysis, and multilevel modelling
in our own research [75, 69]. All three of these methods are valuable for process recovery
because they allow us to describe patterns that occur over time, find periodic behaviours,
and model individuals and groups of entities. This allows us to recover stochastic processes
and identify processes by mining repeating behaviours.

2.2.3 Machine Learning and Sequence Mining

Machine learning [84] provides a powerful set of tools that helps process recovery by en-
abling automatic classification of entities based on historical facts. Machine learning is
attractive because it can often utilize training data (the past) to classify the new data. It
also enables bootstrapping, where one invests some work classifying changes manually and
then delegate the rest of the work to the machine learner. Machine learning is a broad topic
and we have used many machine learners to analyze and classify the maintenance purposes
of large revisions [73]. See Figure 2.3 for an example of distribution of large changes in
multiple open-source projects.

Sequence mining [89] attempts to find repeating sequences in streams of discrete en-
tities. Sequence mining is valuable in process recovery because it can be used to find
common chains of actions or events that occur within a project. Sequence mining can
be used to mine processes at different levels of aggregation from fine grained events to
the common sequences of phases of an iteration. Related to sequence mining is item-set
partitioning [142], where similar behaviours are grouped along time in order to partition
a time-line by observed self-similar behaviours. Thus machine learning, sequence mining

18

Distibution of Extended Swanson Maintenance Classes

900 T T T
800
700
600
€ 500
>
o
O 400
300
200
100
O —
2 2 2 g S
i3] o i3] o ©
g < L i3] =
5 2 o g ©
o o T =
= 2
2 E
Extended Swanson Categories
Boost m— Evolution PostgreSQL
EGroupware s Firebird Samba m—
Enlightenment MySQL 5.0 Spring Framework s

Figure 2.3: Proportion of large commits per project per Swanson Maintenance Category

19

and item-set partitioning help us infer new facts that not yet expressed. Machine learning
can be used to help identify phases, while sequence mining can be used to find business
processes inside of stochastic processes, and item-set partitioning can help identify when
discontinuities occur thus perhaps helping us discover the end of a phase or an iteration.

In this thesis we utilize machine learning to attribute certain classes of behaviours to
certain artifacts, or to relate concepts by classification to artifacts such as bug reports
and source code changes. Often machine learning relies on natural language processing to
produce learner friendly training-sets from textual data.

2.2.4 Natural Language Processing

We often have to analyze text and source code. Text is generally unstructured. One
method to analyze text and even source code is to leverage techniques used in the field of
Natural Language Processing (NLP) [90]. The most common NLP technique to analyze
text is to abstract it as a word distribution. A word distribution is a word count, with
optional stop word removal. Word counting produces a word distribution per each entity.
These word distributions allow various other tools to process the natural language text,
whether they act as input to a machine learner, or are used to represent entities in topic
analysis.

Natural language processing (NLP) [90, 145, 67] deals with processing language in the
form of speech or text into a computer-based representation of that speech or text. This
processing might be used to better understand the underlying message, or it can be used
to discriminate between low-level natural language entities like words in a sentence or
discriminate between high level entities like documents and sets of documents. For the
purposes of this research we utilize NLP tools and methods in order to relate and process
text messages left behind by developers. We also use similar structures and tools to process
source code as well.

The basic NLP tools that we use are word distributions, stemming, and stop word
filtering. Word distributions are a method of abstracting a block of text into counts of
words, which can be further normalized by the size of the message. Word distributions
are useful because one can apply a distance metric such as Euclidean distance, cosine
distance, or the difference in cumulative distribution function (CDF) (derived from the
Kolgoromov Smirnov test) in order to compare two messages. Stemming transforms words
into their root forms. For instance a gerund like biking could be reduced to bike, and
dragged to drag. Stemming cleans up tenses and modifiers to words, in an effort to make
word distributions smaller and more similar if they cover similar concepts. Stop word
filtering is another technique which removes words that are not important to the current
analysis. For instance stop words, that could be removed when we are mining for concepts

20

2000 2000 2000 2001 2001 2001 2001 2001
Jul Sep Nov Jan Mar Jul Aug Sep

1099ing m “

199919

Figure 2.4: A manual example of topic analysis applied to MySQL 3.23 revisions. [80]

or modules, could be definite articles like the, other modifiers, or language keywords like
else. Word distributions also serve as inputs for other NLP related techniques like topic
analysis using LDA [17], LSI [109, 128], or ICA [34, 52].

Topic analysis or concept analysis is the automatic discovery and mining of topics,
usually modelled as word distributions, that pervade a set of messages. For instance, a
newspaper is often organized into sections by overall topic, and if a topic analysis algorithm
were applied to all articles within a newspaper, we might expect that topic analysis tech-
niques might suggest topics that matched the main sections of a newspaper, such as life,
entertainment, international, local, national, etc. Latent Dirichlet Allocation (LDA) [17]
is an unsupervised topic analysis tool that is popular within the mining software reposito-
ries community [146, 103, 104, 102]. Other similar topic analysis techniques include latent
semantic indexing (LSI) [109, 129], independent component analysis (ICA) [52], principle
component analysis (PCA) [34], probabilistic Latent Semantic Indexing (pLSI) [83], se-
mantic clustering [95, 96], etc. Sometimes source code and bug reports often serve as input
to topic analysis tools, where as our own work used LDA to mine topics from commit
comments [80] (an example of extracted topics appears in Figures 2.4 and 2.5). Figure 7.2
describes how one could use a tool like LDA or LSI to analyze commits.

NLP techniques are useful to process recovery because they recover information and as-
sociations from unstructured text data or data that is being treated as unstructured. These
associations allow us to associate artifacts with different kinds of topics and potentially
work-flows such as requirements, design, testing, or bug fixing.

21

Figure 2.5: Automatic topic analysis applied to MaxDB 7.500. This compact-trend-view
shows topics per month for MaxDB 7.500. The x-axis is time in months, the y-axis is
used to stack topics occurring at the same time. Trends that are continuous are plotted
as continuous blocks. Trends with more than one topic are coloured the same unique
colour, while topics that do not recur are coloured grey. The top 10 words in the topics
are joined and embedded in box representing the topics. No stop words were removed. [80]

See Section 7.1.5.

22

2.2.5 Social Network Analysis

Social network analysis [158] is the structural analysis of social interactions between people
or actors. A social network models the interactions between people and entities as a graph
with entities as nodes and their relationships as arcs. These graphs and their interactions
between nodes are measured using a wide variety of graph metrics such as centrality,
connectedness, whether or not a node bridges two clusters, etc. The mining of social
networks from software repositories is a popular field of research, whether it be social
networks extracted from emails [13, 16] or other source code related artifacts [159, 15].
Social network analysis allows to study the structure of interaction, thus it can aid in
process recovery by elucidating the relationships between developers, which might help us
associate developers with project roles.

2.2.6 Data Analysis Summary

In this section we provided an overview of the tools that can be used to recover processes
from artifacts left behind by developers. Statistics aides in modelling underlying data so we
can describe the data and reason about it. Time-series analysis lets us reason about data
that has temporal qualities. Machine learning and sequence mining allows software tools
to make decisions and extract new facts based on the past. Natural language processing
helps us deal with the large amount of unstructured and semi-structured natural language
artifacts (such as messages or bug reports) that developers and users leave behind. Social
network analysis lets us see the social interactions between actors and entities, allowing us
to discover developer roles. All of these data analysis techniques have been leveraged in
the field of mining software repositories and thus are quite relevant to process recovery.

2.3 Mining Software Repositories

Software process recovery relies on software related artifacts left behind by developers.
These artifacts often appear in software repositories. Mining software repositories [88, 92]
refers to the investigation and mining of data within software repositories such as source
control, mailing lists, bug trackers, wikis, etc. Kagdi et al. [88] provide a survey and
taxonomy of approaches and studies that exist within the mining software repositories
(MSR) community [60]. Work in this area seeks to answer questions such as: which
changes induce bugs or fixes [143], what information do software repositories tell us, how
could new repositories be more useful, and what are the underlying properties of software,
software evolution, and changes to software. Software process recovery is a sub-field of

23

MSR because it relies on the repositories and the mining techniques that MSR literature
employs in order to reason about underlying processes.

Much of the software and the software repositories that are mined in MSR literature is
Free/Libre Open Source Software (FLOSS), this is due to the availability of FLOSS. Since
FLOSS development artifacts are typically freely available, we can have repeatable studies
on the same corpus, thus allowing researchers to validate their results against the results
of others, and to compare different approaches easily. Some researchers have studied and
measured the general characteristics of Open Source Projects [23]. Mockus et al. [121]
described the underlying methodology of FLOSS projects such as Apache and Mozilla.
Much of the information they used was gleaned by mining the source control repositories
of these projects. Thus much MSR research is executed on FLOSS.

2.3.1 Fact extraction

When one approaches a software repository often one has to reason about the data inside
of it. An important first step is to extract this data from the repository. This step is called
fact extraction. Many researchers have covered various details of how to extract facts from
a SCS and store them into a database to be queried later [105, 49, 46, 41, 160, 61, 162].
Some issues that fact extracting handles: data cleansing, tracking identities, grouping
revisions into commits, resolving symbols, etc. Fact extraction allows us to export a fact-
base from a repository so we can reason about it in other contexts. Fact extraction is
necessary for process recovery because one needs to build up a fact-base in order to reason
about underlying processes.

2.3.2 Prediction

We can use these extracted facts to help predict the future. Some developers and managers
seek to predict what will happen next. Much work has been done on prediction by Girba
et al. [50], where they attempt to predict effort much like how weather is predicted, based
on past information. Others such as Hassan [62] attempt to model change propagation in
software systems via measures such as co-change. Herraiz et al. [65] attempted to correlated
various metrics with lines of code (LOC) and growth. These metrics provided a power-
law-like distribution which could be could used to predict metric values. One potential use
of MSR research is to use past data to predict the future in order to aid project planning.

Much work has gone into bug prediction, whether predicting buggy changes [94], buggy
files, or bug-prone functions, there are entire conferences essentially dedicated to bug pre-
diction [139]. Much research in these conferences utilizes MSR related data to reason about
the locations of future bugs. Many of these predictions rely on software metrics.

24

2.3.3 DMetrics

In order to describe observations quantitatively we need to count and measure them, soft-
ware metrics are meant to allow us to count and measure properties of software systems
and their artifacts. Some metrics are related to process and deal specifically with measur-
ing how many requirements a team has fulfilled so far [59]. Some metrics do not relate to
the code itself, but about relationships that are observed external to the code.

Software Metrics — classic software metrics [39] include lines of code (LOC) [137, 65],
and complexity measures such as Halstead’s complexity [57] and McCabe’s cyclomatic
complexity [111]. There are object oriented (OO) metrics [130, 11, 58] like fan-in and
fan-out, measurements of class hierarchies, calls-in and calls-out. Some have tried to
correlate various software metrics with maintainability [27, 125] and have produced the
maintainability index that attempts to indicate the maintainability of software. These
classic software metrics describe underlying code but often for MSR related work they
need to be extended by time.

Evolution Metrics — there are MSR and evolution related metrics [100, 115, 116, 114]
that often deal with changes or project versions. There are also evolution metrics that
focus on the deltas rather than the differences between versions. Measurement of changes,
whether they be revisions, diffs, deltas, or structural deltas has been investigated in work
by Ball et. al [9], Mens et al. [115], Draheim [35], German et al. [48], and Hindle et
al. [77, 76]. Herraiz et al. [65] studied how metrics related to LOC over time. Hindle et
al. [79] investigated the indentation of source code, particularly source code that appears
in revision diffs, they found that the variance of indentation in a diff correlated with classic
complexity measurements such as McCabe’s complexity and Halstead’s complexity. An
example of how indentation metrics are measured is shown in Figure 2.6. Thus many MSR
related metrics measure change itself, but there are other metrics which measure temporal
relationships or couplings between entities.

Coupling Metrics — some metrics are concerned with historical and logical coupling
or co-change [43, 42, 62] between entities. Co-change is where two files or entities change
together, and how often they change together. Co-change is also referred to as logical
coupling [43, 42]. Co-change and coupling indicate cross correlations between entities.
Zaidman et al. [161] studied the co-change between entities and tests, while Hindle et
al. [75, 68] studied the co-changes between changes to source code, test code, build systems
and documentation at release times. Coupling is useful within process recovery because if
one wants to characterize a behaviour, one can use measures of co-changes across different
classes of entities at the same time.

25

i++) {

= > void square(int * arr, int n
Get the Diff _square(') A
> Ogoodint i = 0;
> goodfor (i =0 ; i <n ;
> goooooodarr[i] *= arr[1 1;
> Oooody
>}
Measure the Raw O 4 4 8
Ind tati Indentation
Indentation
Metric Raw| Logical
LOC 6.000 6.000
Produce Summary Loc 8.000 8.000
- - MED 4.000 1.000
Statistics STD 2.750 0.687
VAR 9.070 0.567
SUM 20.000| 5.000
MCC 2.000 2.000
HVOL 152.000 152.000
HDIFF 15.000| 15.000
HEFFORT 2127.000 2127.000

Figure 2.6: How indentation metrics are extracted and measured.

26

2.3.4 Querying Repositories

Once the facts have been extracted and the metrics suites run, we are left with a lot of
information. There are many things an end user might want to do with this information:
they might want to see related artifacts, they might want to query for structural qualities of
changes, they might want to have changes described in a high level manner. If an analysis
program can be rewritten as a query it saves both the researcher and the end user time.

A query system for developers to find hints to related documents was designed by
Cubranic et al. [32]. Hippikat [32] is a SCS query system which attempts to link multiple
“software trails” from different sources into one search engine for developers. Hippikat is
more like a search engine rather than say a relational database.

The SOUL system [22] allows for querying programs by structure and example, over
time, but also allows users to pose queries in a Prolog like language, giving the query a lot of
flexibility. This allows entities to be queried in a relatively unconventional manner. Related
to SOUL is Semmle, SemmleCode and .QL, the semmle query language [101], together these
tools provide an object-oriented query system to staticly analyze code. Semmle is used to
query the underlying source code of a project by utilizing static analysis. There are also
other logic-based query systems related to MSR.

Hindle et al. [72] created and defined a query language, Source Control Query Language,
for querying data from SCS using first order and temporal logic queries. These queries were
created to check for invariants within a project, as well as generally query a repository for
change patterns. Hindle et al. built a system which uses first order and temporal logic to
find entities, Others have written systems which take existing data and then use logic to
describe the change.

Kim et al. [93] have studied how to described fine grained changes succinctly. They
used a descriptive grammar of first-order logic and automatic inferencing in order to make
a concise and small description of a change, which described whether it included certain
files or if it modified certain structures within a program. Descriptions could be similar
to: “All subclasses of Mapper were changed except for AbstractMapper”. These concise
queries work well when designing reports for end users who want high-level overviews.

Querying and inference are valuable tools to look for certain behaviours within a soft-
ware repository. Inference allows for concise descriptions of changes while querying enables
for concise extraction of patterns and results. Conciseness might be important to process
recovery when used in the context of creating reports.

27

2.3.5 Statistics and Time-series analysis

Some MSR research seeks to quantitatively reflect and describe the behaviour within a
software repository. One way to do this is to utilize summary statistics, software metrics,
and time-series analysis. Because so many repositories have entities with temporal aspects,
time-series analysis and the extraction of temporal patterns is quite useful.

Large distribution studies have been executed by Herraiz et al. [65], Capiluppi et al. [23],
and Mockus et al. [119]. In these studies metrics and summary statistics were used on
numerous FLOSS projects. These studies provided more of a static model of what to
expect from software measurements and were not so much about evolution.

With respect to time, much work is done on time-series and MSR related data. Israel
Herraiz et al. [64] worked on ARIMA models of the number of changes. ARIMA models
are meant to model and predict time-series data using techniques like auto-correlation.
Herraiz studied many FLOSS projects and tried to characterize the ranges of the ARIMA
model’s parameters that could model these projects. Related work in mining recurring or
repeating behaviour was done by Antoniol et al. [7], where they attempted to mine time
variant information from software repositories using linear prediction coding (LPC). LPC
is often used in speech audio compression. Hindle et al. [69] described how to pose these
time-series and recurrent behaviour problems in the context of Fourier analysis, that is to
treat time-series as signals and apply signal analysis techniques to the data itself. Time-
series analysis helps us reason about changes and behaviour over time but if we have many
entities with many time-series we can use tools like multilevel modelling.

Release Pattern Discovery [75, 68] is much like multilevel modelling [141]. Each release
has its own parameters for its models (a linear regression or a simple slope of changes
across an event). Release pattern discovery attempted to communicate the behaviour of
developers at release time by breaking up fine grained changes, recorded in SCSs, into four
streams: source code changes, test code changes, build changes, documentation changes.
This enables the end user to describe a behaviour around a release in terms like, “source
code changes generally increased across the release, while testing changes were constant.
There were usually no documentation changes before a release but many documentation
changes after a release”. This multilevel modelling allowed us to talk about individual
releases as well as all releases. Software process recovery requires time-series analysis in
order to reason about the fine-grained aspects of the various artifacts being analyzed.

2.3.6 Visualization

Visualization, with respect to mining software repositories, often attempts to reconcile the
added complexity of time with already complex data. For instance when MSR and UML

28

diagrams are combined you can potentially have a new UML diagram per each revision
to the source code. Visualization seeks to deal with this complexity by leveraging visual
intuition and reasoning to aid the understanding of the underlying data.

Much software visualization research is related the visualization of software design and
architecture. Usually architecture is represented as graphs, where modules are nodes and
relationships between modules are arcs. Sometimes hierarchical containment relationships
are used to deal with tree-like data. Rigi [122], Shrimp [148] and LS-Edit [150] are in-
teractive graph visualizers which typical display hierarchical relationships of a software’s
architecture using both containment and arcs. Rather than architecture, some researchers
have attempted to visualize the social structures within a project [124]. Most of these tools
provide a static, although interactive view. These tools usually do not support visualizing
graphs that evolve over time.

One way to visually model time and evolution is by animation. Visualizations that
use 3D commonly use animation for navigation. Gall et al. compared releases via 3D
visualizations [44]. Marcus et al. applied 3D visualization to source code [110]. While
others have used animation to show the progress of time, for instance researchers have
used VRML to animate software evolution matrices [118]. Beyer et al. [12] used animation
and software evolution metrics to produce storyboards of changes to files. Other kinds of
non-3D visualizations typically use graphs.

Much visualization has been applied to graphs and temporal-graphs, ranging from
D’Ambros’s radar plots [33], which indicated recency with distance, to Lungu et al. [107]
whose system displayed versions of graphs that tried to maintain the locality of the changes.
Many other tools attempt to draw temporal graphs of software metrics and changing ar-
chitecture [127, 132, 151]. We have our own animated graph drawing tool, YARN (Yet
Another Reverse-engineering Narrative) [70, 82], which produces videos of the changing
call-in and call-out dependencies between modules and shows these dependencies cumula-
tively over time. For an example of YARN see Figure 2.7.

Time-lines provide a static, non-animated, visual histogram of counts or amounts over
time. Evograph is an MSR related project that maps time to time-lines rather than
animations [40]. Time-lines are used in Figure 2.1 of the Unified process [86] to indicate
effort per workflow over time. Note that this diagram of effort is not extracted, it was
expected, process recovery could aide in regenerating a diagram like this to be used in a
report. Heijstek et al. [63] have created concrete views of the UP diagram using a suite
of IBM tools including ClearQuest. Heijstek et al. benefited from the fact that the IBM
tools used mapped very closely to the Unified Process. Heijstek et al. had access to
different repositories that we did not have access to. Visualization whether it be static
graphs, animations or time-lines is useful for exploratory studies of the evolution and
process recovery. In general if a pattern can be spotted visually it should be extractable
via automated methods, thus visualization is more about exploration and understanding.

29

Revision Date Subsystems

Revision /
Number /
\Sun Aug 27 21:48:00 2000 REWRITER

4515

ZL—\A—f—*_f"\\
-—__/;eQUERVE_!!ﬂ!:UﬂTlﬂﬂEﬂGlﬂE — §TO.HﬂGEIIlﬂI]ﬂGER

N

j | ":"“ 7 (

A | TN\
_ OPTIMIZER '
AN \

h \\ v/ t

W«
Buttons
Progressbar Paws Play

e ——

Figure 2.7: YARN Ball: PostgreSQL module coupling animation, the thickness of the arc
and direction indicates how many times one module calls another. Modules are the boxes
along the edge of the circle [82].

30

2.3.7 Social Aspects

Some studies of software repositories focus mostly on the developers and users, and the
communication between developers and users. Much of the socially related MSR research
analyzes mailing list repositories [134, 13, 14, 16].

Rigby et al. [134] attempted to characterize the conversational tone of developers on
the Apache mailing list using psychometric textual analysis which contained word lists
associated with certain emotional aspects.

Most other socially related MSR research dealt with social network analysis, the network
of communications, dependencies and relations between developers, their artifacts and the
users. Bird et al. [13, 14, 16, 15] create dynamic and static social network graphs and
analyze them for behaviours like when a group of developers enters or a leaves a project,
when a user becomes a developer, who becomes a developer, etc. Social network analysis
and psychometric analysis are useful for relating stakeholders, such as developers to a time-
line, their artifacts and their coworkers artifacts. The study of collaboration gives us hints
to how the team works together and maybe their underlying roles and processes.

2.3.8 Concept Location and Topic Analysis

Often when mining various data-sources, one wants to associate high level concepts and
ideas with fine-grained entities, concept analysis, concept location and topic analysis help
with this task. Concept analysis finds concepts within documents and tries to relate them
to source code. Concept location takes an already known high level concept such as a
bug and tries to find the documents that relate to that concept. For example, when
fixing a bug, how and where do the concepts in the bug report map back to the source
code? Topic analysis attempts to find common topics, word distributions, which recur in
discussions extracted from documents such as messages, change-logs, or even source code.
Topics produced through the topic analysis of development artifacts can be called developer
topics.

Research on formal concept analysis and concept location [108, 109, 128, 129] has often
utilized LSI or semantic clustering [95, 96], while topic analysis has used both LDA and
LSI [102, 146, 128] For instance, Lukins et al. [146], used LDA for bug localization. They
would produce an initial model and then use a bug report as an example of a document they
wanted to see. The example document would be broken down into a linear combination of
topics and then the most similar documents would be retrieved. This is visually explained
in Figure 7.2. Grant et al. [52] and have used an alternative technique, called Independent
Component Analysis [34] to separate topic signals from source code. We used LDA to
analyze change-log comments [80] in a windowed manner where we apply LDA to windows
of changes and relate those windows via similar topics.

31

Concept location and topic analysis are particularly useful for finding the relationships
between disciplines like bug fixing or maintenance and the artifacts that mention them.
This kind of analysis applied in a MSR setting allows us to generalize about the topics and
concepts being tackled within a project.

2.3.9 MSR Summary

Mining software repositories takes software engineering problems and complicates them
with another dimension: time or versions. Mining software repositories is inherently linked
with data analysis and process. Much MSR research attempts to model and explain be-
haviours and the resulting programs that come from this evolution of artifacts. More
importantly MSR is generally the application of different data analysis tools in order to
mine artifacts extracted from software repositories. These software repositories range from
bug trackers, to source control systems, to mailing lists. Software process recovery at-
tempts to federate many of these techniques for the purposes of modelling processes from
this data.

2.4 Software Process Recovery

Software process recovery, as explained in the introduction, is a sub-field of mining soft-
ware repositories dedicated to extracting processes, at different levels of granularity, from
software repositories without requiring that the underlying software development be mod-
ified, instrumented, or tooled to aide extraction. Software process recovery is related to
two fields outside of MSR: process mining and process discovery. Process mining attempts
to discover business processes from already running formal and informal processes within
an organization. Process discovery attempts to apply process mining to software by mod-
ifying the development process in order to build up metrics which can be used as evidence
of the underlying process. Software process recovery takes a different approach, in order
to discover process, one analyzes the existing artifacts left behind by stakeholders such as
developers and users.

2.4.1 Process Mining: Business Processes

Business process analysis attempts to recover business processes from existing systems.
Researchers such as Van der Aalst [156], attempt to mine workflows and business pro-
cesses while the process occurs within an organization. Process mining has its own term
for fine grained analysis: delta analysis. Much of process mining includes workflow anal-
ysis, that consists of applying or extracting finite state machines or petri nets from the

32

observed activities. Process mining attempts to model processes using states extracted
from observations.

Some within the MSR community have worked on extracting business processes from
software [55, 54, 53]. We find that business processes are too fine-grained for many software
processes, as business processes often model the purpose of the software, and not necessarily
the development of the software itself. Although process mining is quite relevant, process
recovery seeks to analyze the development of the software.

2.4.2 Process Discovery

Process discovery is an attempt to take process mining and apply it to software by mod-
ifying the existing software development process of a project to accommodate and record
metrics used to discover underlying processes. In the field of process discovery Cook [28].
has described frameworks for event-based process data analysis [30]. In [31], Cook uses
multiple methods to measure and correlate measures extracted from processes. Some of
the metrics used were string distances between a process model and the actual process
data, workflow modelling, and Petri-nets. Cook also discusses grammar inference, neural
networks and Markov models as applied to process discovery [29]. The value of process
discovery is that much of the groundwork for models of processes for software development
have already been implemented. Process discovery is relevant because it is an instrumented
method of extracting software development processes from a live project. Process recovery
is similar to process discovery but with a different perspective and goal, process recovery
does not seek to instrument live projects, instead it seeks to recover processes from the
software artifacts of a project.

2.4.3 Process Recovery

By taking process discovery and applying it to software repositories and artifacts already
left behind by developers we have process recover. Thus process recovery is a mix of MSR,
process mining and process discovery methods combined and applied evidence left behind.

Within the MSR community, many researchers have tried to extract processes. For
instance, Ripoche and Gasser [135] have investigated Markov models for use in FLOSS
bug repair. They created state transition diagrams that represented the probabilistic state
transition model of the Bugzilla bug database for the Mozilla project. Their ideas are
derived from the process modelling methods of Cook [28], specifically the idea of using
Markov chains to describe the state transitions. This kind of process is closely related to
business processes in terms of detail.

33

Software process recovery at a software development process level has been discussed by
Jensen and Scacchi [87]. They describe various ways of mining information from FLOSS
projects to facilitate process modelling. The focus in this line of research was mining
web resources to “discover workflows” rather than source control repositories. They use
ontologies and directed graphs to describe work flows. Most importantly Jensen et al.
uses a priori data, that is if they know something, they provide it to their tools and their
analysis. In other research, German manually mined process documentation and mailing
lists in order to describe the processes that GNOME project developers used to create and
manage the GNOME desktop environment [45].

Heijstek et al. [63] analyzed multiple industrial projects that used a suite of IBM tools
such as ClearCase and ClearQuest. With access to documentation repositories such as
ClearCase, Heijstek et al. produced Unified Process diagrams using effort estimation.
Most notably Heijstek et al. had access to time-sheet data as well. In Chapter 8 we
implement a similar larger scale study except the repositories we rely upon are not so well
matched to the Unified Process.

Thus there has been a range of MSR-related investigations into process recovery. The
research has ranged from the automatic to the manual. Different researchers have extracted
processes from bug repositories, project websites, and mailing lists. What is left to be done
is a more general integration and general approach to finding iterations, to finding sub-
phases, and identifying process from a project’s artifacts.

2.4.4 Software Process Recovery Summary

We have reviewed three different but related branches of research: (1) the fine-grained
process mining of business processes, discussed by van der Aalst et al. [156], which are
often too fine grained to be useful for software; (2) process discovery, discussed by Cook
et al. [28]; (3) process recovery research [135, 87, 45, 55, 54, 53, 63| from within the
mining software repositories community. What distinguishes software process recovery
from process discovery and process mining is that process discovery and process mining
instrument existing processes in order to observe the process. Software process recovery
does not rely on instrumentation or even live projects as it derives behaviour, purpose and
process from the artifacts that were left behind.

2.5 Summary

In this chapter we have reviewed previous work that has inspired much of the work within
this thesis. We covered four main areas: processes, analysis, MSR, and software process
recovery.

34

We covered work into processes ranging from statistical processes, stochastic processes,
to software development processes. We showed how other kinds of processes relate to
software development. We reviewed the data analysis tools such as statistics and time-
series analysis for events, and natural language processing for dealing with textual data.

After covering the groundwork of processes and analysis we then reviewed research
from the area of mining software repositories. Our work relies on MSR research because
it specifically mines repositories for behaviours related to processes. MSR covers a wide
range of repository analysis tasks such as extraction, metrics, statistics, visualization, and
topic analysis.

After we covered the MSR research we tied this research back to software process
recovery by showing the evolution of process mining, discovery and recovery. We motivated
software process recovery by demonstrating that process mining and process discovery often
required the instrumentation a live system while software process recovery did not.

35

Chapter 3

Software Process Recovery: A
Roadmap

In order to recover software development processes from evidence, such as software artifacts,
we need to show that we can find the building blocks of process: behaviours, purposes
and goals. Based on these behaviours and purposes we can observe or derive software
development processes. Yet many behaviours are not observable because they are not
recorded and do not leave evidence behind, such as phone-calls and meetings. The mixture
of behaviours within a software project is the de facto software development process of a
project. A prescribed process is a process that a developers agreed to follow, these processes
are often dictated to programmers by their managers. In many cases these de facto software
development processes might differ from the existing prescribed development process of a
project. Thus the three main questions that we have to address are: based on evidence
from software repositories can we observe the underlying behaviours? Can we observe the
process from these behaviours? And can we recover the purpose or goals behind many
of these events and behaviours? To answer these questions we need to understand the
composition of a software development process.

Software development processes consist of multiple stages, tasks, workflows, disciplines
and milestones. In order for us to crack the nut of software process recovery we will
need to handle the many dimensions of software development and software development
processes. These dimensions include the stages or disciplines of development, such as
iterations, maintenance, and requirements. These dimensions are related to a multitude of
issues facing software development.

Software development addresses many issues regarding requirements, design, implemen-
tation, testing, quality assurance, portability, non-functional requirements (NFRs), tools,
development environment, project management, communication, and many more. Thus

36

Developer Evidence

Produces
(lossy)
Exhibits Infers
. recovers Recovered
Follows | | Behaviour j&€--------------/ Infer
ollows Behaviour = Behaviour ers
Fufill Fufill
Purposes recovers Recovered
& Tasks [""" 7] Purposes
& Tasks
Compose Compose
Software recovers Recovered
Development|«€-------------- Development
Process Process
Actual Recovered

Figure 3.1: An illustration of the reality of development versus what we can infer from
evidence left behind. Developers exhibit behaviour as they attempt to meet goals that
compose the software development processes they follow. Evidence is a side effect of the
developer’s behaviour. Using this evidence we infer the behaviours that the developer
followed as well as the purpose behind this behaviour. By combining both recovered
purpose and behaviour we can infer the recovered process. Thus software process recovery
attempts to recover the actual development by inferring behaviour, purpose, and process
from evidence.

37

a software development process is often expected to address some of these issues. To ad-
dress these issues developers often perform behaviours that are relevant to addressing these
issues.

Our focus is to characterize and summarize behaviour over time. One way to do this is
by breaking down events into multiple workflows or disciplines. In Chapter 8, we summarize
workflows by combining the previous chapters into one coherent summary of software
processes via a kind of diagram called Recovered Unified Process Views. This diagram is a
concrete version of the Unified Process diagram in Figure 2.1. So how do these issues and
behaviours relate?

Our model of software process recovery is described in Figure 3.1. This figure is a
more concrete version of Figure 1.1 as the software process recovery fact extraction and
inference is made more explicit. We have to address two worlds, the actual development
of a project and the model of it we infer from available evidence. The actual development
of a project produces evidence as a side effect of the behaviour of the developers. These
behaviours take place in order to fulfil tasks or purposes that compose the underlying
software development process. Based on evidence produced by behaviours we can infer
and derive developer behaviour and the tasks or purposes behind this behaviour. This
evidence is often recorded in software repositories like source control systems, mailing list
archives and bug trackers. This evidence is raw and often needs to undergo the process
of fact extraction and inference. Once behaviour, tasks and purposes have been inferred
we can attempt to recover the software development process. The rest of this chapter will
relate the following chapters with the concepts from Figure 3.1.

We propose software process recovery and within this thesis we describe many tech-
niques that can be used to elicit various aspects of software development, and then we
integrate many of these techniques into a larger overview. Each of these techniques ap-
proaches software process recovery in a different manner and for a different purpose. The
three themes of software process recovery are: behaviour, evidence, purpose. These themes
have to be addressed before any processes are recovery from repositories such as source
control systems, mailing list archives and bug trackers.

We need to acquire and analyze the evidence left behind. Thus we need to determine if
any behaviour or process is observable based on evidence such as source control revisions.
In Chapter 4 we discuss how we can observe process by analyzing source control revisions
and looking for changes to source code, test code, build code or documentation.

To determine the purpose of evidence such as a change, one must interpret the evidence.
In Chapter 5 we investigate the content of commits themselves and to what tasks, goals
and purposes they relate to. We show that maintenance and implementation are taking
place in parallel.

Then in Chapter 6 we utilize the work in Chapter 5 in order to automate the classifica-

38

tion of changes by their purposes. We effectively demonstrate our ability to automatically
classify some changes using machine learning and natural language processing.

During software development developers often discuss particular topics that face the
project. In Chapter 7 we address the topics of development that are local to a project
and those that recur. These developer topics are topics or issues that developers discuss
in commit log messages and other discussions. These topics are often specific to a project,
but many are general issues that face most software systems. Topics that are project spe-
cific often relate to unique requirements and design inherent to the project itself, these
topics distinguish one project from another. These project specific developer topics might
be issues relating to the implementation of the project, or bugs. Topics that can relate
broadly across many projects include non functional requirements (NFRs) such as effi-
ciency, portability, reliability, and maintainability. Similarly local topics, topics that do
not repeat globally during a project’s history, often focus on a specific issue passionately
for a short period of time, while recurring topics within a project often relate to “ilities”
and non-functional requirements such as correctness. Later in Chapter 7, we further recon-
cile these topics and automatically label those topics that are found across many projects.
Specifically we label those topics that relate to non-functional requirements (NFRs).

Once we have our evidence gathered, our behaviours and purposes inferred we can try to
aggregate all of this information to suggest what are the underlying software development
processes of a project. In Chapter 8 we integrate much of this work in order to produce a
framework and methodology that yields us a time-line-like perspective on the observable
aspects of process within a project.

Thus we will demonstrate for many FLOSS projects that:

e software development processes are observable based on evidence left behind (Chapter
4);

e we can find the behaviours within a repository by categorizing changes into various
classes both manually and automatically (Chapter 4 and Chapter 5);

e we can elicit the purpose of changes (Chapter 5);
e we can extract the topics of change (Chapter 7);

e we can identify topics common to software development (Chapter 7).

In the next three sections we outline how we approach software process recovery using
different perspectives. These perspectives are necessary as software development is com-
plex. The first perspective is the software artifact perspective in Section 3.1 that looks at
software process recovery from the data that is available to us. Section 3.2 takes a process-
oriented perspective, as we address issues about concurrent behaviour, and the mixture

39

of effort between disciplines. Section 3.1 takes a look at process recovery from a software
development process perspective.

3.1 Software Artifact Perspective

We will execute software process recovery on artifacts extracted from three kinds of repos-
itories: source control systems, mailing list archives, and bug trackers. Source control
systems (SCSs) store artifacts such as changes to source code, change comments, revisions,
commits, documentation, tests, assets, build files and other files related to a software
project. The artifacts of mailing lists are messages, discussions and threads. Bug trackers
contain artifacts such as bug reports, issue tickets, bugs, bug discussions, and patches.
There are more repositories one could use but for our purposes and for the projects we
studied these are the three main accessible archives. Within the context of FLOSS the
next most common repositories would be documentation repositories such as wikis.

The next few sections will motivate our research using the software repositories that
we extract our software artifacts from:

e Source control systems (Section 3.1.1 and Chapters 4, 5, 7, 8)
e Mailing list archives (Section 3.1.2 and Chapter 7 and Chapter 8)

e Bug trackers (Section 3.1.2 and Chapter 7 and Chapter 8)

3.1.1 Source Control Systems

Source control systems are version controls systems (VCS) for source code and software
projects. Chapters 4 to 8 deal with version control systems in differing amounts. Most
have a commit or revision focus, which is often referred to as fine grained analysis. Some
chapters like 5 and 7 are rely on the descriptions that programmers give their changes.
The rest of this thesis relies heavily on SCS data.

Chapter 4 demonstrates that process is observable based on evidence held within a
SCS.

Chapter 5 describes what kind of commits and the purposes of these commits contained
within a SCS.

Chapter 7 describes the kinds of topics that are discussed in SCS commit messages.

Chapter 8 uses the time-series data of the events within a SCS.

40

Most of our research relates to source control systems because the majority of the data
we have is from these repositories. The artifacts contained within source control system are
very focused and on topic as they deal specifically with implementation issues and details.
Other repositories such as mailing list archives and bug trackers, discussed next in Section
3.1.2, can be more off-topic whether it is general discussions, discussing future changes,
or proposing new features which might never be implemented. Often discussions are not
found in SCS comments but on mailing lists and in bug reports.

3.1.2 Mailing list and Bug Trackers

When people communicate via a mailing list their discussions are often stored within
mailing list archives so that they can be accessed later. Mailing lists are effectively a
broadcast discussion mechanism. While bug trackers are somewhat similar, they are often
not email based, and are more formal than mailing list discussions. Each bug report
is usually named, and has a description and meta-data associated with it. Sometimes
discussions, much like a mailing list discussions, are attached or included with a bug report.

Mailing list archives and bug trackers are often very similar. The FreeBSD project use
the bug tracker gnats, which is am email based bug tracker. This is not always the case,
often bug trackers are ticketing systems that allow attachments and discussions.

For our purposes of software process recovery we want to leverage the data within
mailing list messages and bug reports. Most of this information is natural language text
and often the immediately most useful thing to do with such information is to categorize
it or classify it. In Chapter 7 we primarily analyze the source control system commit
messages and then label these messages by the NFRs that they are related to by using
word-bag analysis. Chapter 8 describes how we leverage this technique and apply it to bug
trackers and mailing list archives. Mailing list archives, bug trackers, and source control
systems can be analyzed together via traceability links.

These repositories are our primary sources of evidence. Thus given these three main
types of repositories and the artifacts within, we have enough information to be able to
recover some of the software development processes that a project might follow.

3.2 Process Perspective

Software development processes instruct practitioners on how to plan and produce software.
Software development processes often suggest how to order actions, how often certain action
should be repeated, and how to manage the complexity that is software development and
project management.

41

Processes deal with issues such as releases, tags, behaviours at certain times, iterations,
milestones, repeating behaviour and concurrent work. In our case we suspect many pro-
cesses are just mixtures of efforts at different times, depending on the focus of development
and the current stage in the project’s life cycle.

In the next few sections we will address how this research fits into process related issues
of software process recovery:

e Evidence of processes (Section 3.2.1 and Chapter 4 and Chapter 8)

Iterations, releases and tags (Section 3.2.1 and Chapter 4)

Behaviour at a certain time (Section 3.2.3 Chapter 4, 5, 7)

Repetition and consistent behaviour around events (Section 3.2.2 Chapter 4)

Concurrent effort across disciplines (Section 3.2.2 and Section 3.2.3 and Chapter 4
and Chapter 8)

3.2.1 Evidence of Software Development Processes

One of the first questions we have is: Can we observe software development processes
based on evidence extracted from the repositories and the artifacts that developers leave
behind? A short answer is yes, some aspects are observable: Chapter 4 demonstrates via
a very simple partitioning and time-series analysis that a repeatable process is observable
within many FLOSS projects. One way to investigate repeating behaviour is to study the
multiple releases within a project.

Software releases are an important part of a project’s software development process.
Most processes talk about releases whether it is one monolithic march to a release, such
as in the waterfall model, or a cyclic iterative model where releases are at least once per
iteration. Since releases are important demarcation points because they are chosen by the
developers as a milestone where the project is readied for consumption. Thus releases are
good points around which to analyze a project for indications of process because they are
intentional process events. Chapter 4 focuses on tags and releases and demonstrates there
are self similar release patterns within projects. This self-similarity is important because
it indicates that both iteration and repetition of processes are somewhat observable based
on analysis of the SCS revisions.

42

3.2.2 Concurrent Effort

Concurrent effort is when effort is split across many disciplines at one time rather than
focusing on one particular workflow or discipline, for instance if testing and implementation
occurred at almost the same time we would classify that as concurrent effort.

Chapter 4 investigates if work is done in stages or in a concurrent mixture of efforts.
The projects studied in Chapter 4 all showed concurrent efforts. Chapter 8 is concerned
about modelling and describing the concurrent effort expended on a project by partitioning
events and software artifacts into different time-lines.

3.2.3 Process and Behaviour

Software development processes concern the behaviour and emphasis on issues such as
quality. While Chapter 4 deals with release-time behaviour, Chapter 5 shows what a
particular change actually is by describing its behaviours and purposes.

Chapter 7 looks at the issues discussed within a project and relates them to software
quality topics. Thus we demonstrate that there are repeatable behaviours. We also show
that in some cases we can determine the NFRs related to the changes.

This ability to track concurrent behaviour and observe process is particularly useful
to software process recovery because it allows us to deal with software processes that are
truly mixtures of efforts rather than discrete stages. The next step is to integrate general
processes with software development.

3.3 Software Development Perspective

The Software Development perspective concerns different kinds of workflows, disciplines,
work and artifacts that go into developing software. Essentially all of the things that soft-
ware development processes describe. In order to recover software development processes
we have to recover events, artifacts and behaviour relating to software development itself.

The following sections relate software process recovery and software development:

Requirements (Section 3.3.1 and Chapters: 7, 8)

Design (Section 3.3.1 and Chapter 7, 8)

Implementation (Section 3.3.2 and Chapter 5, 4)

Testing (Section 3.3.2 and Chapter 4)

43

Deployment (Section 3.3.2 and Chapter 8)

Project management (Section 3.3.3 and Chapter 8)

Maintenance (Section 3.3.3 and Chapter 4 to 8)

Quality assurance (Section 3.3.3 and Chapters: 7, 8)

3.3.1 Requirements and Design

The ultimate goal is to recover requirements because they indicate and dictate what the
software is about. We will handle a small subset of requirements related issues that we
can observe from the evidence we have. Although the waterfall model is more of an
abstraction for discussion rather than an actual concrete process to be followed, it still
suggests requirements modelling should come early in the life-cycle of a project, while
other models suggest that requirements can be handled iteratively often at the beginning
of each iteration, but sometimes intermixed with implementation and design.

Chapter 7 investigates developer topics recovered from source control commit messages.
These topics often relate to requirements being addressed in the code. The second part of
Chapter 7 goes further and labels relevant topics by non-functional requirements that they
are related to, such as efficiency and portability.

In Chapter 8 we demonstrate how we can track requirements that occur during devel-
opment using word-bag analysis demonstrated in Chapter 7. In our case studies in Chapter
8 we found that we could extract some design discussions as well.

Given requirements and design, the next step is to relate these discussion to the actual
implementation and maintenance of these requirements and designs.

3.3.2 Implementation, Testing, and Maintenance

Implementation is the stage where the software is truly created based upon the design
and requirements. Implementation is the creation of concrete and executable software.
Typically implementation refers to the creation of actual source code, which is the first
stage of a feature’s concrete existence. Chapter 4 and Chapter 5 investigate tracking
implementation, testing, and maintenance.

In Chapter 4 to track implementation we partition revisions in source control by source
code changes, and non-source code changes. In Chapter 5 we track source code changes
further and categorize them as implementation (new features) or different kinds of main-
tenance.

44

Testing can be tracked by extracting changes to unit tests, benchmarks, test code, and
test files. Chapter 4 describes how we recover test changes and track them.

Tracking maintenance is important as there are different kinds of maintenance tasks
done for different kinds of purposes. These purposes are often dependant on the process
being followed. In Chapter 5 we investigate the breakdown of revision by maintenance
classifications such as Swanson’s maintenance classification. Chapter 6 goes further to see
if we can automatically learn from the descriptions of changes and related files in order to
classify changes by their maintenance categories.

These different maintenance streams are also integrated into Chapter 8, as the time-
line overviews rely on these classification efforts in order to track implementation and
maintenance changes across time.

While implementation and maintenance disciplines are the largest contributors of events
to the repositories we have, there are many other issues facing a project that are very
process oriented, such as deployment and project management.

3.3.3 Deployment, Project Management, and Quality Assurance

Deployment is the packaging, distributing, configuring and executing of a software project.
Project management is the management and application of software development processes
used to manage a software project, as well as measuring aspects of development. Quality
assurance is the attempt to ensure that a software project works, works well and is of a
reasonable quality.

How do we extract quality assurance related events and issues from a project? One
method is to look for the mention of issues related to software qualities, specifically software
quality related such as non-functional requirements like efficiency or reliability. Chapter 7
discusses extracting and labelling developer topics by the non-functional requirement they
are related to. Quality assurance is often used to decide if a project is ready to deploy or
not.

Deployment can be studied by investigating releases; this is because releases are pri-
marily milestones of a project when a project is complete enough to be packaged and
distributed. Chapter 4 studies releases and their patterns in depth. Deployment is also
investigated in 8 where we track deployment related events. The timing of deployment is
often related how a project is being managed.

Project management is the management of the development of a software project.
Project management is hard to track based on the evidence available to us. Unfortunately
what is often left behind is just the crumbs, the metrics about a project. Project manage-
ment also tracks implementation of requirements. While most of these chapters deal with

45

some aspect of project management Chapter 8 explicits seeks to track project management
related issues by tracking project management discussions in mailing lists, bug trackers and
source control systems.

While deployment and project management events are infrequent they are quite im-
portant to software process recovery because they are process-heavy events and actions.
Deployment, quality assurance, and project management indicate a conscious effort to
apply software development processes to a project.

3.4 Summary

In the following chapters we demonstrate that based upon the evidence available to us —
the artifacts of development — we can infer the behaviour and purpose behind many soft-
ware development events. This inference allows us to recover some software development
processes based on the evidence provided. Thus we show that observable software devel-
opment processes exist within some software projects and that we are capable of tracking
some aspects of these processes. We show that observable processes, processes recovered
based on evidence, are not clean and discrete like the abstract waterfall model but a mix-
ture of concurrent disciplines and workflows as suggested by the Unified Process. We show
that workflows are concurrent and parallel, that the regimented stages, as suggested by the
waterfall model, are not applicable for the projects that we studied. We investigate what
events and changes occur within these repositories and automatically classify the purpose
of many of these events. In Chapter 8 we integrate the research from many of the previ-
ous chapters in order to provide a global overview of the underlying software development
process.

46

Chapter 4

Evidence of Process

Within this chapter we demonstrate that we can observe software development processes
based on the evidence stored within source control systems. Specifically we derive developer
behaviour from the commits and revisions. This chapter also demonstrates that artifacts
can be related to concurrent workflows such as implementation and testing.

We will demonstrate that we can observe behaviour and derive de facto software de-
velopment processes by a simple method of analyzing revisions in source control systems
by their file types or purposes. Thus this chapter focuses on the evidence of behaviour al-
lowing us to infer software processes based on behaviours related to development artifacts
found in source control systems.

Concurrent development is observable. We show that throughout the life of a project,
changes are made to different kinds of artifacts. This shows that changes to artifacts,
such as documentation, are not localized to one point in time, in fact as the system evolves
artifacts, such as documentation, evolve with the project. We demonstrate that concurrent
workflows exist within a project by showing the parallel behaviour of changes to different
kinds of artifacts.

Implementation and maintenance changes are observable. With respect to software
development processes this chapter helps show that we can observe implementation and
maintenance related changes and behaviours. For instance, changes that modify build files
or add source code often add new features.

Effectively we leverage multilevel modelling in order to analyze releases of a project. By
doing so we improve our ability to describe the value of the release. Studying the release-
time activities of a software project — that is, activities that occur around the time of a
major or minor release — can provide insights into both the development processes used
and the nature of the system itself.

47

Although tools rarely record detailed logs of developer behaviour, we can infer release-
time activities from available data, such as logs from source control systems, bug trackers,
etc. In this chapter, we discuss the results of a case study about mining patterns of release-
time behaviour from the source control systems of four open source database systems.

We partitioned the development artifacts into four classes — source code, tests, build
files, and documentation — to be able to characterize the behavioural patterns more pre-
cisely. We found, for example, that there was consistent behaviour around release time
within each of the individual projects; we also found these behaviours did not persist across
systems, leading us to hypothesize that the four projects follow different but consistent de-
velopment behaviour around releases.!

4.1 Release Patterns

In this chapter we attempt to discover release patterns, that is, behavioural patterns of
software projects that can be observed around the time of a release. We theorize that
release patterns constitute a discernible slice of larger-scale patterns concerning developer
behaviour, in that they provide evidence of the actual processes and practices followed by
the project members. In turn, we expect release patterns to provide the observer with
useful and accurate information about the particular release-time processes being followed.
We observe and extract these patterns from the software artifacts available for use. Since
many of the development decisions and behaviours are not regularly logged, we rely on
systems that automatically log activity, such as a project’s source control system (SCS).

Ever since the Cathedral and Bazaar [133], there has been interest from businesses, de-
velopers, managers, and researchers about how Free/Libre Open Source Software (FLOSS)
is created. Previous attempts at investigating the development processes of Free/Libre
Open Source Software (FLOSS) have analyzed Bugzilla repositories and mailing lists [45];
these artifacts do not offer the fine granularity of activity records that revisions, from a
SCS, provide. We hope to extract this behaviour so that stakeholders in the project have a
way to extract and analyze the behaviour that is reflected within the source control system.

Given that many software processes are composed of stages we suspect we can better
observe a system’s behaviour by looking for changes or revisions that are related to stages
of software development. For example maintenance and implementation stages are related
to changes in source code files; integration and test stages are related to changes of test
files, benchmarks, test framework code, build files and configuration management files;
requirements, specification and design stages are related to changes in documentation files.

!This chapter is derived from Release Pattern Discovery via Partitioning: Methodology and Case Study
published at MSR 2007 [75] and Release Pattern Discovery: A Case Study of Database Systems, published
at ICSM 2007 [68]. Both co-authored with Michael W. Godfrey and Richard C. Holt.

48

In this research we will study the release patterns of several Open Source Software
Database Systems (RDBMSs). Many FLOSS RDBMSs started as proprietary software
either commercially or academically. Each has a long history of use and change. We have
chosen the domain of database systems, as we believe it to be both mature and fairly
stable, and we expect that the individual systems will likely have similar architectures or
provide a similar functionality which might help us compare them.

This work, when incorporated into a more general framework, can help people such as
managers and programmers. [t supports managers in analyzing project behaviour around
events such as releases. It supports the extraction of development process information from
projects, and so aids managers in verifying what practices the programmers are following.
This also permits managers a freer hand in the project development, since it frees them
from having to keep a close watch on what the developers are actually doing day-to-day.
For example our work can be used to determine when documentation or testing occurs
around an event. One could also determine if activities such as programming and testing
occur at the same time.

Programmers could investigate how their project is being maintained. Newcomers to
the project could determine the process followed by the programmers and figure out the
work flow of the project. Programmers could also ask the repository, relative to events,
when documentation took place.

Researchers could benefit by correlating the behaviour of successful projects, there by
deriving successful software development processes. Researchers could also validate the
behaviours of developers against the software development process that the developers
claimed they were following.

This work does not analyze all of the project’s behaviour. It only analyzes the project’s
behaviour around release time. In this chapter we look explicitly for common behaviours
among all of the case study projects. We conjectured that the release-time practices of
these database systems might be similar since they share the same domain.

4.1.1 Background

The stages of software development we want to identify are derived from various software
development models such as the waterfall model [138], the spiral model [20] and OMG’s
unified process [86]. Example stages include: requirements, design, implementation, docu-
mentation, testing, release, etc.

Software evolution is the study of how software changes over time [48] based on the
artifacts left behind by developers. These artifacts include mailing lists, change-logs, pro-
gram releases, source code, source control systems, revisions, etc. These artifacts often
need to be measured or aggregated to be studied. Common software evolution metrics

49

include lines of code, clean lines of code (no comments or extra white-space), number of
lines changed, lines added, lines removed, etc. Some software evolution metrics measure
systems before and after a change, as well as measuring change itself [121, 115, 48].

4.1.2 Terminology

This section introduces terminology that we use throughout the rest of this chapter.

Source control systems (SCSs) track and maintain the development and revision history
of a project. SCSs are repositories which store revisions to files such as source code and
documentation. In this study we used CVS and BitKeeper.

Revisions are changes to files stored in a SCS. They are not the actual files themselves
but the changes that occur between versions of a file.

Commits are the actions taken that add, submit or record revisions to the SCS.

Releases are the events where software is bundled for distribution. Usually when a
version of the software in SCS is decided to be the release, it is checked out and packaged.
There are two main kinds of releases: major releases and minor releases.

Major Releases are releases which are large changes to the software that often affect
the software’s architecture. Generally developers will indicate a major release by using a
large change in their version numbering of a release (e.g. MS Windows 95 to MS Windows
98 or Linux Kernel 2.2 to 2.4).

Minor Releases are generally smaller than major releases and are usually indicated by
a smaller change in the version number of a release (e.g. MS Windows XP SP1 to MS

Windows XP SP2 or Linux Kernel 2.4.19 to 2.4.20). We note that the criteria used to
distinguish between major and minor releases depends on the project.

All releases include both major and minor releases.

Release revisions are revisions that are near a release (e.g., with one week). Given an
interval around a release, a release revision is a revision that occurs within that interval.

A partition is one of the four sets of files stored in a SCS that we analyze: source, test,
build, and documentation.

Revision classes are the sets of revisions to files in our file partitions (source, tests,
etc.).

Source revisions are revisions to source code files. Source code files are identified by the
file name suffixes such as .c, .C, .cpp, .h, .m, .ml, .java, etc. Note that source
files might include files which are also used for testing.

20

Project Major | Minor | All
Firebird) 5| 10
MaxDB 7.500 | 1 12| 13
MaxDB 7.600 | 2 11 12
MySQL 3.23 | 2 68 | 70
MySQL 4.0 4 110 | 114
MySQL 4.1 4 110 | 114
MySQL 5.0 4 110 | 114
MySQL 5.1 4 110 | 114
PostgreSQL 7 27| 34
Total 33 963 | 595

Table 4.1: Total number of releases per project (Note MaxDB and MySQL fork their
repositories so each repository contains most of the releases)

Test revisions are revisions to files that are used for regression tests, unit tests, etc.
Revisions to files that are part of regression test and unit test cases are considered to be
test revisions. Generally, any file that has test in its name is assumed to be a test file,
although there are obvious exceptions.

Build revisions are revisions to build files such as those related with GNU Auto-tools
(make, configure, automake, etc) and other build utilities. Common build files have names
such as configure, Makefile, automake, config.status, or suffixes such as .m4, etc.

Documentation revisions are revisions to documentation files, which include files such
as README, INSTALL, doxygen files, API documents, and manuals.

Project behaviour is the behaviour of the source, test, build and documentation revisions
around an event, based on the project’s SCS.

Release patterns are the patterns of project behaviour that are observed around a
release. A release pattern is a behaviour that occurs before, after or during a release. A
release pattern includes behaviours such as increased frequency of documentation revisions
before a release which drop off after the release, or even the frequency of test revisions
maintaining a constant rate during the release. These patterns are primarily found by
analyzing a project’s release revisions.

4.2 Methodology

This section presents our methodology for analyzing release patterns of a project; we will
present the steps involved and then we will followup with an application of our methodology
in a case study (Section 4.3).

o1

Project Source Test | Build | Doc
Firebird 40737 7727 | 3183 | 534
MaxDB 7.500 | 10369 4270 298 52
MaxDB 7.600 | 23456 7087 318 97
MySQL 3.23 4220 1410 421 21
MySQL 4.0 11593 4936 | 1033 34
MySQL 4.1 31451 | 16430 | 2990 88
MySQL 5.0 45946 | 26373 | 3908 | 105
MySQL 5.1 52897 | 31389 | 4772 | 122
PostgreSQL 39153 4906 | 7172 | 3084
Total 209822 | 104528 | 24095 | 4137

Table 4.2: Total Number of Revisions per class per project

Our project analysis methodology can be summarized as: extracting data for revisions
and releases; partitioning the revisions into their revision classes; grouping revisions by
aggregation and windowing; producing plots and tables; analyzing summaries of the results
with our STBD notation (see Section 4.2.5).

Our project analysis methodology can be summarized as:

e Extracting data for revisions and releases (Section 4.2.1);

Partitioning the revisions (Section 4.2.2);

Grouping revisions by aggregation and windowing (Section 4.2.3);

Producing plots and tables (Section 4.2.4);

Analyzing summaries of the results with our STBD notation (see Section 4.2.5).

4.2.1 Extraction

First, we choose a target project’s SCS and either mirror the repository or download each
revision individually. From SCSs such as CVS or BitKeeper we extract the revisions and
sometimes release information. We will later analyze this extracted data. Per each revision
the minimal information extracted includes the date of revision, the name of the revised
file and the author of the revision. In Section 4.3.2 we describe our extractors: softChange
for CVS repositories and bt2csv for BitKeeper repositories.

Releases are found manually by evaluating mailing lists SCS tags, project change-logs,
manuals, and even the release date-stamps found in the project’s FTP repository. Once

52

extraction is complete we are ready to partition our revisions into classes. The release
information we extract includes the version number, the date, and whether the release is
a major release or not.

4.2.2 Partitioning

Once we have extracted the revisions, we partition the set of rev